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Summary 
Monitoring and modeling tools may improve irrigation strategies in precision agriculture. The 
main aim of this thesis was to develop and test methods for optimizing the irrigation efficiency 
using a combination of non-invasive soil sensors and process-based soil hydrological models 
integrated with crop growth models. Soil-water content fluctuations and crop yield was 
predicted in a heterogeneous sandy grassland and potato field under supplementary irrigation.  

In the first step, we used non-invasive soil moisture monitoring, a crop growth and a soil 
hydrological model to predict soil-water content fluctuations and crop yield in a heterogeneous 
sandy grassland soil under supplementary irrigation. The sensitivity of the soil hydrological 
model to hydraulic parameters, water stress, crop yield and lower boundary conditions was 
assessed for a one-dimensional soil column. The results showed that the effect of the position 
of the groundwater level was dominant in soil-water content prediction and associated water 
stress. A time-dependent sensitivity analysis of the hydraulic parameters showed that changes 
in soil water content are mainly affected by the soil saturated hydraulic conductivity Ks and the 
Mualem-van Genuchten (MVG) retention curve shape parameters n and α. in a two-layered 
soil. Results further showed that different parameter optimization strategies (two-, three-, four- 
or six-parameter optimizations) did not affect the calculated water stress and water content as 
significantly as does the bottom boundary. In this case, a two-parameter scenario, where Ks 
was optimized for each layer under the condition of a constant groundwater depth at 135-140 
cm, performed best. Numerical results showed that optimal irrigation scheduling using the 
aforementioned water stress calculations can save up to 12-22% irrigation water as compared 
to the current irrigation regime. This resulted in a yield increase of 4.5-6.5%, simulated by the 
crop growth model.  

In the second step, the correspondence between Ks and the apparent electrical conductivity 
(ECa) was assessed to estimate the spatial distribution of hydraulic properties at the field scale. 
To predict the Ks for the whole field, spatial distributions of Ks and its relationship between 
co-located soil ECa measured by a DUALEM-21S sensor were investigated. Results 
demonstrated the large spatial variability of all studied properties with Ks being the most 
variable one (CV = 86.21%) followed by ECa (CV ≥ 53.77%). A significant negative 
correlation was found between ln-transformed Ks and ECa (r = 0.83; P≤0.01) at two depths of 
exploration (0-50 and 0-100 cm). This site-specific relation between ln Ks and ECa was used 
to predict saturated hydraulic conductivity over 0-50 cm depth for the whole field. The 
empirical relation was validated using an independent dataset of measured Ks. The statistical 
results demonstrate the robustness of this empirical relation with mean estimation error 
MEE=0.46 (cm h-1), root-mean-square errors RMSE = 0.74 (cm h-1), coefficient of 
determination r2 = 0.67 and coefficient of model efficiency Ce = 0.64. The relationship was 
then used to produce a detailed map of Ks for the whole field. The result will allow model 
predictions of spatially distributed water content in view of irrigation management. 

In the third step, to identify proper sets of hydraulic parameters and to evaluate their relevance 
on hydrological model performance for irrigation management purposes we analyzed and 
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compared soil hydraulic properties obtained by traditional laboratory experiments and inverse 
optimization tension infiltrometer data along the vertical direction within two profiles in a 
potato field. The main goal was to identify proper sets of hydraulic parameters and to evaluate 
their relevance on hydrological model performance for irrigation management purposes. 
Tension disc infiltration experiments were carried out at four and five different depths for both 
profiles at consecutive negative pressure heads of 12, 6, 3 and 0.1 cm. At the same locations 
and depths undisturbed samples were taken to determine MVG hydraulic parameters (residual 
water content θr, saturated water content θs, shape parameters α and n, and lab saturated 
hydraulic conductivity Kls) in the laboratory. Results demonstrated horizontal differences and 
vertical variability of hydraulic properties. The tension disc infiltration data fitted well in 
inverse modeling using Hydrus-2D/3D in combination with final water content at the end of 
the experiment, θf. Four MVG parameters (θs, α, n and field saturated hydraulic conductivity 
Kfs) were estimated (θr set to zero), with estimated Kls and α values being relatively similar to 
values from Wooding’s solution which used as initial value and estimated θs corresponded to 
(effective) field saturated water content. The laboratory measurement of Kls yielded 2 – 30 
times higher values than the field method Kfs from top to subsoil layers, while there was a 
significant correlation between both Ks values (r = 0.75). We found significant differences of 
MVG parameters θs, n and α values between laboratory and field measurements, but again a 
significant correlation was observed between laboratory and field MVG parameters namely Ks, 
n, θs (r≥0.59). Assessment of the parameter relevance in 1-D model simulations, illustrated that 
the model over predicted and under predicted top soil-water content using laboratory and field 
experiments data sets respectively. The field MVG parameter data set resulted in better 
agreement to observed soil-water content as compared to the laboratory data set at nodes 10 
and 20 cm. However, better simulation results were achieved using the laboratory data set at 
30 to 60 cm depths. Results of our study do not confirm whether laboratory or field experiments 
data sets are most appropriate to predict soil water fluctuations in a complete soil profile, while 
field experiments are preferred in many studies.  

In the fourth step, a quasi 3D modeling approach was developed by integrating a crop growth 
(LINGRA-N) and a one dimensional soil hydrological model (Hydrus-1D) to simulate and 
visualize the water flow, water storage, water stress and crop yield over the entire 
heterogeneous sandy field. The approach illustrates how prior information on soil hydraulic 
properties, soil layer thickness and groundwater level with different resolutions can be used in 
water flow modeling for managing irrigation more effectively and practically in precision 
farming. In this modeling setup, the field is represented by a collection of parallel non-
interacting vertical columns representing different field conditions in terms of soil saturated 
hydraulic conductivity (Ks) groundwater level (GWL) and root zone-first layer depth (FLD) 
which were obtained from previous steps. We assessed the computational efficiency and 
uncertainty when simulating water flow on the large field scale with low to high resolution of 
input factors and evaluated four irrigation scenarios (no, current, optimized and triggered 
irrigation scenarios) to find the optimal and most cost-effective irrigation scheduling. 

The results showed that the uncertainty in model output (quasi 3D modeling approach) was 
reduced when using the high-resolution information while a fast performance was achieved. 
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Results further showed that this approach can accurately determine the field scale irrigation 
requirements, taking into account spatial variations of model parameters and of boundary 
conditions across the field. We found that a uniform distribution of water is not an efficient 
approach since at locations with shallow groundwater, the amount of water applied will be 
excessive as compared to the crop requirements, while in locations with a deeper groundwater 
table, the crop irrigation requirements will not be met. Numerical results showed that optimal 
irrigation scheduling is obtained by triggered irrigation, using the aforementioned water stress 
calculations and soil pressure heads resulting in saving up to ~300% irrigation water as 
compared to the current irrigation regime, while yield was not significantly affected (increase 
of ~1%). Overall, the presented approach can be a useful to help decision makers and applicants 
in answering what resolution of data is adequate for precision agriculture management, what 
the optimal irrigation scheduling is and what the economic benefits will be. 
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1.1 Introduction 

Water is the main factor limiting crop production when rainfall is insufficient to meet crop 

demand (FAO, 2012b). The increased pressure on available water resources, resulting from 

population growth, represents a major challenge in water management (Falkenmark, 1997). 

Water availability is also a challenging issue because of human-induced climate change 

(Hanasaki et al., 2013; Oki and Kanae, 2006). It was reported that 1.8 billion people could be 

living under conditions of acute water scarcity and two-thirds of the world population could be 

under stress conditions by 2025 (FAO, 2015). In fact, world agriculture wastes (through 

inadequate water conservation, losses in distribution, and inappropriate times and rates of 

irrigation) about 1500 trillion liters of water, 60% of the 2500 trillion liters of water it uses each 

year (Greenwood et al., 2010). Irrigation is the most important sector accounting for about 70% 

of the global freshwater withdrawals (the world’s accessible water) and 90% of consumptive 

water uses (Siebert et al., 2010). 

Intensive industrial farming in Northwestern Europe is thought to have a lower vulnerability to 

climate change, because farmers can compensate the impacts with management and technology 

(Olesen et al., 2011; Reidsma et al., 2010). But it has been shown that a sharp increase in 

extreme heat and drought is projected by the end of the century, with the potential to 

significantly reduce yields under current technologies (Gobin, 2012). On the other hand, there 

is considerable uncertainty about how to adjust timing and rates of irrigation in different 

cropping systems using such advanced technology. 

Accordingly, advanced monitoring and modeling may promote efficient water utilization and 

an optimal water supply/distribution to increase food and fodder productivity which is crucial 

when being confronted with worldwide water scarcity, climate change, growing populations 

and increasing water demands (FAO, 2011). This chapter begins with highlighting the global 

to regional problems in terms of water management and irrigation, and then introduces general 

irrigation methods shortly. Further it discusses hydrological and crop growth models and their 

applications in precision agriculture along with principles of modeling approaches and methods 

of providing input parameters for such models. Furthermore, the objectives, statement of 

problem and the outlines of the thesis are presented. 
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1.2 Water resources: from climate change - global warming to regional 

water scarcity 

Weather and climate are uncontrollable factors which affect the quantity and quality of 

agricultural production. Agriculture is the most climate–sensitive sector among all economic 

sectors (Potopová et al., 2015). Therefore the risks of climate change are the major challenges 

especially for societies of which their population, economic activities and livelihoods depend 

either directly or indirectly on agriculture (IPCC, 2013b). Climate change plays a diversity of 

roles all affecting the water cycle and water availability (UNEP, 2014). 

According to the latest scientific insights, climate change is leading to changes in the 

frequency, intensity, length, timing and spatial coverage of extreme weather events (UNEP, 

2012). This means that extreme climate events such as droughts, heat waves and flash floods 

are going to be more modal with higher peaks as compared to the past (IPCC, 2012). Climate 

change may affect food security and it emphasizes the need to propose local and region-specific 

management/adaptation strategies in terms of water management. Studies of the impact of 

global warming on water use and availability have identified the regions vulnerable to water 

scarcity and have projected future scarcity (Hanasaki et al., 2013). 

Climate change is expected to alter hydrological regimes (Mora et al., 2014)and the availability 

of freshwater, with impacts on both rain fed and irrigated agriculture (FAO, 2012a). With 

climate change, rainfall levels are expected to decline in many places or to occur in more 

intense events, while both evaporation and transpiration rates are projected to increase (FAO, 

2013). These changes will reduce the availability of soil moisture for plant growth. In addition, 

changes in the global water cycle in response to warming over the twenty-first century will not 

be uniform. The contrast in precipitation between wet and dry regions and between wet and 

dry seasons will probably increase. Climate change is adding heat to the climate system and on 

land much of that heat goes into drying (Trenberth et al., 2014). The higher temperatures will 

also increase the rate of soil organic matter decomposition, especially near the soil surface, 

which will affect the soil’s potential capacity to sequester carbon, retain water and supply vital 

nutrients to plants (FAO, 2013). A natural drought should therefore set in quicker, become 

more intense, and may last longer. Droughts may be more extensive as a result. Droughts will 

have major effects on agricultural production, with a decrease of production in certain areas 

and increased variability of production to the extent that important changes may need to be 
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made in the geographic area where crops are cultivated. Local impacts will bring global 

imbalances (FAO, 2013).  

1.2.1 Drought 

Drought is a major natural hazard that can have devastating impacts on regional agriculture, 

water resources and the environment (Sternberg, 2011). Drought is a complex phenomenon 

which is difficult to monitor. But it can be simply considered in term of soil water storage 

(Iñiguez et al., 2016). Several definitions of drought can be found in literature. The definition 

of drought is different in meteorology, hydrology and agriculture (Rossi et al., 1992). Further 

according to Intergovernmental Panel on Climate Change, IPCC (IPCC, 2007), these three 

different definitions of drought, which emphasize the relative roles of precipitation, 

evapotranspiration (ET) and runoff caused by climatic factors, are presented as: i) agricultural 

drought in terms of moisture (soil water) deficits in the vadose zone or the root zone that 

impacts crops, ii) meteorological drought is mainly a prolonged deficit of precipitation, and iii) 

hydrologic drought is related to below-normal streamflow, lake and groundwater levels. 

However, hydrological drought can also be linked to soil moisture and therefore soils can 

response to drought differently. This responses is called “the resilience or resistance to 

drought” and is defined by Iñiguez et al. (2015) as the time needed to recover to its pre-drought 

state of water content once that rainfall has started in a continuous way to exceed the vegetation 

water demand.  

In addition, climatological (precipitation shortage in absolute amounts for a given period) and 

atmospheric (defined in terms of precipitation shortages, temperature, humidity and wind 

speed) are other drought categories (Zamani et al., 2015). Drought can be quantified or defined 

in terms of the probability distribution function of a drought indicator such as soil water content 

or stream flow. For a drought not only the amount of water in terms of volume is relevant, but 

also its availability at the time it is mostly needed (Fischer et al., 2013). In other words, in a 

drought situation available soil water content reduces on average due to decreasing regional 

precipitation and increasing evapotranspiration or global warming (if the availability of soil 

water content is inadequate, part of any extra energy goes into raising temperatures, thereby 

amplifying warming). Therefore, in the medium to long term, drought will affect water 

resources and reduce the availability or reliability of water supplies in many places subjected 

to water scarcity. The impact of drought as a result of climate change is presented in Figure 

1-1. 
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Although agriculture is highly dependent on climate, it is also strongly influenced by factors 

unrelated to climate, especially management practices, technological advances, market prices 

and agricultural policies (FAO, 2013). These factors all have more immediate impacts on water 

(Bates et al., 2008). For this reason, it is important to understand the current status of water 

(i.e. water scarcity) and organize efficient water management including irrigation planning in 

agriculture. 

1.2.2 Water scarcity 

Agriculture is the main economic sector where water scarcity has the greatest relevance. Figure 

1-2 shows significant variations of water availability per capita between countries. This 

emphasizes the potential of water scarcity over the world which impacts on crop yields (Figure 

1-3). Generally, water scarcity is defined as an imbalance between available supply and 

expressed demand of freshwater in a specified domain, under prevailing institutional 

arrangements (including both resource ‘pricing’ and retail charging arrangements) and 

infrastructural conditions (FAO, 2012a). This definition involves two main types of water 

scarcity, i.e. physical and economic scarcities which are related to each other. Water scarcity 

and the presence of water of good quality is a serious public concern since it determines the 

availability of water to society. Water scarcity especially in arid climates and due to extreme 

Figure 1-1. The impact of drought as a result of climate change. Source: own. 
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droughts related to climate change drive water use technologies such as irrigation to become 

more efficient and sustainable. 

Two related terms of water scarcity can be addressed here. One is water shortage, i.e., a 

shortage of quantity and quality of water supply at a given place and a given time. The 

excessive expansion of irrigation areas with free or cheap water for farmers can result in water 

scarcity. Groundwater exploitation has grown exponentially in scale and intensity over recent 

decades. Groundwater’s capacity to provide flexible, on-demand water in support of irrigation 

has been seen as a major advantage by farmers. While intensification of groundwater use has 

contributed to improved livelihoods of millions of rural people (FAO, 2012a), it has also 

resulted in long-term groundwater levels declining and aquifer depletion, groundwater 

pollution and saltwater intrusion into important coastal aquifers (WWDR, 2015). Another one 

is water stress, i.e., the symptoms of water scarcity or shortage expressed in yield reduction. 

As discussed above climate change and global warming poses an additional threat to water 

scarcity due to changing meteorological input dynamics which may lead to significant changes 

in water supply in many regions (Schewe et al., 2014). Water stress depends on soil water–

holding capacity, water demand and antecedent wetness conditions (Barron et al., 2003). Water 

stress is more extended when not buffered by soil water storage. In rain-fed and irrigated 

agriculture, if the water availability in the soil cannot buffer the difference between supply and 

demand, the symptoms of water scarcity can be observed, i.e., the development of plants will 

be hampered, and in the worst case the plants will wither (Fischer et al., 2013). To shorten the 

Figure 1-2. Total renewable water resources (fresh water) with variations of water availability 
between countries in 2013 (per capita in m3) (WWDR, 2015). 
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stress period and to cope with water scarcity and drought effects on productivity, adaption in 

irrigation strategy is crucial.  

1.2.3 Drought in Belgium 

Over the last decades, droughts have had considerable influence on forest and agriculture in 

Europe (Maracchi et al., 2005; Olesen and Bindi, 2002; Reidsma et al., 2009). Increasing 

temperature and irregular precipitation patterns during summer will increase the number and 

intensity of drought events further in Europe (IPCC, 2013a). Over the last two decades, 

Belgium has experienced more monthly extremes than in any other decade since the 

observations began in 1833 (Gobin, 2010). Gobin (2010) stated that increasing temperature 

increases crop development and shortens the growing season. It strongly affects cumulative 

drainage for both winter and summer crops. Rising temperatures cause higher 

evapotranspiration rates results in a drier water balance regime with climate change. In that 

study, average yield losses of 12 to 27% were simulated for sugar beet and 23 to 44% for 

potatoes owing to drought and heat stress. It has been shown that water stress in a dry summer 

can decline potato yield of 10 to 40% (Elsen et al., 1995). It is shown that the impacts of the 

2003 heat wave in Europe (with temperatures up to 6°C above long-term means) and 

precipitation deficits up to 300 mm, resulted in an estimated loss of €13 billion for the European 

agricultural sector (Ciais et al., 2005). The most common drought that occurs in Belgium is 

Figure 1-3. Projected impact of climate change (water scarcity) on crop yields between present and 
2050 (World Resources Institute; http://ow.ly/rpfMN).  
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precipitation shortage (meteorological drought) in combination with higher temperature, severe 

wind and low humidity (atmospheric drought) (Zamani et al., 2015) which leads to water 

management drought. Therefore this country is exposed to water scarcity and has a high 

potential of deficit precipitation (cumulative differences between daily evapotranspiration and 

rainfall) and drought in the summer (1 April-30 September) with increasing in annual 

temperature (Van Passel et al., 2016).  

As we will discuss in the next chapter, to estimate water flow and crop water requirement, 

reference evapotranspiration (ETo) and precipitation are two main factors. In Belgium, around 

early April the average daily evapotranspiration becomes larger than the average daily 

precipitation; a deficit can therefore accumulate from April onwards. After September, the 

precipitation deficit tends to decrease as evapotranspiration reduces and rainfall increases. In 

The Netherlands, the precipitation deficit is defined as the cumulative difference between 

precipitation and evaporation from April to September (Beersma and Buishand, 2007). Zamani 

et al. (2015) used the precipitation deficit to identify droughts during summer (April-

September) in Belgium and showed the extent and regional variability of drought (Figure 1-4). 

In Figure 1-4, a 20-years return level of extreme precipitation deficit of grass and surface water 

provides information on the probability of accordance and magnitude of drought which may 

be closely linked to soil water shortage and stress. 

Figure 1-4. 20-Year return level maps, and bounds of the 95% confidence intervals (CI) for 
precipitation deficit (mm) of Belgium (adapted from Zamani et al. (2015)). Dots on maps show 
the positions of weather stations where the data obtained.  
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1.3 Water resource management: adaptation in irrigation scheme 

The agricultural sector will face water shortage due to increasing demand from agriculture and 

non-agriculture sectors, and the uncertainties in water management brought by climate change 

(Bakkes et al., 2009). For climate change adaptation through enhancing land and water 

management and increasing agricultural productivity, optimizing irrigation through advanced 

technology seems to be crucial. Presently, without irrigation global production of dates, rice, 

cotton, citrus, sugar cane and cereal would decrease by 60%, 39%, 38%, 32% 31%, and 20%, 

respectively (Siebert and Döll, 2010) while today about 24% of the total harvested cropland is 

irrigated (Jagermeyr et al., 2015). Increasing water use efficiency is one of the principles for 

increasing production, while adapting to climate change (FAO, 2013; Fereres et al., 2011). 

Indeed excessive water withdrawal for agriculture can further exacerbate water scarcity and 

therefore, efficient irrigation techniques and optimized irrigation programming can have a 

dramatic impact on reducing water demand (reducing water loss), and consequently increase 

yield (food, feed, fiber and fuel production per unit of land) and income (more crop per volume 

of water applied) (WWDR, 2015).  

Many researchers investigated the various factors influencing irrigation and how to improve 

irrigation efficiency of many crops (Akhtar et al., 2013; Banedjschafie et al., 2008; Greenwood 

et al., 2010; Stewart and Nielsen, 1990). It is reported that despite gradual improvement of 

water use efficiency in irrigation (using sprinkle or gravity systems), more than half of the 

irrigated cropland is still irrigated traditionally. However, current irrigation efficiencies are 

below 50% with most water being lost in the conveyance system or through inefficient 

application (Jagermeyr et al., 2015). In addition, more than 90% of the farmers do not assess 

crop irrigation requirements using more efficient on-farm water management practices such as 

moisture-sensing devices and commercial irrigation-scheduling services (Schaible and Marcel, 

2012). For irrigation optimization, a manageable issue is to prevent water losses, which is 

mostly neglected (Frederiksen and Allen, 2011; Simons et al., 2015). Reducing non-

beneficially consumed water (i.e. lost water in any way) can increase crop yields (Al-Said et 

al., 2012; Luquet et al., 2005; Molden et al., 2010). These strategies can inevitably reduce flow 

return as well (Jagermeyr et al., 2015).  

1.3.1 Crop water productivity 

Several approaches can be addressed to increase water use efficiency-crop water productivity, 

including i) breeding and certain agronomic practices to increase crop yield without increasing 
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evapotranspiration and water supply (plant breeding to improve yield under drought (Cattivelli 

et al., 2008)). These propose for developing new crop phenotyping/screening protocols to make 

better use of deep stored water. They also explore which root traits are most likely to be 

valuable for improving water uptake to increase yield, and efficient ways to select for these 

traits in breeding (optimum root system for delivering the highest yield); ii) proper irrigation 

methods and strategies to reduce water losses; and iii) considering the relationships between 

crop yield and applied water and irrigation design to increase economic productivity of water. 

The two latter approaches are further discussed here. 

There are various definitions for crop water productivity, or in other words irrigation water use 

efficiency, and it is therefore difficult to compare studies (Perry et al., 2009). Shortly, crop 

water productivity can be defined as the ratio between applied water and crop yield. While 

irrigation efficiency can be translated to the amount of water stored in the root zone compared 

to the amount of applied water (Pardossi et al., 2009) or the ratio between water consumption 

(evaporation, transpiration and interception) and water withdrawal (e.g., Jagermeyr et al., 

2015). The water efficiency indicators are time and space dependent. It is reported that under 

optimal practices, irrigation efficiency can be as high as 95%, while the average irrigation 

efficiency in good field practices, i.e. under sprinkler and drip irrigation, is estimated to be ~65-

75%. Furrow and flood irrigation can only achieve an efficiency of ~30-40% (FAO, 2013). 

The applied water separates into evaporation from soil, transpiration by crop, surface and 

lateral runoff and drainage or deep percolation. In a potential evapotranspiration condition, 

supplying sufficient amount of water to reduce water loss and in/on time water application can 

be considered as effective efficient irrigation. Two important aspects which affect irrigation 

efficiency are the type of irrigation and irrigation scheduling. Optimizing the design of 

irrigation systems can maximize crop yield and decrease the volume of applied water. Under-

irrigation results in reducing yield and its quality while over-irrigation increases the nutrient 

losses, and consequently increase nutrient requirements, and the crop’s vulnerability to 

diseases, the energy costs for water pumping and distribution, water loss and environmental 

pollution due to the leaching of nutrients. Anyhow, farmers have a tendency to over-irrigate, 

as to overcome any water shortage regardless of many other aspects (short-sight policy). They 

must be made aware that due to water scarcity, the limited irrigation water availability and the 

high pressure on reducing irrigation water as a policy, optimizing water application under 

frequent (deficit) irrigation is important to derive maximum crop yield (Garcia-Vila et al., 



   Chapter 1 

 

15 

2009). However, excessive irrigation might not produce greater yield or optimal economic 

benefit (Sun et al., 2006). Therefore water productivity can be expressed in terms of money 

(Vazifedoust et al., 2008) or the ratio between the value of the product and water application 

(Rodrigues and Pereira, 2009; Zwart and Bastiaanssen, 2004). The income term plays an 

important role in irrigation management. Using full- or over-irrigation, sharply increases yield 

, but productivity reaches its maximum at a given amount of water supply and then decreases 

or remains at a constant level even with further increasing water supply (Geerts and Raes, 

2009). Since crop yield (Y, unit weight per area) multiplied by crop price (Pc, price per unit 

weight) is equal to gross income (Eq. 1-1), the relation between irrigation and gross income 

will show the same trend. The revenue of irrigation function R(Irr) can be written as (English 

and Raja, 1996): 

Subtracting the irrigation cost e.g., operation cost, from the revenue function gives the 

maximum income. Figure 1-5 shows the relation between marketable yield and water supply 

(irrigation and rainfall). In section A, water is insufficient and crop will not fully develop. Once 

a minimum amount of water is applied (rainfall or irrigation), yield starts to increase with 

increasing water application (section B). In section C the production function can become 

nearly linear with additional water application with sharp slope; In section D, the slope of yield 

often decreases with water application, as observed for many crops. At this stage the yield is 

maximized with applied water. Additional water application will not produce more yield from 

the middle of this stage. In section E, applying more water not only will not increase yield but 

also water losses and will decrease the revenue.  
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Figure 1-5. General shape of crop production and revenue as a function of water application
(adaptet from: English and Raja, 1996; Geerts and Raes, 2009).  
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1.3.2 Irrigation methods 

When talking about irrigation, we generally mean the artificial application of water to cropland 

and soil. This includes the time, the duration, the intensity or discharge rate and thus the amount 

of applied water. First of all, the irrigation method is considered to be an important factor in 

irrigation and agricultural practices for sustainable and economical crop production. Irrigation 

methods vary regionally and depend on factors like natural conditions (i.e. water availability, 

soil properties, water quality, climate and topography), type of crop, type of technology, 

running cost, investment size (Burt et al., 2000) and the farmer’s economic income and 

preferences or experiences. Surface irrigation, sprinkler irrigation and (sub)surface drip/trickle 

irrigation are the main irrigation methods (Brouwer et al., 1988).  

Surface irrigation or flood irrigation is one of the most popular methods for crop irrigation. 

In this method, water is distributed over the soil surface by gravity flow. Water is pumped or 

brought to the fields and is allowed to flow along the ground in between the crops. The 

irrigation water is introduced into level or graded furrows (e.g. to grow vegetables) or basins 

(e.g. to grow rice) or strips of land (borders, e.g. to grow pasture and alfa alfa), using siphons, 

gated pipes, or turnout structures, and is allowed to advance across the field. Surface irrigation 

is best suited to flat land, and medium to fine textured soil types which promote the lateral 

spreading of water down the furrow or across the basin. Soil evaporation is supposed to be high 

for this method. This method is simple and cheap, and is widely used by societies in less 

developed parts of the world as well as in the U.S. This method has a low water use efficiency 

due to poor irrigation management and some problems such as leveling, low soil infiltration 

rates and runoff potential (Brouwer et al., 1988; Keller and Bliesner, 1990). 

Surface drip/trickle irrigation systems are methods of micro-irrigation wherein water is 

conveyed under pressure through emitters (which are closed to the plant) to the soil surface as 

drops or small streams (the immediate root zone of each plant is moistened). The main objective 

of the drip irrigation design is the uniform distribution of water delivered through the emitters 

which is affected by design parameters like pressure, discharge variation and emitter 

characteristics (Carrion et al., 2013; Keller and Bliesner, 1990; Pereira et al., 2002). The 

discharge rate of the emitters or drippers is slow so this irrigation method can be used on all 

soil types. Drip irrigation is suited to a wide range of cultivations, for instant individual plants, 

trees or row crops such as vegetables, cotton and sugarcane.   
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Subsurface drip/trickle irrigation consists of methods whereby irrigation water is applied 

below the soil surface and hence increases the water application efficiency with the lowest soil 

evaporation. The specific type of irrigation method varies depending on the depth of the water 

table. When the water table is well below the surface, drip or trickle irrigation emission devices 

can be buried below the soil surface within the plant root zone. However, these systems show 

higher investment costs than other pressurized irrigation systems. It has been demonstrated that 

crop yield in this method was greater than or equal to other irrigation methods, and less water 

was required in most cases (Camp et al., 2000; Lamm and Trooien, 2003). The highest water 

use efficiency was reported for this method among other methods (O'Neill et al., 2008).  

Sprinkler irrigation  is a planned irrigation system in which water is pumped through a pipe 

system and then sprayed over or under the crop canopy, or sprinkled through the air in rain like 

drops. The system aims to have high uniformity distribution. Of course, the uniformity of the 

applied water depends on the layout and spacing between sprinklers, wind speed and direction, 

pressure change, which directly affects sprinkler discharge, and the water distribution pattern 

of the sprinkler. The water distribution pattern depends on sprinkler type, nozzle type, rotation 

rate, crop interference, malfunctioning sprinkler heads, and non-vertical risers (Hanson et al., 

2011; Keller and Bliesner, 1990; Pereira et al., 2002). The spray and sprinkling devices can be 

permanently set in place (solid set), temporarily set and then moved after a given amount of 

water has been applied (portable set or intermittent mechanical move or mobile-gun sprinkler), 

or they can be mounted on booms and pipelines that continuously travel across the land surface 

(wheel roll, linear move, center pivot) (Keller and Bliesner, 1990). This method is adaptable to 

any sloped farm. It is best suited to sandy soils with high infiltration rates. This method is not 

suitable for soils which easily form a crust, and under very windy and warm conditions. 

1.3.3 Irrigation in Belgium and strategic crops 

In many parts of Europe, irrigated agriculture is central to the local economy. Traditional water 

management using sprinkler and drip irrigation systems are mostly used for outdoor and 

greenhouse, respectively, with an efficiency of 70 to 90%. Increasing irrigation efficiency is 

one way to improve the irrigation system and sustainable water management. It has been shown 

that in Belgium the total area equipped for irrigation is 23830 ha (~2% of total agricultural 

area), of which 13864 ha is irrigated with groundwater (Siebert et al., 2013) which is highly 

increasing. Therefore, the quantity of groundwater may deteriorate rapidly. In Belgium, 60% 

of the land is occupied by agricultural area. Grassland (temporary and permanent) covers ~43% 
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of the agricultural area and annual crops ~55% (Peeters, 2010). Normally, full irrigation water 

is applied to match the crop water demand at the certain time with almost homogeneous 

distribution all over the field.  

Peltonen-Sainio et al. (2010) concluded that for potato, one of the strategic crops in western 

and north-eastern agricultural regions of Europe, tuber formation was constrained by reduced 

precipitation. Using long-term datasets, they found that elevated temperatures had harmful 

effects on yield and revealed whether there are commonalities across the European agricultural 

regions for major field crops. Marshall (2015) reported that potato production has further 

revised down of about 24.8 Mt in 2015 which is now 1.5% below the five years average in 

North-Western Europe. For Belgium, potato yielded 16% less than previous year i.e., 2014. 

Potato is highly sensitive to water stress which likely suffers from global climate change.  

Grass is one of the most widely cultivated crop in Belgium for livestock production, e.g. meat 

and dairy. As ryegrass is relatively sensitive to drought stress (Frame and Laidlow, 2011; 

Norris, 1982), it is almost impossible to achieve its maximum or optimum yield without 

irrigation. Grass irrigation can lead to excessive water consumption using conventional water 

management/irrigation. Overall, seasonal crops such as grass and potato put more pressure on 

groundwater resources. The large amount of required irrigation water has encouraged the 

development and application of efficient irrigation strategies.  

1.3.4 Effective irrigation scheduling 

Irrigation scheduling in terms of efficient irrigation, refers to the determination of the applied 

amount of water to a crop and the timing for application (Pardossi et al., 2009). The goal of 

irrigation scheduling is to approach an optimal water supply and distribution for achieving 

higher productivity (soil moisture being maintained close to the upper available water content 

or field capacity) (Jones, 2004; Schütze and Schmitz, 2010). Generally, four different 

approaches are used in irrigation management: i) controlling soil-water content in the root zone 

by its direct or indirect measurement in soil, i.e., “soil-based”, ii) using meteorological data 

and mathematical models that calculate evapotranspiration (Nosetto et al., 2012), i.e., 

“weather-based”, iii) sensing of the plant response to water deficits by measuring crop 

parameters such as stem diameter, leaf thickness; stem sap flow, or root pattern, i.e., “crop-

based”, and iv) canopy temperature-based via infrared thermometers on land or boarded on 

aircrafts and/or satellites, i.e., ‘remote–sensing based” (Evett et al., 2008; Jones, 2004; 

Mohanty et al., 2013; Pardossi et al., 2009). The advantages and disadvantage of each method 
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are summarized in Table 1-1. Using a combination of these approaches is increasingly popular. 

It helps to optimally distribute limited irrigation water during the growing season. This 

irrigation scheme is adapted to actual weather conditions, soil properties and drought or water 

shortage conditions and crop status (crop water demand) to achieve high yields and less water 

loss. Sometimes heterogeneous distribution of irrigation is necessary due to heterogeneity, 

topography and other soil and field properties. Controlled deficit irrigation is an optimized 

strategy of irrigation scheduling where water is mainly applied during drought sensitive growth 

stages of a crop (Geerts and Raes, 2009). Outside these periods, irrigation is limited if 

precipitation provides a minimum supply of water (English, 1990).  

 

 

1.4 Irrigation scheduling: modeling approach 

A balance between water supply and water demand is the key factor for efficient management 

of water resources in agriculture. The vadose zone is a complex system involving highly non-

Table 1-1. Summary of main advantages and disadvantages of irrigation scheduling approaches 
(adapted from Jones (2004)).  

Irrigation method Advantages Disadvantages 

Soil-based: soil water 
content/potential (TDR, 
gravimetric and soil water 
content probe, tensiometer) 

Easy to apply; Precise; 
Availability of commercial 
system; Automated sensors; 
Indicate how much water to apply 

Extensive monitoring program; Requires 
many sensors due to soil heterogeneity; 
Some difficulty in selecting the root zone 
representation; Sensors do not generally 
measure water status at root surface 

Weather-based: based on 
soil water balance 
calculation (needs estimate 
of water supply and 
evapotranspiration) 
 

Easy to apply; Indicate how much 
water to apply 

Not so accurate as direct measurements; 
Required local estimates of precipitation; 
Evapotranspiration, crop coefficients; 
Errors are cumulative; Regular 
recalibration is needed 

Crop-based: include plant 
stress sensing (Tissue 
water status e.g., visible 
wilting, pressure chamber, 
physiological response, etc. 
e.g., stomatal conductance, 
growth rate, etc.)  
 

Measure the plant response 
directly; Somehow easy to detect; 
Widely accepted reference 
technique; Sensitive indicator for 
water deficit  

Does not indicate how much water to 
apply; Labor intensive and slow; 
Required to determine control thresholds; 
Not so precise in some cases; Yield 
reduction often occurs before symptoms, 
Hard to automate; Need high level skill; 
Required sophisticated equipment; 
Expensive  

Remote sensing: satellite- 
based 

Remote application; Easy to apply; 
Scaling up to large area/fields; 
Correlated to evapotranspiration; 
Involve wide range of vegetation; 
suitable for studies of spatial and 
temporal patterns; Less expensive 
and time consuming 

Does not indicate how much water to 
apply; Should combine with water 
balance study (dependency); 
Recalibration is necessary; Indirect 
method; Limitations in satellite imagery; 
Observation are not always captured at 
ideal items and times; Difficult to 
identify small irrigated area (resolution 
imagery 15-60 m from satellite) 



General introduction 

20 

linear processes and interactions. Due to limitations of irrigation scheduling methods (Table 1-

1) and their application, e.g., expenses of installing sensors in the field, in situ or laboratory 

measurement difficulties, etc. a modeling approach can be used to simulate the timing of 

irrigation and amount of irrigation. During the last decades, noticeable shifts can be seen from 

allocation approaches to quantitative management irrigation scheduling (Elmaloglou and 

Malamos, 2003; Li et al., 2012; Paudyal and Dasgupta, 1990; Raman et al., 1992; Sanaee-

Jahromi et al., 2001). The fundamental step to guide quantitative irrigation is developing and 

using developed mathematical, numerical, physically-based and conceptual models. These 

models can be used individually or coupled to crop growth and/or hydrological models to 

efficiently manage water resources in agriculture. These models have been applied to manage 

irrigation systems.  

1.4.1 Crop growth modeling 

A crop model is a simple presentation of a crop which is used to study crop growth and to 

calculate growth response to chemical and water applications. Several models have been 

developed during the past three decades to simulate crop growth and soil water processes 

(Vazifedoust et al., 2008). There are various crop growth models that differ in complexity, 

including statistical, mechanistic, deterministic, stochastic, dynamic, static, simulation, 

descriptive and explanatory models designed for different purposes (Murthy, 2004). Crop 

models facilitate the evaluation of irrigation strategies or climate scenarios and generalized 

crop production. Crop growth models are generally based on a soil water balance and include 

yield-water functions. These model are applied in decision support systems for irrigation and 

fertilization scheduling (Darouich et al., 2014), to predict possible impact of climate change on 

agriculture (Gobin, 2010; Semenov, 2009), to design or manage irrigation systems (Darouich 

et al., 2014; Li et al., 2011; Shang and Mao, 2006), to assess water saving practices (Fang et 

al., 2010; Gongalves et al., 2007), and to evaluate the feasibility of deficit irrigation (Geerts et 

al., 2010; Salemi et al., 2011). In Table 1-2, examples of crop growth models and their 

application are summarized. 

1.4.1.1 LINGRA-N: a crop growth model 

The grassland growth model LINGRA (LINTUL GRAssland) was developed by the DLO 

Institute for Agrobiology and Soil Fertility (AB-DLO) (Bouman et al., 1996), now Alterra 

Wageningen UR. LINGRA was developed to predict growth and development of perennial rye 

grass across the member states of the EU at the level of potential and water-limited production. 
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The model is based on the LINTUL (Light INTerception and UtiLisation simulator) concept 

as proposed by Spitters (1988); Spitters (1990). It also is the extension of CGMS (Crop Growth 

Monitoring System) to include the estimation of productivity of grasslands using WOFOST 

model. The model was calibrated and evaluated on experimental field data collected throughout 

Europe. The LINGRA-N model, which is extended and developed from LINGRA by Wolf 

(2012), is a simple crop growth model which can calculate grass growth and yield under 

potential (i.e. optimal), water limited (i.e. rain fed) and nitrogen limited growing conditions. In 

both situations, the crop is optimally protected against pests, diseases and weeds. LINGRA-N 

is a generic model which can be used for different grass types growing under a large range of 

soil and weather conditions with different management regimes.  

LINGRA was written in the Fortran Simulation Environment (FSE) standard. This model 

simulates grass growth, development and biomass yield as a function of weather, soil, 

management and variety-specific coefficients (Bouman et al., 1996). Within a given region, 

crop and soil characteristics and farm management are relatively constant over years, and the 

function of the tool is to quantify the effect of varying weather conditions on crop growth. The 

main principle of this concept is that crop growth is proportional to the amount of light 

intercepted by the canopy. The growth rate in the LINGRA model follows the source-sink 

concept. Growth depends on the strength of both the source (photosynthesis and remobilization 

of reserves) and the sinks (the carbon-demand of growing tillers and leaves). The assimilation 

production from photosynthesis is set be the amount of intercepted radiation and a light use 

efficiency (LUE) factor, which in turn is determined by the CO2-concentration in the air, the 

air temperature, the light intensity. LUE is also sensitive to drought and decreases with 

increasing water stress. More details are given by Schapendonk et al. (1998). A simulation with 

the LINGRA-N program uses in general the file BATCHG.inp to read the specifications (in 

particular, the years, soil, weather, crop, and management) of the run. The routines CROPG.dat 

(crop data such as emergence, phenology, green area, radiation use efficiency, death rate ), 

SoilG.dat (soil data such as water retention data, infiltration rate, initial soil water content and 

maximum rooting depth, rooting, water and nitrogen use), MANAGG.dat (input file for N 

application, irrigation water application and cutting regime) and STATR.dat (daily weather 

data such as solar radiation, minimum and maximum temperature, vapour pressure, wind speed 

and precipitation) are used in the batch setup. The daily output is produced by the model (in 

DAILOUT.out). The components of the grass production (kg/ha), development stage, leaf are 

index, LAI (m2/m2), components of water balance (mm) soil water content (cm3/cm3) are given 



General introduction 

22 

in that output file. For a thorough overview on this crop growth simulation model, the reader 

is referred to Bouman et al. (1996) and Wolf (2012). 
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Model Description Application Review literature 

WOFOST (Van Keulen 
and Wolf, 1986) 

WOrld FOod STudies  
A mechanistic-simulation model for the quantitative analysis of 
water use, the growth and production of annual field crops 

Castaneda-Vera et al. (2015); Eitzinger et al. 
(2013); Li et al. (2012); Mishra et al. (2015); 
Peltonen-Sainio et al. (2015); Rotter et al. 
(2012); van Diepen et al. (1989); Wang et al. 
(2015a) 

CGMS (Hooijer and van 
der Wal, 1994) 

Crop Growth Monitoring 
System 

A combination of GIS and WOFOST model for spatial yield 
prediction 

Technow et al. (2015); Hutchings et al. 
(2012) 

SUCROS (Spitters et al., 
1989) 

Simple and Universal 
Crop Simulator 

Simulates potential growth of a crop under supplied water and 
nutrients and prevailing weather condition 

Burguete et al. (2014) 

SIMCOY (Brown and 
1969; Place and Brown, 
1987) 

SIMulation of 
COrnYileld 

Simulate yields under different management options Wang et al. (2015a) 

CERES (Jones and 
Kiniry, 1986) 

Crop Environment 
REsource Synthesis 

The explanatory and dynamic crop model to simulate phenological 
development, formation of leaf and stem and root biomass, 
available soil water content and nitrogen balance for cereals (barley, 
maize, sorghum, millet, rice and wheat) 

Castaneda-Vera et al. (2015); Eitzinger et al. 
(2013); Hasegawa et al. (2000); Jamieson et 
al. (1998); Laurila (1995); Quiring and 
Legates (2008); St'astna et al. (2002); Wang 
et al. (2015a) 

APSIM (McCown et al., 
1996) 

Agricultural Production 
System sIMulator 

Allows models of crop and pasture production, residue 
decomposition, soil water and nutrient flow, and erosion to be 
readily re-configured to simulate various production systems and 
allows soil and crop management to be dynamically simulated using 
conditional rules 

Keating et al. (2003); Wang et al. (2002); 
Wang et al. (2015a) 

Beta model (Gao et al., 
1992) 

 
Similar to WOFOST, uses multiplicative functions to describe the 
interaction between temperature and photoperiod effects under 
different management 

Wang et al. (2015a); Zheng et al. (2000) 

SWACROP (Huygen, 
1992) 

Soil WAter Content and 
Crop 

Simulates root-water uptake functions, crop yield, solute transport   
Hack-ten Broeke (2001); Pinthong and 
Clemente (2014); Utset et al. (2000) 

MACROS (Penning de 
Vries et al., 1989) 

Modules of an Annual 
CROp Simulator 

Processes of crop growth and water movement for a range of crop 
types and weather variables. Estimates water balance for well 
drained and partially saturated soils 

Ebrahim (2008); Matthews and Wassmann 
(2003) 

CROPWAT (Smith, 
1991) 

CROP WATer  
A decision support tool for the calculation of crop water 
requirements and irrigation requirements based on soil, climate and 
crop data 

Abedinpour et al. (2014); George et al. 
(2000); Kloss et al. (2012); Kuo et al. (2006); 
Loukas et al. (2015); Luo et al. (2015) 

Table 1-2. Examples of most commonly used crop growth models and their application. 
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Model Description Application  Review literature 

ISAREG (Teixeira and 
Pereira, 1992) 

Irrigation Scheduling 
REGen  

Performs the water balance for a multilayered soil; Used for 
irrigation scheduling simulation, impacts of water stress and salinity 
on yield0 

Darouich et al. (2014); (Gongalves et al., 
2007); Pereira et al. (2009); Valverde et al. 
(2015) 

BUDGET (Raes, 2002)  

A set of validated subroutines describing the various processes 
involved in water extraction by plant roots and water movement in 
the soil profile. Calculates the water storage and salt content in a 
cropped soil profile as affected by input and withdrawal of water 

Malekpour and Babazadeh (2011); Raes et 
al. (2006a) 

OSIRI (Chopart et al., 
2007) 

Outil Simplifié pour une 
Irrigation Raisonnée et 
Individualisée (i.e. 
simple decision-making 
tool for sustainable 
individual monitoring of 
irrigation) 

A simple tool aimed at optimizing irrigation water and rainfall use, 
taking into account heterogeneities of the irrigation parameters and 
of the environmental factors 

Lebourgeois et al. (2010) 

ISM (George et al., 
2000) 
 

Irrigation Scheduling 
Model 

Irrigation scheduling model under various management options for 
both single and multiple fields 

Dogrul et al. (2011); Raul et al. (2012) 

PILOTE (Mailhol et al., 
1996) 

 
An operative water balance model which predicts actual 
evapotranspiration and yield of crops; Determines the water stress 
index 

Bouazzama et al. (2013); Feng et al. (2014); 
Kloss et al. (2012); Mailhol et al. (1997); 
Mailhol et al. (2011) 

SIMDualKc (Rosa et al., 
2012) 

Simulation (soil water 
balance) Dual crop 
coefficient (Kc) 

Simplifying implementation of the computation of the crop 
coefficient and crop evapotranspiration using the dual crop 
coefficient approach over a range of cultural practices and to 
provide ET information for use in irrigation scheduling and 
hydrologic water balances 

Gonzalez et al. (2015); Pereira et al. (2016); 
Qiu et al. (2015) 

AquaCrop (Raes et al., 
2009) 

 

The FAO crop-model to simulate yield response to water of several 
herbaceous crops; Estimation of crop productivity in relation to 
water supply and agronomic management in a framework based on 
current plant physiological and soil water budgeting concepts 

Abedinpour et al. (2014); Akhtar et al. 
(2013); Castaneda-Vera et al. (2015); 
Eitzinger et al. (2013); Pereira et al. (2016); 
Tavakoli et al. (2016) 

DAISY (Abrahamsen 
and Hansen, 2000) 

 

A mechanistic-dynamic model for simulation of water and nitrogen 
dynamics and crop growth in agro-ecosystems. The model aims at 
simulating water balance, nitrogen balance and losses, development 
in soil organic matter and crop growth and production in crop 
rotations under alternate management strategies 
 
 
  

Angulo et al. (2014); Kloss et al. (2012); 
Plauborg et al. (2010); Rotter et al. (2012) 
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Model Description Application  Review literature 

AFRC-Wheat (Weir et 
al., 1984) 

 

A mechanistic model that incorporates crop response to water and 
nitrogen constraints. Model processes include phenological 
development, partitioning of photosynthesis, growth of leaf and 
stems, senescence, biomass accumulation, and root system 
dynamics. 

Atkinson et al. (2005); Butterfield and 
Morison (1992); Jamieson et al. (1998); 
Laurila (1995) 

APSIM 
 

Agricultural Production 
Systems Simulator 

A farming systems model that consists of several modules 
integrated to perform farming systems simulation including water 
balance, N and P transformations, soil pH, erosion and a full range 
of management controls 

Araya et al. (2015); Brown et al. (2011); 
Keating et al. (2003); Kloss et al. (2012) 

CROPGRO 
(Hoogenboom et al., 
1992) 

CROP GROwth 
A generic, physiological, process-oriented legume crop growth 
model 

Amiri et al. (2015); Scholberg et al. (1997); 
Thorp et al. (2015) 

CropSyst (Stockle et al., 
1994) 

Crop System 

A multi-year, multi-crop, daily time step cropping systems 
simulation model developed to serve as an analytical tool to study 
the effect of climate, soils, and management on cropping systems 
productivity and the environment 

Bouazzama et al. (2013); Castaneda-Vera et 
al. (2015); Donatelli et al. (1997); Eitzinger 
et al. (2013); Stockle et al. (2003) 

LINTUL (van Oijen, 
1992) 

Light INTerception and 
UtiLization simulator 

A generic and simple crop growth model that can simulate crop 
growth under both potential, water limited and nitrogen limited 
conditions and under climatic change; The main simulated 
processes are: photosynthesis, phenological development, 
assimilate distribution to crop organs, water uptake, nitrogen 
uptake, evapotranspiration, soil water balance, and nitrogen balance 

Angulo et al. (2014); Franke et al. (2013); 
Hijmans et al. (2003); Kooman and 
Haverkort (1995); Zhao et al. (2015) 

SIRIUS (Brooking et al., 
1995) 

 
Responses to environmental variations, and in practice by farmers 
to optimize water and nitrogen applications  

Brown et al. (2011); Jamieson et al. (1998); 
Stratonovitch et al. (2012) 

CoupModel (Jansson and 
Karlberg, 2001) 

Coupled heat and mass 
transfer model for soil-
plant-atmosphere system 

A process-oriented, dynamic model which describes water-heat-
carbon and nitrogen flows in the soil-plant-atmosphere system as a 
function of climate at various time and spatial scales  

(Conrad and Fohrer, 2009; Karlberg et al., 
2006) 

CENTURY (Parton et 
al., 1992) 

 

A general model of plant-soil nutrient cycling which is being used 
to simulate carbon and nutrient dynamics for different types of 
ecosystems including grasslands, agricultural lands, forests and 
savannas 

Cong et al. (2014) 

EPIC (Williams et al., 
1983) 

Erosion-Productivity 
Impact Calculator 

A cropping systems model that was developed to estimate soil 
productivity as affected by erosion  
 
 
 
 

Angulo et al. (2014); Eitzinger et al. (2013) 
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Model Description Application  Review literature 

DSSAT (Tsuji et al., 
1994) 

Decision Support System 
for Agrotechnology 
Transfer 

Soil water balance and crop management; Includes the CERES 
models for cereals and the CROPGRO models for legumes (dry 
bean, soybean, peanut and chickpea); and models for root crops 
(cassava, potato) and other crops (sugarcane, tomato, sunflower and 
pasture) 

Angulo et al. (2014); Araya et al. (2015); 
Eitzinger et al. (2013); Jame and Cutforth 
(1996); Rotter et al. (2012) 

InfoCrop (Aggarwal et 
al., 2006) 

 
A generic crop model designed to simulate the effects of weather, 
soils, agronomic management (including planting, nitrogen, 
residues and irrigation) 

Boomiraj et al. (2010); Tsarouchi et al. 
(2014) 

Expert-N (Baldioli et al., 
1994) 

The nitrogen balance 
modeling tool for 
agricultural and forest 
ecosystems  

A development system with the aim to improve the process 
understanding of the turnover and transport of matter and the energy 
fluxes in the soil-plant-atmosphere system; The focus are the 
simulations of matter cycling in forest, grassland, and crop 
ecosystems from the field to the regional scale 

Gayler et al. (2002); Priesack et al. (2007); 
Wöhling et al. (2013) 

HERMES (PC-Agrar., 
1994) 

 
A model to describe plant growth and water and nitrogen dynamics 
in the soil-plant system. 

Eitzinger et al. (2013); Hlavinka et al. 
(2014); Nendel et al. (2011); Rotter et al. 
(2012) 

LPJmL (Sitch et al., 
2003) 

Lund-Potsdam-Jena 
managed Land 

Simulates the global terrestrial carbon cycle and the response of 
carbon and vegetation patterns under climate change 

Forkel et al. (2015); Langerwisch et al. 
(2008); Sitch et al. (2003) 

MONICA (Nendel et al., 
2011) 

 
A dynamic, process-based simulation model which describes the 
transport and bio-chemical turn-over of carbon, nitrogen and water 
in agro-ecosystems 

Rotter et al. (2012); Specka et al. (2015) 

SALUS (Hoffmann et 
al., 1993) 
 

System Approach to 
Land Use Sustainability 

Designed to model continuous crop, soil, water and nutrient 
conditions under different management strategies for multiple years 

Eitzinger et al. (2013); Hoffmann et al. 
(1993); O'Leary et al. (2015)  

LINGRA-N (Wolf, 
2012) 

LINtul-GRAssland-
Nitrogen 

A simple generic grass growth model which can calculate grass 
growth and yields under potential (i.e. optimal), water limited (i.e. 
rain fed) and nitrogen limited growing conditions 

Barrett et al. (2004); Barrett et al. (2005); 
Schapendonk et al. (1998) 

SIMPLACE (Gaiser et 
al., 2013) 

Scientific Impact 
assessment and 
Modeling PLatform for 
Advanced Crop and 
Ecosystem management 

A modular modeling framework to support decisions for the 
management of a wide range of crops and ecosystems under 
changing resource availability and climate conditions; The 
framework is  developed with standard technologies, which reduce 
the effort in model development and customization 

Rezaei et al. (2015); Zhao et al. (2015) 
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1.4.2 Hydrological modeling  

Crop growth models are sophisticated plant production modules but mostly use simplified soil 

hydrological concepts, i.e., available water and field capacity. In the vadose zone, modeling 

soil water content, water flow and solute transport has been under development since 1970s 

(Bultot and Dupriez, 1976; Neuman et al., 1974; Toksoz and Kirkham, 1971; Zaradny and 

Feddes, 1979). Hydrological modeling started earlier than 1960s before modelers began to 

develop conceptual models, e.g. the Stanford Watershed Model (Crawford and Burges, 1966). 

Hydrological models are classified based on model input and parameters and on the extent of 

physical principles applied in the model. Hydrologicals model can be classified according to 

Jajarmizadeh et al. (2012) as i) based on equations: deterministic (simulate same output for a 

single set of input values) and stochastic (simulate different values of output for a single set of 

inputs) models; ii) based on time: static (exclude time) and dynamic (include time divided in 

two groups: continuous and event-based) models; iii) based on laws and assumptions: empirical 

(metric model), conceptual (parametric model) and physically-based models; iv) based on 

parameters: distributed and lumped models; and v) based on the procedure of computation: 

analytical and numerical models.  

The empirical models which are called data-driven models, are observation oriented models 

which take only the information from existing data without considering the features and 

processes of the hydrological system (Todini, 2007). They involve mathematical equations 

derived from concurrent input and output time series. Statistically based methods use 

regression and correlation models and are used to find the functional relationship between 

inputs and outputs, while conceptual models describe all of the component of the hydrological 

processes. They consist of a number of interconnected physical elements of porous media with 

rainfall, infiltration, percolation, evaporation, runoff, drainage and etc. Normally, semi 

empirical equations are implemented in these models and a large number of meterological and 

hydrological records are needed for calibration. The physically based models, also called 

mechanistic models, are mathematically idealized representations of the real phenomenon. 

They use state variables which are measurable and are functions of both time and space. The 

hydrological processes of water movement are represented by finite difference or element 

equations. They reqiure extensive hydrological, meteorological data and hydraulic parameters 

describing the physical characteristics of the porouse media and catchment for their calibration 

and evaluation (Devia et al., 2015; Todini, 2007). They normally require a huge amount of data 
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such as soil water content, groundwater depth and topography to provide large amount of 

information. Analytical models are mathematical models that have a closed-form solution of 

the govering equations, i.e. the solution to the equations used to describe changes in a system 

can be expressed as a mathematical analytic function. Numerical models are mathematical 

models that use some sort of numerical time-stepping procedure to solve the governing 

equations. The numerical solution is represented by a generated table and/or graph. These 

models provide outputs only at a finite number of points in both space and time. The numerical 

soil hydrological models have increased our understanding of irrigation and drainage processes 

in the context of soil–plant–atmosphere systems during past decades (Bastiaanssen et al., 

2004). The most widely used hydrological models are presented in Table 1-3.   
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Model Description Application Review literature 
SWAP (van Dam et al., 
1997) 
 

Soil-Water-
Atmosphere-Plant 

Simulates transport of water, solutes and heat in unsaturated/saturated soils at 
field scale level, during growing seasons and for long term time series 

Huo et al. (2012); Vazifedoust et al. (2008) 

SWAT (Arnold et al., 
1993) 
 

Soil And Water 
Assessment Tool 

Predicts the effect of management decisions on water, sediment, nutrient and 
pesticide yields with reasonable accuracy on large, ungauged river basins 

Abbaspour et al. (2015); Krysanova et al. (1998); 
Maharjan et al. (2016); Napoli et al. (2013) 

VIC (Liang et al., 1994) 
Variable 
Infiltration 
Capacity  

A semi distributed grid based hydrology model which uses both energy and 
water balance equations; The processes like infiltration, runoff, base flow are 
based on various empirical relations 

Haddeland et al. (2006); Nijssen et al. (2001); 
Shukla et al. (2011) 

HydroGeoSphere 
(Therrien et al., 2009) 

 

A three-dimensional surface-subsurface soil hydrological model to simulate the 
observed rainfall-runoff process impacted by a runoff water harvesting 
technique, while simultaneously simulating the soil moisture redistribution in 
the subsurface 

Brunner and Simmons (2012); Li et al. (2008); 
Partington et al. (2009); Rosenbom et al. (2009); 
Verbist et al. (2012); Zhu et al. (2012) 

MACRO (Jarvis and 
Larsson, 1998) 

 
A detailed mechanistic dual-porosity model of water and solute transport in a 
macroporous soil; A non-steady state simulation of water flow and solute 
transport in a one-dimensional (vertical) heterogeneous-layered field soils 

Merdun and Quisenberry (2005); Siimes and 
Kamari (2003); Steffens et al. (2014) 

HYSWASOR (Dirksen 
et al., 1993) 

 
The numerical simulation model for hysteretic water and solute transport in the 
root zone; Simulation root water uptake under non-uniform soil water osmotic 
and pressure heads in hysteretic conditions  

Feddes and Roats (2004); Homaee (2004); 
Homaee et al. (2002); Homaee and Feddes 
(1999) 

DHSVM (Wigmosta et 
al., 1994) 

 
A distributed hydrologic model that explicitly represents the effects of 
topography and vegetation on water fluxes through the landscape 

Schnorbus and Alila (2004a); Schnorbus and 
Alila (2004b); Thyer et al. (2004); VanShaar et 
al. (2002); Waichler and Wigmosta (2003); 
Whitaker et al. (2003) 

CREST (Wang et al., 
2011) 

Coupled Routing 
and Excess 
STorage 

A distributed hydrologic model developed to simulate the spatial and temporal 
variation of atmospheric, land surface, and subsurface water fluxes and storages 
by cell-to-cell simulation 

Xue et al. (2013) 

SWMS2D (Šimůnek et 
al., 1994) 

The Variably-
Saturated Two-
Dimensional Water 
Flow and Transport 
Model  

Simulates water and solute movement in two-dimensional variably saturated 
media; The program numerically solves the Richards' equation for saturated-
unsaturated water flow and the convection-dispersion equation for solute 
transport 

Zhu et al. (2013); Zhu et al. (2012) 

GSFLOW (Markstrom 
et al., 2008)  
 

Ground-water and 
Surface-water 
FLOW model 

Simulates coupled groundwater/surface-water flow in one or more watersheds 
by simultaneously simulating flow across the land surface, within subsurface 
saturated and unsaturated materials, and within streams and lakes 
 

Hassan et al. (2014); Tian et al. (2015a); Tian et 
al. (2016); Tian et al. (2015b); Wu et al. (2015a) 

    

Table 1-3. Examples of most commonly used hydrological models and their application. 



General introduction 

30 

Model Description Application  Review literature 

VS2DI (Healy and 
Essaid, 2012) 

 
Simulates water, solute, and heat transport through soils or other porous media 
under conditions of variable saturation 

Butkus and Konstantinova (2008); Dowman et 
al. (2003); Healy (2008); Kulasekera and Parkin 
(2011); Schulz et al. (2008) 

MODFLOW 
(McDonald and 
Harbaugh, 1983) 

Modular 
Groundwater Flow 
Model 

A three-dimensional finite-difference ground-water model; Simulates steady 
and nonsteady flow in an irregularly shaped flow system in which aquifer layers 
can be confined, unconfined, or a combination of confined - unconfined 

Lee (2015); Liu et al. (2013); Luo and 
Sophocleous (2011); Perkins and Sophocleous 
(1999); Switzman et al. (2015); Xu et al. (2012) 

WBM-WTM (Fekete et 
al., 1999) 

Water 
Balance/Transport 
Model 

Gridded water balance model using climate input forcings that calculate surface 
and subsurface runoff and ground water recharge for each grid cell. horizontal 
transport 

Fekete et al. (2010); Vorosmarty et al. (1996) 

FEFLOW (Diersch and 
Kolditz, 1998) 

Finite Element 
subsurface FLOW 
system 

Simulates groundwater flow, mass transfer and heat transfer in porous 
media and fractured media; The program uses finite element analysis to solve 
the groundwater flow equation of both saturated and unsaturated conditions 

An et al. (2012); Awan et al. (2015); Liu et al. 
(2012); Ren et al. (2012); Sulzbacher et al. 
(2012); Sun et al. (2011); Zhu et al. (2012) 

MIKE-SHE (Refsgaard 
and Storm, 1995) 

Systeme 
Hydrologique 
European 

An advanced integrated hydrological modeling system; A deterministic, 
physically based, spatially distributed model; Simulation of coupled hydrologic 
processes with emphasis on surface water - groundwater interactions, channel 
flow, unsaturated zone flow and groundwater flow 

Kourgialas and Karatzas (2015); Mertens et al. 
(2005) 

IWFM (Dogrul, 2007) 
Integrated Water 
Flow Model 

A water resources management and planning model that simulates groundwater, 
surface water, stream-groundwater interaction, and other components of the 
hydrologic system 

Miller et al. (2009); Scherberg et al. (2014) 

SPAW (Saxton et al., 
1974) 

Soil-Plant-Air-
Water 

Simulates a daily hydrologic budget for agricultural fields with a moderate level 
of complexity to account for the most important hydrologic processes that will 
be impacted by the field characteristics; For an agricultural field/watershed plus 
a wetland/pond/reservoir model 

Andersen et al. (2010a); Andersen et al. (2010b); 
Rao and Saxton (1995); Saxton et al. (1992) 

SVAT (Noilhan and 
Planton, 1989) 

Soil Vegetation 
Atmosphere 
Transfer  

Developed to understand the heat and water regimes in a river basin scale 
through hydrological modeling 

Bormann (2012); Danierhan et al. (2013); Gong 
et al. (2012); Hashemian et al. (2015); Kloss et 
al. (2014); Li et al. (2013) 

Hydrus 1/2/3D 
(Šimůnek et al., 2006b) 

 
The one/two/three-dimensional finite element model for simulating the 
movement of water, heat, and multiple solutes in variably saturated media 

Akhtar et al. (2013); Ebrahimian and Noory 
(2015); Kandelous et al. (2012); Sadeghi and 
Jones (2012); Seuntjens (2002); Tafteh and 
Sepaskhah (2012); Wang et al. (2015b); 
(Wyseure and Chou, 2010) 
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1.4.2.1 Soil hydrological model  

During past several decades, considerable progress has been made in the conceptual 

understanding and mathematical description of water flow and solute transport processes in the 

vadose zone. A variety of analytical and numerical models are now available to predict water 

and/or solute transport within the soil profile from soil surface to ground water table. The most 

popular models use Richards equation (Richards, 1931) for variably saturated flow, and the 

Fickian-based convection-dispersion equation for solute transport. Deterministic solutions of 

these classical equations have been used, and likely will continue to be used in the near future, 

for predicting water and solute movement in the vadose zone, and for analyzing specific 

laboratory or field experiments. Models of this type are also helpful tools for extrapolating 

information from a limited number of field experiments to different soil, crop and climatic 

conditions, as well as to different tillage and water management schemes (Šimůnek et al., 

2013b). This modeling approach ranges from simple analytical models to more complex 

numerical codes that permit consideration of a large number of simultaneous nonlinear 

processes such as for transient water flow or nonequilibrium solute transport with nonlinear 

reactions (van Genuchten et al., 2014).  

Even with well-documented numerical computer models available, one major problem often 

preventing the use of such codes is the extensive work required for data preparation, finite 

element grid design, and graphical presentation of the output results. Hence, a more widespread 

use of numerical models requires techniques which make it easier to create, manipulate and 

display large data files, and which facilitate interactive data management. To avoid or simplify 

the preparation and management of relatively complex input data files and to graphically 

display final simulation results, an interactive graphics-based user-friendly interface Hydrus-

1D for the MS Windows environment was developed by Šimůnek et al. (2006b). The tool 

numerically solves the Richards equation for variably-saturated water flow and advection-

dispersion type equations for heat and solute transport. The flow equation incorporates a sink 

term to account for water uptake by plant roots. The flow equation may also consider dual-

porosity type flow in which one fraction of the water content is mobile and another fraction 

immobile, or dual-permeability type of flow involving two mobile regions, one representing 

the matrix and one the macropores. The program may be used to analyze water and solute 

movement in unsaturated, partially saturated, or fully saturated porous media. The flow region 

may be composed of non-uniform soils. Flow and transport can occur in the vertical, horizontal, 
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or a generally inclined direction. The water flow part of the model can deal with prescribed 

head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free 

drainage or constant head boundary conditions. The governing flow and transport equations 

are solved numerically using Galerkin-type linear finite element schemes (Celia and Binning, 

1992). In addition, this model also includes a Levenberg-Marquardt (Levenberg, 1944; 

Marquardt, 1963) type parameter optimization algorithm for inverse estimation of soil 

hydraulic and/or solute transport and reaction parameters from measured transient or steady-

state flow and/or transport data (Šimůnek et al., 2013b). The Hydrus-1D is a one-dimensional 

version of the Hydrus-2D and Hydrus-2D/3D codes simulating water, heat and solute 

movement in two- or three-dimensional variably saturated media (Šimůnek et al., 2006a; 

Šimůnek et al., 2006b). Further details about the model, governing equations and their 

functions can be found in Chapters 2 and 4.  

1.4.3 Inverse modeling - parameter estimation 

To optimize water use efficiency using hydrological models, hydraulic properties need to be 

determined (Šimůnek and Hopmans, 2002). Due to the highly parameterized framework of 

numerical hydrological models, direct measurement of its parameters in the laboratory and/or 

even in the field may be inaccurate, insufficient or inefficient for predictions at the field scale 

(Verbist et al., 2012; Wöhling et al., 2008). The calibration process, i.e., adjusting a model by 

manipulating the input parameters such as soil hydraulic parameters, and initial and boundary 

conditions within a reasonable range to find the least mismatch between simulated and 

observed soil water content (Šimůnek et al., 2012), is crucial for application in the field. 

Traditionally, calibration of hydrological models has been performed manually using a trial 

and error parameter adjustment procedure. The process of manual calibration, however, may 

be very tedious and time-consuming, depending on the number of model parameters and their 

interaction. Furthermore, due to the subjectivity involved, it is difficult to explicitly assess the 

confidence of the model simulations. Consequently, a great deal of research has been directed 

to the development of more efficient and more objective automatic calibration procedures 

(Mertens et al., 2005). These can be overcome by conducting inverse modeling (automatic 

calibration process). An example is the Levenberg–Marquardt optimization for single-

objective inverse parameter estimation (Abbasi et al., 2004; Abbasi et al., 2003b; Jacques et 

al., 2012; Šimůnek et al., 2013b). 
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In the last few decades, unsaturated soil hydraulic parameters have been estimated with inverse 

modeling. The inverse modeling approximates soil hydraulic properties from transient 

experiments in the laboratory or in situ in the field. Inverse modeling was defined by Hopmans 

et al. (2002) as a general mathematical method to determine unknown causes on the basis of 

observations of their effects, as opposed to modeling of direct problems whose solution 

involves finding effects on the basis of a description of their causes.   

Water flow and contaminant transport in the vadose zone depends on soil hydraulic parameters, 

e.g., soil water retention, and saturated and unsaturated hydraulic conductivity (Hopmans et 

al., 2002). Inverse modeling usually includes the prediction of the soil water retention and 

unsaturated soil hydraulic conductivity characteristics using Richards’ equation. Some 

advantages of inverse modeling can be: a) more flexibility in boundary conditions on the 

transient experiment; b) allow simultaneous estimation of both unsaturated hydraulic 

conductivity function and soil water retention curve; c) increase speed and accuracy of 

parameter optimization; d) apply in field experiments under different boundary conditions. 

Excellent overviews of the inverse modeling procedure can be found in Hopmans et al. (2002); 

Šimůnek and Hopmans (2002); Vrugt et al. (2008); Wöhling and Vrugt (2011). 

Soil scientists are often confronted with issues of non-uniqueness and ill-posed terms in 

parameterization – optimization processes, leading to identifiability problems (Hopmans et al., 

2002). In the optimization process, an objective function is measuring an agreement between 

measured and simulated data (see Chapter 2 and 4 for more details). It is directly or indirectly 

related to the adjustable parameters to be fitted. Minimizing the objective function generates 

the best-fit parameters. Maximum probability density function (pdf) and a minimum least-

squares criterion should be achieved (Šimůnek and Hopmans, 2002). When multiple local 

minima or a global minimum occur in a range of parameter values on the basis of the convexity 

of the objective function (which can be increased by inclusion of prior information (initial 

input values of parameters)), the model solution is called nonunique. When a similar system 

response is caused by different combinations of parameters, the parameters are said to be 

nonidentifiable (leads to a nonunique solution). If small errors in the model or system result 

in large changes in the optimized parameters, e.g., optimized parameters are sensitive to 

measurement error, the solution is called unstable. The inverse problem is ill-posed if the 

identified parameters are unstable and/or nonunique. Nonuniqueness can be reduced by 

decreasing the number of parameters to be estimated based on sensitivity analysis. It is caused 
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by lack of sensitivity analysis of flow variables on particular parameter sets (Hopmans et al., 

2002). Nonuniqueness is influenced by the type of measured data, applied values of weighting 

factor and the suitability of boundary conditions. More information can be found in (Carrera 

and Neuman, 1986). Sensitivity is affected by the type and number of optimized parameters, 

model and input variable errors. To that end, systematical sensitivity analysis has been used to 

better estimate values, to better understand and reduce uncertainty (Rocha et al., 2006) and to 

investigate the effects of various parameters or processes on water flow and transport (van 

Genuchten et al., 2012). To reduce the number of parameters that need to be optimized, 

sensitivity analyses are often performed that evaluate model output for each parameter 

perturbation in a one-at-a-time approach. 

1.4.4 Initial values of soil hydraulic parameters 

Modeling soil water dynamics, water movement and solute transport requires not only 

knowledge of soil-water-atmosphere-plant relationships but also their individual 

characteristics. In a modeling approach, estimates of initial parameter must be reasonably close 

to their true values, and measurement variables errors such as soil water content must be small. 

Optimized parameters in inverse solutions strongly dependent on their initial estimation or 

measurement. Providing well-constrained initial estimates is crucial in forward and inverse 

modeling of water and solute transport as well as heat and mass transport near the soil surface.   

Soils are intrinsically heterogeneous, and some heterogeneities, such as macropores and 

hydraulic properties control the ability of the soil to store and conduct water at the field scale. 

Heterogeneity causes variability, and the efficient techniques of the characterization of soil 

physical variability remains the object of scientific pursuit (Teixeira et al., 2014).  

A long array of methods to determine soil hydraulic properties has been earlier presented in 

(Dane and Topp, 2002; Klute, 1986), and several methods have been added since as presented 

in the state-of-the-art review by Minasny et al. (2013). We will not repeat them here, but an 

overview of those methods is summarized in Table 1-4 and Table 1-5. In fact, soil hydraulic 

properties determination/measurements are expensive, time consuming and labor intensive. 

Therefore, scientists have attempted to find more efficient ways of characterizing soil hydraulic 

properties and their spatial and temporal dynamics. In modeling approaches using numerical 

models, normally shape parameters of soil water retention curve, SWRC, are needed as initial 

input parameter values. They can be obtained by fitting-closed form analytical expressions 

containing several parameters to discrete SWRC data sets, which can be obtained through field 
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or laboratory experiments or from pedotransfer functions (PTFs) (Cornelis et al., 2005). A 

comparison of closed-form unimodal analytical expressions to describe SWRC can e.g. be 

found in Cornelis et al. (2005) and Khlosi et al. (2008). Further details about these parametric 

models to derive SWRC and the hydraulic conductivity function, K(h), are presented in chapter 

three of Dane and Topp (2002). 
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Table 1-4. An overview of soil hydraulic parameters determinations (measurement techniques). 

   K* SWRC* 
   Application Review literature Application Review literature 

M
ea

su
re

m
en

ts
 

D
ire

ct
 

Laboratory 

Constant Head Soil Core Method, 
Falling Head Soil Core Method, 
Steady Flow Soil Column Method, 
Long Column, Steady-State 
Centrifuge, Wind And Hot-Air 
Methods, Suction Crust Infiltrometer, 
Bypass Flow, Tension Disc 
Infiltrometer, Evaporation Method 

Fodor et al. (2011); Jačka et al. 
(2014); Kelishadi et al. (2014); 
Reynolds (2008); Reynolds et al. 
(2000); Schindler et al. (2010); 
Šimůnek et al. (1999) 

Hanging Water Column 
(Haines Apparatus), Pressure 
Cell, Pressure Plate 
Extractor, Long Column, 
Suction Table, Sand Box, 
Controlled Liquid Volume, 
Freezing Method, , Steady-
State Centrifuge, Wind And 
Hot-Air Methods, Suction 
Crust Infiltrometer, Bypass 
Flow, Tension Disc 
Infiltrometer 

Schindler et al. (2010); Schwen et al. 
(2014); Šimůnek et al. (1999) 

Field 

Single-ring and double- or 
Concentric-ring infiltrometers, 
pressure infiltrometer, constant head 
well permeameter, the rainfall 
simulator, Invers/auger-hole method, 
Piezometer Method, Mini Disc 
Infiltrometer, Instantaneous Profile, 
Plane Of Zero Flux, Constant Flux 
Vertical Time Domain 
Reflectometry, Guelph Permeameter, 
Tension Disc Infiltrometer  

Fodor et al. (2011); (2014); 
Reynolds et al. (2000); Reynolds and 
Elrick (1985b); Ronayne et al. 
(2012); Verbist et al. (2010); Verbist 
et al. (2013b); Verbist et al. (2012); 
Zadeh et al. (2007) 

Instantaneous Profile, Plane 
of Zero Flux, Constant Flux 
Vertical Time Domain 
Reflectometry, Tension Disc 
Infiltrometer  

Angulo-Jaramillo et al. (2000); Jabro et 
al. (2009); Kelishadi et al. (2014); 
Latorre et al. (2015); Morgan et al. 
(2001); Zhang (2015) 

In
di

re
ct

 

Inverse 
modeling 

Multistep Outflow Method, 
Evaporation Method, Tension Disc 
Infiltrometer, Field Drainage, 
Evaporation Method 

Ramos et al. (2006); Schindler et al. 
(2010); Schwartz and Evett (2002); 
Schwartz and Evett (2003); Šimůnek 
and van Genuchten (1996); Šimůnek 
and van Genuchten (1997) 

Multistep Outflow Method, 
Evaporation Method, 
Tension Disc Infiltrometer, 
Field Drainage, Evaporation 
Method 

Angulo-Jaramillo et al. (2000); 
Ghezzehei et al. (2007); Latorre et al. 
(2015); Rashid et al. (2015); Rucker et 
al. (2005); Schindler et al. (2010); 
Schwartz and Evett (2003); Šimůnek 
and van Genuchten (1996); Šimůnek 
and van Genuchten (1997); Verbist et 
al. (2009b) 
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1.4.5 Sensitivity analysis 

Sensitivity analysis (SA) is the study of how a given model output depends on the changes in 

input parameters or initial conditions which are often poorly known. In general, SA is used to 

increase the confidence in the model and its predictions. SA is closely linked to uncertainty 

analysis. The latter aims to quantify the overall uncertainty associated with the response of the 

Table 1-5. An overview of soil hydraulic parameters determinations (estimation techniques).  

 Application Description Review literature 

E
st

im
at

io
n/

pr
ed

ic
tio

n 

Geostatistics 
Spatial interpolation methods to 
estimate hydraulic properties and 
provide their tempo-spatial maps 

Bardossy and Li (2008); Botors et al. 
(2009); Cooke et al. (1993); Gumiere et al. 
(2014); Herbst et al. (2006); Horta et al. 
(2014); Miháliková et al. (2015); Romano 
(1993); Skoien and Bloschl (2006); Voltz 
and Goulard (1994) 

Proximal soil 
sensing and 
Remote sensing 

Finding a correspondence 
between soil hydraulic 
properties, and an easily 
measurable parameters e.g., ECa, 
using sensors such as EMI, GPR 
and models like DEM to predict 
high resolution spatial and 
temporal soil properties 

Archie (1942); Brosten et al. (2011); 
Chaplot et al. (2011); Cosentini et al. 
(2012); Dafflon et al. (2009); Doolittle and 
Brevik (2014); Farzamian et al. (2015); 
Gooley et al. (2014); Jonard et al. (2015); 
Lesmes and Friedman (2005); Mawer et al. 
(2015); Mohanty (2013); Morin et al. 
(2010); Niu et al. (2015); Niwas and Celik 
(2012); Purvance and Andricevic (2000a); 
Santanello et al. (2007); Scheibe and Chien 
(2003); Schmugge (2013); Sudduth et al. 
(2013); Wildenschild et al. (2000) 

Pedotransfer 
functions and soil 
inference systems 

Prediction hydraulic parameters 
from more easily measurable and 
more readily available soil 
properties like particle size 
distribution, organic matter 
content, dry bulk density, etc., 
using simple to such 
sophisticated models in aim of 
e.g., Neural network analysis 

Botula et al. (2014); Bouma (1989); 
Cornelis et al. (2001); Cresswell et al. 
(2006); Gupta and Larson (1979); Gwenzi 
et al. (2011); Moreno et al. (2014); Nguyen 
et al. (2015); Ostovari et al. (2015); Schaap 
et al. (1998); Schaap et al. (2001); 
Vereecken et al. (2010); Weynants et al. 
(2009); Wosten et al. (1999) 

Digital soil 
mapping and 
assessments 

Describe approaches that seek to 
map soil properties with aid of 
digital techniques (data 
processing, GIS) 

Abdu et al. (2008); Chaplot et al. (2010); 
Finke (2012); Friedman and Seaton (1998); 
Gooley et al. (2014); Shin et al. (2013) 

Markov Chain 
Monte Carlo 
simulation 

Sampling method for sets of 
hydraulic parameters feeding into 
the model 

Coppola et al. (2009); Harter and Yeh 
(1998); Mertens et al. (2005); Shin et al. 
(2013); Verbist et al. (2012); Wöhling and 
Vrugt (2008) 

Pedogenetic 
modeling 

Regional to Global modeling of 
soil change; it helps making 
spatial prediction of soil 
properties, quantifying the 
uncertainty of prediction and 
delineating area of risks 

Finke and Hutson (2008); Mirus et al. 
(2009); Nimmo et al. (2009) 

Inverse modeling 

Indirect modeling to approximate 
hydraulic properties in 
combination with another 
methods such as PTF or monte 
carlo simulation 

Carrera et al. (2005); Mirus et al. (2009); 
Romano (1993); Shin et al. (2013); Verbist 
et al. (2012); Vrugt et al. (2004); Wöhling 
and Vrugt (2008) 
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model to model input uncertainties (Rocha et al., 2006). Dane and Hruska (1983) questioned 

the uniqueness of the inverse solution and concluded that the sensitivity of the optimized 

parameters depended on the prescribed boundary conditions. Moreover, a higher sensitivity 

will result in quicker convergence of inverse modeling (Hopmans et al., 2002). Sensitivity is 

influenced by the type and number of optimized parameters, and by the model (e.g., adjustable 

factors and/or model structure) and input measurement errors (Russo et al., 1991). To avoid 

the nonuniqueness of the model solution, the number of parameters to be optimized should be 

minimized (Schwartz and Evett, 2003) and insensitive parameters should be fixed to the 

measured or the initial value.  

It is important to correctly parameterize water flow equations for irrigation management, 

specifically for dry periods (which are essential for a correct irrigation management). The 

application of a time variant sensitivity analysis is crucial to this respect. Therefore, SA is, 

among other purposes, used to find the most relevant parameters for relevant periods of time 

which enable a reduction of the number of parameters that need to be optimized in hydrological 

models. Many studies did aggregate the sensitivities into summarizing sensitivity indices, e.g., 

Abbasi et al. (2003a); Li et al. (2012); Mertens et al. (2005); Rocha et al. (2006); Šimůnek and 

van Genuchten (1996); Verbist et al. (2012); Zhou et al. (2012). Parameter SA can be divided 

into two large categories: global and local sensitivity analysis, each having their strengths and 

weaknesses. 

1.4.5.1 Parameter sensitivity analysis 

1.4.5.1.1 Global sensitivity analysis 

Global sensitivity analysis (GSA) is the process of apportioning the uncertainty in outputs to 

the uncertainty in each input factor over their entire range of interest. A sensitivity analysis is 

considered to be global when all the input factors are varied simultaneously and the sensitivity 

is evaluated over the entire range of each input factor -ranges of existence- (Saltelli et al., 2008). 

GSA quantifies the importance of model inputs and their interactions with respect to model 

output. It provides an overall view on the influence of inputs on outputs as opposed to a local 

view of partial derivatives as in local sensitivity analysis. The sampling-based method (Monte 

Carlo) (Spear and Hornberger, 1980), the screening method or one-at-a-time (OAT) approach 

(Morris, 1991) (computing a number of local sensitivities), the Sobol method (Sobol, 1993), 

and the response surface method (Kleijnen et al., 1992) are the most commonly used global 

methods. Most of GSA are variance-based, which means that the resulting sensitivity reflects 
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the contribution of the model input to the total variance in the model output. However, some 

of them are regression-based which mostly used to replace a highly complex model to response 

surface (Iman and Helton, 1988). A comprehensive literature review on SA is provided by 

Loosvelt (2013). 

1.4.5.1.2 Local sensitivity  

Local sensitivity analysis, LSA, is a straightforward methodology, which we consider as an 

essential step within the modeling workflow to learn about model behavior and to identify key 

parameters. This method investigates the sensitivity of model output for a specific input 

scenario, i.e. a fixed set of input. Applying a time variant instead of aggregating the sensitivity 

in a single metric is crucial to derive this kind of information. To reduce the number of 

parameters that need to be optimized, LSA is often performed by evaluating model output for 

each parameter perturbation in a OAT approach (based on partial differentiation of the model, 

i.e., derivative-based approach). Indeed, various techniques for LSA exist such as (i) the finite 

difference method, (ii) the direct differential method, (iii) the Green's function method, (iv) the 

polynomial approximation method, (v) automatic differentiation and (vi) the complex-step 

derivative approximation method. Details about these techniques can be found in (De Pauw, 

2005) and are not repeated here. The use of LSA is explained in detailed in Chapter 2.  

1.4.5.2 Model factors sensitivity analysis  

In model conceptualization, another sensitivity analysis which can be called classical/manual 

sensitivity analysis to identify the adjustable factors in the model such as boundary conditions, 

crop root distribution, profile geometry and spatial discretization is addressed shortly here. This 

SA on model factors can be conducted by changing the boundary conditions (Carrera-

Hernández et al., 2012), e.g. free drainage, different constant heads, deep drainage, crop root 

distribution, density and root water uptake parameters (Hupet et al., 2002; Wollschlager et al., 

2009), leaf area index (LAI) and extinction coefficient, and different discretization (Carrera-

Hernández et al., 2012). The aim of this approach is to find the best condition and factors which 

reduce the mismatch between observed and simulated data.  
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1.5 Problem statement 

Precision irrigation needs new methods and strategy/management of accurate irrigation 

scheduling. Considerable improvement in current irrigation strategies in Northwestern Europe 

as well as other parts of the world can be obtained with novel irrigation technology (e.g., Reel 

Sprinkler Gun irrigation) in combination with monitoring technology (e.g., Diver pressure 

sensors for groundwater monitoring, soil water content probes and tensiometers for soil water 

status monitoring and ISARIA crop sensor for crop status and LAI monitoring). A potential 

problem is that even using a considerable amount of irrigation water, the crop is exposed to 

water stress during dry periods and optimal yield is not achieved. In addition, the uniform 

distribution of water at the field scale using a standard gun sprinkler may not be an efficient 

approach since at locations with e.g. shallow groundwater, the amount of water applied will be 

excessive as compared to the crop requirements, while in locations with a deeper groundwater 

table, the crop irrigation requirements will not be met during crop water stress.  

However, modern technology can quantify flow process and soil-water status, but in practice, 

in situ instruments can be installed in a limited number of sites only (due to costs, labor 

intensity). Moreover, irrigation management strategies under different field conditions 

(management zones) are needed for a large field with spatial differences in soil properties, 

groundwater depth and topography. Therefore, the solution is to use a modeling approach to 

simulate the soil water status for transient climatic conditions using a coupled soil water –crop 

growth model and to estimate or optimize the timing and amount of irrigation. The 

generalization of predictions (e.g. scaling up from 1D column at one spot to a large area like a 

field or region) is required in this respect. To do so, accurate information about the spatial 

variation of field-scale soil hydraulic properties is required in water management, flow and 

transport processes. The use of geophysical techniques such as electromagnetic induction as 

proxy could serve as valuable data source to estimate hydraulic properties for hydrological 

models to calculate variable irrigation requirements within agricultural fields. However, an 

integrated approach (based on the combination of crop growth model and hydrological model 

in a quasi 3D field scale model) for spatially distributed (variable rate) irrigation scheduling is 

still lacking. 

Good modeling practice requires proper initial hydraulic parameter sets as input, parameter 

sensitivity analysis, conceptualization of the model, proper choice of boundary conditions, and 

root water uptake parameters. On the other hand, for understanding and enhancing knowledge 
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of water flow and water status, i.e., soil-water storage and stress at field scale it is necessary i) 

to accurate determine the bottom boundary condition, both in space and time, ii) to evaluate 

spatial variability of soil hydraulic parameters due to the soil heterogeneity, iii) to find more 

efficient methods for soil hydraulic parameters characterization and proper sets of those 

parameter as input parameter, and iv) to predict hydraulic properties at field scale and scaling 

up them as input parameter for the model. These approaches aim to optimize variable irrigation 

requirement within the field using a 2D modeling technique (quasi 3D). The latter may be the 

most efficient irrigation water management strategy that may help farmers to apply limited 

amount of (or even no) water in some parts of the field where the crop is not exposed to drought 

stress, and increase water supply within the zones where the crop is exposed to water stress. 

The aim is to increase yield, and consequently the revenue of irrigation and income will 

increase. The present research gives attention to all these issues.  

1.6 Research objectives  

Varying irrigation water application leads to differences in the yield and biomass component. 

The hypothesis of the study is: improving irrigation scheduling of water management using a 

state-of the-art modelling approach can result in a sustainable increase in agricultural water 

productivity and production under drought/ water deficit conditions and economic benefits. 

Determining proper timing, location and amount of irrigation is the most important factor for 

efficient use of water resources, for reducing/optimizing the irrigation cost and for maximizing 

crop yield. Therefore, the main objective of this dissertation (to support the hypothesis) is to 

develop and test methods for optimizing irrigation efficiency using a combination of sensors 

and process-based soil hydrological models integrated with crop growth models. Sensors that 

will be used are soil moisture sensors and tensiometers that measure water content and water 

potential in a fully automated field setup for quantitatively identifying flow processes in an 

agriculture soil. With this dissertation we try to contribute to some of the listed issues 

concerning modeling approach with a focus on models integration, model calibration and 

sensitivity analysis, development of methods for predicting hydraulic conductivity within a 

field, evaluating laboratory and field characterization of hydraulic parameters to find proper 

input parameter and way to scale up our modeling effort across the field to optimize irrigation 

strategy. These are very relevant, not only for arid and semi-arid conditions, but also for the 

management of intensively used agricultural fields in West- and Southern Europe suffering 

from summer droughts related to climate change.  
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The specific objectives focus essentially on different aspects of modeling and its effectiveness, 

and on developing methods needed to provide the required input for field 3D quasi modeling.  

The specific objectives are: 

1) to evaluate a modeling approach for irrigation optimization, using the Hydrus-1D model in 

combination with the crop based model LINGRA-N and to particularly 

•  to show to what extent the hydrological modeling approach affects the estimations of 

irrigation requirement and crop yield;  

2) to upscale and determine soil hydraulic properties more effectively and precisely at the 

field scale, based on proximal sensed data and geostatistics  

3) to identify proper sets of hydraulic parameters using in situ and laboratory approaches and 

evaluate their relevance on hydrological model performance for irrigation management 

purposes and  

4) to improve irrigation management at field scale using a modelling approach for water flow 

and redistribution in soils at field scale and to particularly 

• evaluate cost effects of an optimized irrigation application (from research to application 

view). 

1.7 Dissertation framework 

The dissertation is organized based on the research objectives addressed above. Figure 1-6 

provides an overview of the thesis which consists of a general introduction, four main research 

chapters and a general conclusion chapter. Each research chapter contains an introduction 

followed by a list of specific objectives, provides an overview of the methodology used and 

presents results and discussions. 
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Research contribution: 

All parts of the study including soil sampling, characterization and data analyzing, modeling 

and so on were fully done by the author, only the ECa survey was done by ORBIT group of 

soil water management department (Ghent university).  

 

Chapter 2: Grassland 
 

Coupling models; SA on model 
performance to GWL variations, 
HP, water stress and crop yield; 

Water flow simulation; Optimized 
irrigation scheduling (1D scale) 

 
• Characterization 
• Parametrization 

 

Chapter 1: General introduction 
 

Water Resources Management; Adaption at Irrigation Scheme; Drought 
in Belgium; Irrigation in Belgium; Advanced Modeling in Irrigation 

Scheduling; State of the Problem 

Chapter 5: Field 2D-quasi 3D modeling 
 

(water flow, stress, shortage and yield reduction) 
 
 

Optimized Irrigation Strategy (field 2D scale) 
 

• Application 

Chapter 4: Potato field 
 

Comparison field and laboratory HP 
determination; Assessment of HP 
using different approach; Water 

flow simulation 
 
 

• Characterization 
• Parametrization 

 

Chapter 3: Grassland 
 

Sampling strategy; 
Proximally sensed 

prediction; Geostatistical 
analysis; Detailed field Ks 

maps 
 

• Characterization 
 

Chapter 6: General conclusion and future perspective 
 

Figure 1-6. The flowchart of the thesis framework. SA, GWL, HP and Ks are sensitivity analysis, 
groundwater level, hydraulic properties and hydraulic conductivity, respectively. 
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grassland soil to variations in groundwater depth and soil 

hydraulic parameters  

 

 

 

 

 

 

 

This chapter is based on a modified published article: 

 

Rezaei, M., Seuntjens, P., Joris, I., Boënne, W., Van Hoey, S., Campling, P., and Cornelis, W. 

M. 2016. Sensitivity of water stress in a two-layered sandy grassland soil to variations in 

groundwater depth and soil hydraulic parameters, Hydrology and Earth System Sciences, 20, 

487-503, doi:10.5194/hess-20-487-2016.
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2.1 Introduction 

Efficient water use and optimal water supply to increase food and fodder productivity are of 

great importance when confronted with worldwide water scarcity, climate change, growing 

populations and increasing water demands (FAO, 2011). In this respect, irrigation efficiency 

which is influenced by the type of irrigation and irrigation scheduling is essential for achieving 

higher water productivity. In particular, precision irrigation is adopting new methods of 

accurate irrigation scheduling (Jones, 2004). Various irrigation scheduling approaches such as 

soil-based, weather-based, crop-based, and canopy temperature-based methods have been 

presented (Evett et al., 2008; Huo et al., 2012; Jones, 2004; Mohanty et al., 2013; Nosetto et 

al., 2012; Pardossi et al., 2009).  

Numerical models are increasingly adopted in water resource planning and management. They 

contain numerical solutions of the Richards’ equation (Richards, 1931) for water flow and root 

water uptake (Fernández-Gálvez et al., 2006; Skaggs et al., 2006; Vrugt et al., 2001) or contain 

reservoir cascade schemes (Gandolfi et al., 2006). Hydrological models require determination 

of hydraulic properties (Šimůnek and Hopmans, 2002), upper boundary conditions related to 

atmospheric forcing (evapotranspiration and precipitation) (Brutsaert, 2005; Nosetto et al., 

2012) and groundwater dynamics at the lower boundary of the soil profile (Gandolfi et al., 

2006). Numerical models such as Hydrus-1D (Šimůnek et al., 2013b) have been used in a wide 

range of irrigation management applications, for example, by Sadeghi and Jones (2012), Tafteh 

and Sepaskhah (2012), Akhtar et al. (2013), and Satchithanantham et al. (2014). The tool has 

been combined with crop-based models for accurate irrigation purposes and for predicting the 

crop productivity for cotton (Akhtar et al., 2013), vegetables and winter wheat (Awan et al., 

2012). The degree of soil-water stress was used for irrigation management by coupling a 

hydrological model (Hydrus-1D) with a crop growth model (WOFOST) for maize (Li et al., 

2012) and wheat (Zhou et al., 2012). The importance of correct average representation of the 

soil-plant-atmosphere interaction in numerical models has been stressed by (Wollschlager et 

al., 2009). A combination of crop growth model and the hydrological model makes it possible 

to calculate calculating crop yield reduction based on soil-water stress derived by the 

hydrological model.  

Direct measurement of hydraulic parameters may be inaccurate for predictions at the field scale 

(Verbist et al., 2012; Wöhling et al., 2008). As an alternative, parameters can be determined by 

inverse modeling. A single-objective inverse parameter estimation using the Levenberg–
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Marquardt optimization procedures has been used in different studies (Abbasi et al., 2004; 

Jacques et al., 2012; Šimůnek et al., 2013b). A typical challenge in parameter optimization is 

the non-uniqueness of the parameters, leading to parameter identifiability problems (Hopmans 

et al., 2002). Non-uniqueness can be reduced by decreasing the number of parameters to be 

estimated based on a sensitivity analysis. Sensitivity analysis has been used to optimize 

parameter estimation, to reduce parameter uncertainty (Rocha et al., 2006), and to investigate 

the effects of various parameters or processes on water flow and transport (van Genuchten et 

al., 2012). 

In this part of study, we used a combination of soil moisture monitoring and modeling to 

estimate hydraulic properties and to predict soil-water content in a two-layered sandy soil for 

precision irrigation management purposes. The objective of this study is to investigate the 

impact of parameter estimation and boundary conditions on the irrigation requirements, 

calculated using a soil hydrological model in combination with a crop growth model. The effect 

of changing bottom boundary conditions on model performance was evaluated in a first step. 

A systematic local sensitivity analysis was then used to identify dominant hydraulic model 

parameters. This was followed by a model calibration using inverse modeling with field data 

to estimate the hydraulic properties. Finally, the degree of soil-water stress was calculated with 

different parametrization scenarios to show to what extent hydrological model parameter 

choice and boundary conditions affect estimations of irrigation requirement and crop yield. It 

is acknowledged that there is no stress in soil-water, whereas the water stress is in the plant, 

indeed. But similar to a large bulk of papers and reports, we used the soil-water stress term in 

the present paper instead of water stress in the plants.  

2.2 Materials and Methods  

2.2.1 Description of the study site  

The study site is located in a sandy agricultural area at the border between Belgium and The 

Netherlands (with central coordinates 51°19′05″ N, 05°10′40″ E), characterized by a temperate 

maritime climate with mild winters and cool summers. During the study period 2011-2013, the 

farmer cultivated grass. The farm is almost flat (less than 1% sloping up from NW to SE) and 

runoff is not considered to be important. The measured depth of the groundwater table was 

between 80 and 155 cm and the Ap horizon thickness was between 30 and 50 cm below the 

soil surface at various locations across the field depending on the topography. The field is partly 

drained by parallel drainage pipes which are placed at 10 to 20 m intervals and at around 90 
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cm below the soil surface (as measured in the ditch). Drainage pipes are connected to a ditch 

in the northwest border of the field. Figure 2-1 shows the location, overview of groundwater 

level (GWL) in relation with apparent soil electrical conductivity (ECa) and layout of the field. 

The topographic map of the area is given in Appendix-Chapter 1 (Figure A2.1). The ECa was 

measured at 5 m intervals between the measurement lines with a DUALEM-21S sensor 

(DUALEM, Milton, ON, Canada) corresponding to 0-100 cm depth of exploration wich is 

correlated to GWL. Then, ECa data were interpolated using ordinary point kriging (OK) to a 

0.5 by 0.5 m grid to produce the field ECa map. More details about this methodology and its 

procedure can be found in Chapter 3. Reel Sprinkler Gun irrigation (type Bauer rainstar E55, 

Röhren- und Pumpenwerk BAUER Ges.m.b.H., Austria) was used on a 290 m by 400 m field 

to improve crop growth in the sandy soil during dry periods in summer. The field was irrigated 

three times throughout each growing season (2012: 64.5 mm and 2013: 85.4 mm, see Table 2-

5).  

 

 

Figure 2-1. Geographical location of the experimental field and the map of the apparent soil 
electrical conductivity (ECa) of the study site corresponding to three different zones of 
groundwater levels (GWL). The black star on the ECa map indicates the sensor location. 
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Figure 2-2 shows the soil profile at a sensors location, indicated by the star on the map in Figure 

2-1 (see also next section), a typical Podzol (Zcg-Zbg type according to the Belgian soil 

classification or Albic Podzols (Arenic) according to WRB, (FAO, 2014)) consisting of a 

uniform dark brown layer of sandy soil (Ap horizon, 0 to 33 cm) with elevated organic matter 

content, followed by a yellowish to white sandy soil, including stones and gravels, (C1 horizon, 

33 to 70 cm). A deeper horizon is light grey sandy soil (C2 horizon, 70 to 135 cm), including 

more stones and gravels (max 20%), but having similar hydraulic properties as the C1 horizon 

(as measured in the laboratory). Maximum grass root density was found at about 6 cm and 

decreased from 6 to 33 cm (based on field observation during profile excavation). The 

properties of the two layers are summarized in Table 2-1.  

 

 

 

 

 

 

 

 

 Ks θr θs α n OC Sand Silt Clay ρb 

 cm h-1 cm3cm-3 cm-1  % gcm-3 

Topsoil 9.59 0.09 0.39 0.017 2.72 2.08 91.65 7.0 1.35 1.57 

Subsoil 4.74 0.03 0.31 0.021 2.34 0.18 95.7 3.1 1.2 1.76 

Table 2-1. Average of soil properties of soil profile at sensor location: ρb is soil bulk density. θr, θs 
are residual and saturated water content, respectively; α and n are shape parameters for the van 
Genuchten-Mualem equation. Ks denotes the saturated hydraulic conductivity. 

Figure 2-2. Two-layered typical soil profile of the field close to the location of the sensor. 
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2.3 Field monitoring system 

The site was equipped with two weather stations (type CM10, Campbell Scientific Inc., Utah, 

USA), one in the study field and another 100 m away from the field. Soil-water content was 

recorded (from 1 Mar. until 25 Nov. in both 2012 and 2013) using a water content profile probe 

(type EasyAG50, Sentek Technologies Ltd., Stepney, Australia), placed vertically, that 

measures soil-water content at 10, 20, 30, 40 and 50 cm depths. The weather stations were 

connected to a CR800 data logger (Campbell Scientific Inc., Utah, USA) and the water content 

profile probe provided the soil water content wirelessly. All measurements were taken on an 

hourly basis and an hourly reference evapotranspiration was calculated based on the Penman–

Monteith equation (Allen et al., 1998) using weather station data. The amount of irrigation was 

derived by subtracting measurements of rain gauges of the field’s weather station (i.e. rainfall 

and irrigation) and the local meteorological station (i.e. only rainfall) outside the study field. 

Grass yield (dry matter) was measured at each harvesting time (4 times in each growing season) 

across the field (Figure 2-3).  

At the sensor location (indicated by the star on the map in Figure 2-1), duplicate undisturbed 

(100 cm3 Kopecky rings, Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) soil 

samples were taken to determine the soil saturated hydraulic conductivity and water retention 

curve, and one disturbed sample to measure soil properties such as texture, dry bulk density 

and organic matter, from the Ap (topsoil) and C (subsoil) horizons in June 2013. Groundwater 

Figure 2-3. Predicted leaf area index, LAI and grass yield using the LINGRA-N model for 2012 
and 2013. 
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depth at the sensor location was measured four times on 4 June and 5 October 2012 (140 and 

136 cm, respectively), and 24 June and 25 October 2013 (135 and 133 cm, respectively) using 

augering.  

The saturated hydraulic conductivity (Ks) was determined using a constant head laboratory 

permeameter (M1-0902e, Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands). The 

soil water retention curve, (SWRC, θ(h)), was determined using the sandbox method 

(Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) up to a matric head of -100 

cm and the standard pressure plate apparatus (Soilmoisture Equipment, Santa Barbara CA, 

USA) for matric heads equal to or below -200 cm, following the procedure outlined in (Cornelis 

et al., 2005). Bulk density was obtained by drying volumetric soil samples (100 cm3) at 105 

°C. Particle size distribution of the mineral component was obtained using the pipette method 

for clay and silt fractions and the sieving method for sand particles (Gee and Bauder, 1986). 

The organic matter content was determined by the method of Walkley and Black (1934) . 

Soil hydraulic properties were determined according to the van Genuchten (1980) and Mualem 

(1976) conductivity model (MVG model). The parameters of the water retention equation were 

fitted to the observed data set using the RETC, version 6.02 (van Genuchten et al., 1991). The 

MVG model (Mualem, 1976; van Genuchten, 1980) is given by: 

� � � − ���� − �� (2-1) 

��ℎ� � 1									ℎ ≥ 0 (2-2) 

��ℎ� � �1 + |�ℎ|����										ℎ < 0; 		�ℎ���	 � 1 − 1! (2-3) 

"��� � "��# $1 − �1 − � %���&' (2-4) 

where θs, θr, and θ are the saturated, residual and actual volumetric water content respectively 

(cm3 cm-3), α is the inverse of air entry value (cm-1), n is a pore size distribution index > 1, 

m=1-1/n (dimensionless), Se is the effective saturation (dimensionless), and l is a pore 

connectivity and tortuosity parameter in the hydraulic conductivity function, which is assumed 

to be 0.5 as an average for many soils (Mualem, 1976). 

2.3.1 Modeling at monitoring locations 

2.3.1.1 Simulation of leaf area index and grass yield 
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The simple generic grass growth model, LINGRA-N (Wolf, 2012), which can calculate grass 

growth and yields under potential (i.e. optimal), water-limited (i.e. rain fed) and nitrogen-

limited growing conditions, was used to calculate the leaf area index (LAI) and grass yield. 

This tool was calibrated and tested for perennial rye grass and natural annual grass over Europe 

(Barrett et al., 2004; Schapendonk et al., 1998). LINGRA-N  simulates the growth of a grass 

crop as a function of intercepted radiation, temperature, light use efficiency and available water 

(Wolf, 2012). The LAI and crop growth simulations were carried out from 1 January 2012 to 

31 December 2013. The model calculated LAI and yield on a daily time intervals using daily 

weather data, solar radiation (kJ m-2 d-1), minimum temperature (°C), maximum temperature 

(°C), vapour pressure (kPa), wind speed (m s-1) and precipitation (mm d-1). A grass crop data 

file is available mainly derived from WOFOST (section 1.4.1.1). Soil data for our soil were 

produced using measured values of soil moisture content at air dry (pF=6), wilting point (pF= 

4.2), field capacity (pF= 2.3) and at saturation and also percolation (Ks) to deeper soil layers 

(cm day-1) in the laboratory. The maximum rooting depth was adjusted to 40 cm. Irrigation 

supply was imposed at the specific applied times with optimal nitrate application. The 

simulated LAI was scaled to an hourly basis using linear interpolation between two adjacent 

simulated daily values of LAI. The model was run for optimal (no water limitation) and realistic 

conditions (actual water inlet i.e. irrigation and rainfall) for each growing season. Figure 2-3 

represents predicted LAI and grass yield of 2012 and 2013. 

2.3.2 Simulation of water flow  

The simulated soil profile in the hydrological model extends to 150 cm depth and is divided 

into two layers: Layer 1 (0 to 33 cm) and Layer 2 (33 to 150 cm). Simulation of root water 

uptake and water flow, which is assumed to be in the vertical direction in the vadose zone, was 

carried out for two growing seasons (from 1 Mar. until 25 Nov. in 2012 and 2013) using 

Hydrus-1D version 4.16 which solves the 1-D Richards’ equation: 

where θ is the volumetric water content (cm3 cm-3), t is time (h), z is the vertical space 

coordinate taken positive downward (cm), K(h) is the unsaturated hydraulic conductivity 

function (cm h-1), h is the pressure head (cm), and S(h) represents a sink term (cm3 cm-3 h-1), 

(�() � ((* $"�ℎ� +(ℎ���(* + 1,& − ��ℎ� (2-5) 
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defined as the volume of water removed from a unit volume of soil per unit time due to plant 

water uptake.  

To solve Eq. 2-5, the MVG soil hydraulic model (Eqs. 2-1 - 2-4) without hysteresis was used. 

The initial pressure head distribution was calculated using the inverse of Eq. (2-3), h(Se), from 

the measured initial water content of each observation node. These point values were then 

interpolated linearly from the deepest observation node to the groundwater level (h=0, GWL). 

The pore connectivity parameter of the MVG model was fixed at l=0.5. The upper condition 

for water flow was an atmospheric boundary condition (based on rainfall and irrigation water 

supply, LAI calculated by LINGRA-N (see 2.3.1) and reference evapotranspiration (ETo)) with 

surface runoff. The model performance was assessed using various implemented bottom 

boundary conditions, i.e. free drainage and incremental constant head conditions, as a manual 

sensitivity analysis (see section 2.5.1). The Feddes’ model (Feddes et al., 1978) without solute 

stress was used for root water uptake. The default grass parameters values provided by Hydrus-

1D were used (Taylor and Ashcroft, 1972). 

2.4 Soil-water stress and yield reduction 

In the Feddes model (Feddes et al., 1978) the sink term of Richards’ equation Eq. (2-5), S(h), 

is specified in terms of quantify potential root water uptake and water stress, as: 

��ℎ� � ��ℎ���-�./ (2-6) 

where R(x) is the root distribution function (cm), Tp is potential transpiration (cm h-1), and w(h) 

is the water stress response function (0 ≤ w(h) ≤ 1) which prescribes the reduction in uptake that 

occurs due to drought stress. Crop-specific values of this reduction function are chosen from 

the default Hydrus data set. The actual plant transpiration is calculated numerically, as: 

.0 � 1 ��ℎ�2- �34 ./1 ��ℎ���-�2-34  (2-7) 

where Lr is the rooting depth (cm). 

By assuming root water uptake is equal to actual transpiration, the ratio of actual to potential 

transpiration by the root uptake was introduced as a degree of water stress, DWS, (Jarvis, 

1989), as: 
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DWS � .0./ � 1 ��ℎ���-�2-3�  (2-8) 

The effect of the boundary conditions and parameter uncertainty on soil-water stress was 

evaluated using the ratio between the calculated actual water uptake/actual transpiration and 

the potential transpiration provided by the model (Li et al., 2012; Zhou et al., 2012). In optimal 

and stress-free conditions, this ratio should be (close to) unity (>0.90 of maximum reference 

evapotranspiration).  

The ratio between actual crop evapotranspiration and potential evapotranspiration was 

introduced as a water stress factor equal to the crop yield reduction due to water shortage 

(Doorenbos and Kassam, 1979), given as:  

1 − �0�� � "8	�1 − 9.09./� (2-9) 

Where Ya is actual crop yield, Ym is the maximum crop yield in optimal condition, Ky is the 

crop yield factor (for grass Ky=1), ETa is actual crop evapotranspiration estimated by the model. 

The Ym value was simulated using LINGRA-N in optimal condition (no water stress) for 2012 

and 2013 growing seasons. ETp is potential evapotranspiration and can be calculated from the 

reference evapotranspiration by: 

9./ � 9.: × "	 (2-10) 

where Kc is the crop coefficient and equal to 1, assuming that grass at our site did not differ 

much from the reference crop. Accordingly, crop yield reduction of each scenario was 

calculated using Eq. 9 for both periods to show to what extent different scenarios affect soil 

water stress and crop yield. 

 

2.4.1 Sensitivity analysis  

2.4.1.1 Effect of soil layering and the Groundwater Level (GWL) on Soil Water 

Content and Water Stress  

As a first step, the effect of soil layering was evaluated by changing layered soil profile with 

the homogeneous profile by calculating the effective hydraulic conductivity and arithmetic 

average of hydraulic properties based on soil layer thickness. Then, a manual sensitivity 

analysis of the bottom boundary conditions was conducted by applying various conditions. A 
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free drainage and various constant head conditions were imposed by setting a zero pressure 

head value at the GWL ranging from 120 to 150 cm (5 cm interval, i.e., 7 scenarios) below the 

soil surface to cover the GWL variations (the sensor location was at dryer zone (Figure 2-1)). 

This small variation is due to the existence of drainage system. The effects of these bottom 

boundary conditions on soil water stress and water content prediction were evaluated for both 

calibration and validation periods (2012 and 2013). 

2.4.1.2 Parameter Sensitivity 

The effect of each input factor or parameter on the model output is determined by a local 

sensitivity analysis (SA), using a one-at-a-time (OAT) approach. We used this approach 

because it allows a clear identification of single-parameter effects. Relevant parameters have 

major effects on output variables with only a small change in their value (Saltelli et al., 2008). 

SA is, among other purposes, used to find the most relevant parameters which enables a 

reduction of the number of parameters that need to be optimized. In a local SA, only the local 

properties of the parameter values are taken into account, in contrast to global SA which 

computes a number of local sensitivities. Since the interest in this study goes specifically to the 

measured (parameter) values in the field, a local SA is chosen. Furthermore, an OAT approach 

(local or global) does not provide direct information about higher- and total-order parameter 

interaction as is provided by variance-based SA (Saltelli et al., 2008). However, by evaluating 

the parameter sensitivities in time, insight is given about potential interaction when similar 

individual effects are observed. The latter can be quantified by a collinearity analysis (Brun et 

al., 2001), but will be done graphically in this contribution. A dynamic sensitivity function can 

be written as follows: 

�<�)� � (=�)�(-  (2-11) 

where SF(t), y(t), and x denote the sensitivity function, output variable and parameter 

respectively. If an output variable (y) significantly changes (evaluated by calculating the 

variance or coefficient of determination or by visualizing in a scatter plot) due to small changes 

of the parameter of interest x, it is called a sensitive parameter.  

This partial derivative can be calculated analytically or numerically with a finite difference 

approach by a local linearity assumption of the model on the parameters. Local sensitivity 

functions evaluate the partial derivative around the nominal parameter values. The central 
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differences of the sensitivity function are used to rank the parameter sensitivities and can be 

expressed as follows: 

∆-? � @A . -? (2-12) 

CAS	 � (=�)�(- � EF ∆GH→J =K), -? + ∆-?M − =K), -? − ∆-?M2∆-?  (2-13) 

CTRS � (=�)�(- . -?= 	,																								CPRS � (=�)�(- . -? (2-14) 

where pf is the perturbation factor, xj is the parameter value and ∆xj is the perturbation, CAS is 

the Central Absolute Sensitivity, CTRS is the Central Total Relative Sensitivity analysis, and 

CPRS is a Central Parameter Relative Sensitivity. Since the parameters and variables have 

different orders of magnitude for which the sensitivity is calculated, direct comparison of the 

sensitivity indices with CAS is not possible. Hence, recalculation towards relative and 

comparable values is needed. In order to compare the sensitivity of the different parameters 

towards the different variables, CTRS is preferred. CPRS is sufficient when the sensitivity of 

different parameters is compared for a single variable, i.e., soil-water content. Here, a dynamic 

(time-variable) local sensitivity analysis was conducted by linking Equations (2-11 - 2-14), 

programmed in PythonTM software (https://www.python.org/) to Hydrus-1D (Appendix –

Chapter 2). 

Given the output accuracy of Hydrus-1D (0.001), a perturbation factor of 0.1 was chosen. To 

carry out the SA, each hydraulic parameter (Ks, θr, θs, α, and n) in each layer was varied 

(measured value ± perturbation factor multiplied by measured value) and its CTRS was 

calculated (Eq. 2-13 - 2-14), while the values of other parameters were fixed to the measured 

values. The model was run in forward mode 20 times, i.e., 10 runs for each layer and two runs 

for each parameter. A weak direct effect of a parameter in SA is denoted by low absolute values 

close to zero. A positive effect is expressed by a positive value and a negative effect by a 

negative value. 

2.4.2 Model calibration and validation 

2.4.2.1 Model calibration 

For accurate parameter estimation, a longer period such as a growing season (i.e. 2012) with 

several drying and wetting events was selected. This was also suggested by Wöhling et al. 

(2009); Wöhling et al. (2008). Therefore, the period between 1 Mar. 2012 (00:00 h CET) and 
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25 Nov. 2012 (23:00 h) was used as the calibration period. We used a time interval of 2 hours, 

resulting in 12960 soil-water content records for four depths (as data for inverse solution), 

based on hourly precipitation and evaporation input data. Based on our experience this number 

of data is sufficient for optimization purposes. The objective functions were soil water content 

and water retention data for both soil layers with unit weighting. In the calibration, we 

optimized only the values of the most sensitive parameters (Ks, n, and α) of the two layers, 

taking initial values of hydraulic parameters for each layer equal to the values estimated by the 

RETC program for the independent field samples, while keeping the insensitive hydraulic 

parameters fixed to the measured values. Thirty-seven parameter optimization scenarios were 

selected and analyzed to identify correlations among optimized parameters and to identify the 

most influential parameter sets on soil water stress and water content in different lower 

boundary conditions. The 37 scenarios comprised optimizing all six parameters simultaneously 

(one scenario), four parameters (nine scenarios), three parameters (18 scenarios) and two 

parameters (nine scenarios). Finally, the best-performing parameter set - based on performance 

criteria, the correlation between optimized parameters (non-uniqueness of the parameter sets) 

and the visual inspection of simulated and observed soil-water content - was selected for 

validation using independent data from 2013 (from 1 Mar. until 12 Sep. 2013).  

2.4.2.2 Model Evaluation and Statistical Analysis 

The performance of models can be evaluated with a variety of statistics (Neuman and 

Wierenga, 2003). It is known that there is no efficiency criterion which performs ideally. Each 

of the criteria has specific pros and cons which have to be taken into account during model 

calibration and evaluation. It is suggested to use a combination of different efficiency criteria 

to  assess of the absolute or relative volume error (Krause et al., 2005). The root-mean-square 

errors (RMSE), the coefficient of determination (r2) and the Nash–Sutcliffe coefficient of 

model efficiency (Ce) (American Society of Civil Engineers, 1993), are popular and widely 

used performance criteria to evaluate the difference between observed and modelled data 

(Gandolfi et al., 2006; Nasta et al., 2013; Verbist et al., 2009a; Verbist et al., 2012; Vrugt et 

al., 2004; Wöhling and Vrugt, 2011; Wollschlager et al., 2009).They are calculated as follows: 

R � 1 − ∑ �TU − �U�'�UV%∑ �TU − TW�'�UV%  (2-15) 
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�' � � ∑ �TU − TW���U − �̅��UV%
Y∑ ��U − �̅�'∑ �TU − TW�'�UV%�UV% 	�

' 
(2-16) 

�Z�9 � [∑ �TU − �U�'�U !  (2-17) 

where O and S are observed and simulated values at time/place i, respectively. 

Ce and r2 are considered to be satisfactory when they are close to 1, while RSME should be 

close to 0. Ce may result in negative values when the mean square error exceeds the variance 

(Hall, 2001).  

2.4.3 Effect of optimization scenarios on estimated water stress and yield 

reduction and irrigation scheduling 

2.4.3.1 Scenario analyses on required additional irrigation 

Additional irrigation refers to the amount of irrigation that has to be added to the current 

irrigation to avoid water stress or that has to be subtracted from the current irrigation to avoid 

water loss. The impact of groundwater depth on the required additional amount was assessed 

using scenario analysis. The additional required irrigation was calculated by adding an amount 

of water input as precipitation variable at the start time of water stress and then the model was 

run several times in forward mode until the calculated water stress was eliminated (by reducing 

or increasing amount of water supply). This procedure was repeated for each scenario and 

boundary condition for both years. In addition, crop yield reduction of each scenario was 

calculated (using Eq. 2-9) for both periods to show to what extent different scenarios affect soil 

water stress and crop yield.  

2.4.3.2 Irrigation scheduling optimization 

The value of soil-water stress, and the number and the duration of stress periods was calculated 

for two growing seasons (2012 and 2013), as an indicator for the performance of the irrigation 

scheduling (van Dam et al., 2008). To optimize the irrigation scheduling (timing of 

application), the actual water supply (all irrigation events) was deleted from the model input of 

the hydrological model. Secondly, the LAI simulated with the LINGRA-N for optimal 

conditions (no water stress) was used as a variable in the hydrological model. Then, the 

hydrological model with a constant bottom boundary condition was run with the new input 



     Chapter 2 

 

59 

variables to elucidate water stress without actual water supply. Subsequently, the required 

irrigation was added to the precipitation at the beginning of each water stress period to exclude 

water stress from the simulations. To simulate crop yield at the optimized condition, the new 

precipitation variables (rainfall and required irrigation) were used in LINGRA-N model. The 

optimal yield obtained using the optimized irrigation scheduling was compared to the actual 

(simulated and measured) yield of current irrigation management practices. 

2.5 Results and Discussion 

2.5.1 Effect of soil layering and the GWL on soil water content and water stress 

predictions 

Result showed effects of homogeneous and heterogeneous of free drainage and different 

constant head conditions on water content estimation (see Appendix –Chapter 2, Fig. A2-1). 

Generally, the better agreement between the prediction and observation was reached in 

heterogeneous profile. In the free drainage condition, soil water content is generally 

underestimated, while in constant head bottom boundary condition simulation agreed well with 

observation. Pachepsky et al. (2007) found a two layered soil profile was superior than 

homogeneous profile by carrying out aggregation abstraction in their case, in our ongoing study 

it confirmed heterogeneous profile is most suitable for water flow simulations. Figure 2-4 

shows the effects of free drainage and different constant head conditions on water content 

estimations made using the uncalibrated hydrological model. In the free drainage condition, 

soil-water content was generally underestimated, especially at deeper observation nodes. The 

results further show that a constant head boundary condition yields a much better agreement 

between the model and the observations due to wetter conditions in the lower part of the profile.  
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The constant head condition showing the smallest difference between observations and 

simulations was in agreement with average groundwater depth observations in 2012 and 2013 

(-140 and -135 cm respectively) at the location of the sensor (2012: RMSE=0.018, Ce=0.27, 

and r2=0.48; 2013: RMSE=0.024, Ce=0.26 and r2=0.43). Decreasing the groundwater depth to 

-120 cm overestimated the soil-water content, especially at the three deepest observation nodes. 

On the contrary, soil water stress was overestimated in free drainage condition, which means 

that the plant is exposed to water stress most of the time of growing season. While there is 

almost no water stress predicted in constant head condition with GWL below 135 cm (Figure 

2-5). Obviously, results show constant head boundary condition leads to higher calculated root 

water uptake as compare as free drainage condition. The results clearly show the great 

importance of the bottom boundary condition in estimating soil-water content and soil water 

stress in the soil profile, even for groundwater depths well below 120 cm depth and sandy soils. 

The effect of the boundary condition may well exceed the impact of uncertain hydraulic 

parameters in a parameter optimization. Carrera-Hernández et al. (2012) stated that choosing 

adequate boundary conditions is the first step toward accurately estimation water content and 

flux using hydrological model; But our result shows, in optimizing the hydraulic model 

parameters, the effect of the boundary conditions should therefore be assessed simultaneously 

Figure 2-4. Water content estimations at 10 and 40 cm depths using the uncalibrated model for 
free drainage and different constant head bottom boundary conditions at the soil moisture sensor 
location. 
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and then the appropriate boundary conditions should be chosen in term of root water uptake 

and soil water content.  

 

2.5.2 Parameter sensitivity analysis 

Due to the variable rainfall, irrigation, evapotranspiration and drainage, the soil-water content 

changes in the soil profile, and, consequently, parameter sensitivities are time dependent. The 

soil-water content has a low sensitivity to θs and θr, especially for the second layer. Low 

sensitivities to θr have been reported by others (Kelleners et al., 2005; Mertens et al., 2006; 

Wöhling et al., 2008). Figure 2-6 illustrates the results of the sensitivity analysis as a function 

of time for the most influential parameters α, n, and Ks, and for both soil layers as depicted by 

the suffix 1 for layer 1 and suffix 2 for layer 2 (see also Appendix-Chapter 2, Figure A2-3 and 

A2-4). A weak direct effect of a parameter is reflected by low absolute values (close to zero). 

The results show for all parameters a general change in sensitivity with time with the seasonal 

changes in irrigation application and rainfall. Generally, all soil hydraulic parameters showed 

higher sensitivity in dry periods as compared to wet periods. On the other hand, there is a clear 

effect of parameter variability in layer 1 on water content estimation at 10 cm, and the effect is 

slightly declining at 20 and 30 cm, which suggests the great importance and influence of upper 

boundary variables, especially evapotranspiration. Similar results were observed by Rocha et 

al. (2006). They found that soil water content and pressure heads were most sensitive to 

Figure 2-5. Soil water stress calculations using the uncalibrated model for free drainage and 
constant head bottom boundary condition (GWL= -140 cm) at the soil moisture sensor location.
DWS is degree of water stress. 
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hydraulic parameters variation in the dry period near the soil surface using local sensitivity 

analysis of Hydrus.  

Soil-water content is sensitive to variations of α, n and Ks in both layers. The sensitivity is the 

largest for n, α and less so for Ks in the first layer. For the second layer, soil-water content was 

the most sensitive to α followed by n and Ks. Abbasi et al. (2003a) reported that n, θs and Ks 

were most sensitive parameters in their study and that this sensitivity was more pronounced in 

deeper parts, however they also observed some sensitivity near the soil surface during the drier 

conditions. The most sensitive parameters were θs, n and α and least sensitive parameter was 

Ks in the study by Schneider et al. (2013) using Hydrus-1D. They found large interaction 

(correlation) among sensitive parameters. In contrast, Wegehenkel and Beyrich (2014) reported 

that soil water content predictions were most sensitive to θr and θs and least sensitive to α, n, 

and Ks input parameters using Hydrus-1D. Similarly, Caldwell et al. (2013) found that θr, n and 

l were sensitive and θs, α and Ks were insensitive to water content simulation. In dry periods, 

there is a general negative correlation between n and α on the one hand and soil-water content 

on the other hand, whereas a positive correlation exists between Ks and soil-water content 

(Figure 2-6). Figure 2-6 shows that in the first layer, the soil-water content is more influenced 

by rainfall at 10 cm than at 30 cm (higher and lower sensitivity for observation nodes 10 and 

30 cm, respectively, within first layer).  
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The fact that the model predictions in the upper part of the soil profile are extremely sensitive 

to variations in hydraulic parameters in dry periods, is of great importance to irrigation 

management. To improve the timing of irrigation in these crucial periods, numerical soil 

models that are used to determine irrigation requirement, need to be well parametrized for α, n 

and Ks.  

 

Figure 2-6. Parameter sensitivity as a function of time. The numbers 1 and 2 correspond to the 
first and second layer, respectively. 
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2.5.3 Model calibration 

Since soil-water content prediction was insensitive to the parameters θs and θr, they were fixed 

to the measured (initial) values (Table 2-1). Similar strategies were used by Schwartz and Evett 

(2002); Verbist et al. (2012). The model was run inversely using time series of soil-water 

content with values for α, n and Ks being optimized for the two layers (i.e., six-parameter 

optimization scenario). A significant correlation appears between optimized α and Ks for both 

layers (layer 1: r = 0.85; layer 2: r = 0.95 constant head; and layer 1: r = 0.82; layer 2: r = 0.80 

free drainage) and between optimized n and α (both layers: r = -0.99 constant head; and layer 

1: r = -0.83 and layer 2: r = -0.84 free drainage) within each layer, but not between layers. On 

the other hand, there is a significant correlation between n and Ks in both layers (layer 1: r = -

0.85; layer 2: r = -0.94 constant head; and layer 1: r = -0.75; layer 2: r = -0.98 free drainage). 

This means that α, n and Ks within one layer cannot be determined independently and different 

sets of correlated parameters lead to very similar predictions of soil-water content. The high 

correlation between optimized parameters within a layer leads to a large uncertainty of the final 

parameter estimates (Hopmans et al., 2002). To avoid non-uniqueness of the inverse solution 

(Šimůnek and Hopmans, 2002), 36 additional systematic four-, three- and two-parameter 

optimizations were conducted. All optimizations resulting in correlations among the optimized 

parameters were removed and only the optimization scenarios with the uncorrelated parameters 

were kept. This resulted in parameter values as shown in Table 2-2 for a constant head 

corresponding to a groundwater depth of -140 cm and free drainage. For comparison purposes, 

six-parameter scenario (all parameters optimized) and only the best performing optimization 

with two parameters is presented for the other boundary conditions (i.e. GWL = -120 cm). 

The performance results of the parameter optimizations according to the performance criteria 

for all scenarios with uncorrelated parameters and different boundary conditions are presented 

in Table 2-3, together with the performance of the six-parameter scenario. The results show 

that a two-parameter optimization (optimizing only Ks in both layers) performs equally well as 

compared to a six-, four- or three-parameter scenario for all performance criteria and 

observation depths. However, parameters in the six-parameter scenario are considered 

unidentifiable due to their correlations. In this case, the model was not able to find a global 

minimum but found a local minimum (Levenberg-Marquardt method) due to the high 

dimensionality of the problem (Ritter et al., 2003) and the large uncertainty of the optimized 

values. 
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Large differences in model performance were obtained when using free drainage or constant 

head conditions (Table 2-3). After optimization, the r2 for different free drainage and constant 

head conditions and various optimization scenarios was similar, while Ce and RSME were 

different. Overall, the performance of the model to predict soil-water content at 40 cm was 

lowest. The model performs well for the 10, 20, and 30 cm depths where the plant roots are 

concentrated and which are consequently the most critical in terms of irrigation optimization. 

The model with a constant head (-140 cm) clearly performed better than the free drainage 

boundary condition. The smallest differences were detected at the top node (10 cm) compared 

to deeper nodes in constant head and free drainage conditions. The optimization approach 

showed that the free drainage condition was unsuccessful to predict soil water content 

sufficiently well in agreement with observations, even using different parameter estimations. 

The two-parameter scenario requires fewer parameters (one parameter for each layer) to be 

optimized, performs better as compared to the uncalibrated model and is therefore to be 

preferred. Large confidence limits indicate uncertain estimations of a particular parameter 

(Šimůnek and Hopmans, 2002). The optimized Ks with 95% confidence limits (CL) for the first 

and second layer were 1.20 (1.15–1.24) cm h-1, and 2.17 (2.06–2.26) cm h-1, respectively, in  

Table 2-2. Optimized values of hydraulic parameters for the optimization scenarios yielding 
uncorrelated parameters (except for reference scenario with six optimized parameters). Values 
indicated in italic are values fixed to the measured values close to the sensor location. Numbers 
between parentheses represent the standard errors of optimized parameter. 

Boundary 
condition 

Number of 
optimized 

parameters 
First soil layer Second soil layer 

  α1 (cm-1) n1 Ks1 (cm h-1) α2 (cm-1) n2 Ks2 (cm h-1) 

Constant head  
(-140 cm) 

6 
0.023 

(0.0004) 
2.14 

(0.02) 
2.87  

(0.111) 
0.022 

(0.0006) 
2.15 

(0.034) 
1.95  

(0.14) 

4 0.017 
2.64 

(0.003) 
1.54 

(0.028) 
0.020 

(0.00005) 
2.34 1.43 (0.026) 

3 0.017 2.72 
1.39 

(0.026) 
0.020 

(0.00005) 
2.34 1.65 (0.031) 

2 0.017 2.72 
1.20 

(0.023) 
0.021 2.34 2.17 (0.044) 

Constant head  
(-120 cm) 

2 0.017 2.72 
3.45 

(0.162) 
0.021 2.34 0.75 (0.0107) 

Free drainage 

6 
0.036 

(0.0007) 
1.45 

(0.003) 
16.68  
(0.48) 

0.013 
(0.0005) 

1.59 
(0.013) 

5.10  
(0.51) 

4 0.017 
1.53 

(0.003) 
5.09 

(0.12) 
0.003 

(0.00013) 
2.34 0.33 (0.005) 

3 0.017 2.72 
0.97 

(0.02) 
0.017 

(0.00008) 
2.34 

0.22 
(0.004) 

2 0.017 2.72 
0.86 

(0.022) 
0.021 2.34 0.39 (0.004) 
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†RMSE, Ce and r2 are the root-mean-square deviation (cm3cm-3), the Nash–Sutcliffe coefficient 
of efficiency and the coefficient of determination. 

 

 Boundary 
condition 

Number of optimized 
parameters 

Nodes depth 
cm 

RMSE 
† Ce † r 2 † 

U
nc

al
ib

ra
te

d 
(2

01
2)

 Constant head 
(-140 cm) 

 
0 

10 0.029 0.34 0.58 
20 0.018 0.44 0.53 
30 0.016 0.18 0.38 
40 0.014 -0.03 0.27 

Constant head 
(-120 cm) 

 
0 

10 0.032 0.2 0.37 
20 0.039 -1.66 0.26 
30 0.029 -1.65 0.16 
40 0.023 -1.76 0.08 

Free drainage 0 

10 0.054 -1.32 0.51 
20 0.036 -1.24 0.7 
30 0.055 -8.52 0.6 
40 0.052 -13.51 0.62 

C
al

ib
ra

tio
n 

pe
rio

d 
(2

01
2)

 

Constant head 
 (-140 cm) 

6 

10 0.023 0.56 0.62 
20 0.016 0.53 0.74 
30 0.010 0.67 0.69 
40 0.008 0.63 0.64 

4 

10 0.024 0.52 0.62 
20 0.016 0.54 0.76 
30 0.010 0.65 0.70 
40 0.008 0.64 0.64 

3 

10 0.026 0.45 0.62 
20 0.014 0.65 0.75 
30 0.010 0.65 0.70 
40 0.008 0.63 0.64 

2 

10 0.026 0.46 0.63 
20 0.014 0.65 0.75 
30 0.010 0.66 0.69 
40 0.010 0.45 0.63 

Constant head  
(-120 cm) 

2 

10 0.022 0.60 0.61 
20 0.031 -0.65 0.72 
30 0.025 -0.97 0.64 
40 0.019 -1.01 0.56 

Free drainage 

6 

10 0.023 0.57 0.60 
20 0.018 0.46 0.71 
30 0.016 0.19 0.56 
40 0.011 0.34 0.50 

4 

10 0.022 0.62 0.64 
20 0.018 0.45 0.71 
30 0.014 0.13 0.55 
40 0.016 -0.11 0.42 

3 

10 0.032 0.18 0.54 
20 0.021 0.29 0.62 
30 0.027 0.12 0.50 
40 0.019 -0.95 0.43 

2 

10 0.028 0.39 0.51 
20 0.022 0.31 0.59 
30 0.015 0.12 0.51 
40 0.014 0- .98 0.50 

V
al

id
at

io
n 

pe
rio

d 
(2

01
3)

 

Constant head  
(-135 cm) 

2 

10 0.042 0.34 0.37 
20 0.027 0.30 0.40 
30 0.020 0.24 0.33 

40 0.016 0.11 0.29 

Table 2-3. Calculated performance criteria describing the correspondence between measured and 
simulated soil water content for each scenario for various boundary conditions. 
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the two-parameter scenario with -140 cm GWL. Therefore, this optimization result was 

considered the best and was chosen for the evaluation run.  

2.5.4 Model evaluation 

The validation results (using the same hydraulic parameter values as in the calibration period) 

under different upper (rainfall and water supply, ETo, LAI) and lower (groundwater depth, i.e. 

-135 cm) boundary conditions, show that model performance during the calibration was 

superior to the validation period at all observation depths (Figure 2-7, Table 2-3). The same 

result was reported by, Wöhling et al. (2008), Wöhling et al. (2009).  

Similar to the calibration period, soil-water content was predicted better during the rain and 

irrigation period than in the dry period. Specifically, soil-water content was overpredicted 

during summer months (June-August) and underpredicted during winter and spring. Wöhling 

et al. (2009) explained that the differences can be partly attributed to non-uniqueness of the 

optimization process, inadequacy of the model structure, the large number of optimized 

parameters, different information content in the calibration and evaluation data, and seasonal 

changes in soil hydraulic properties. The extent to which the soil water content prediction 

affects the calculated irrigation requirements, is dealt with in the next section.  
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Figure 2-7. Observed and simulated time series of soil water content with calibration using the 
two-parameter Ks scenario for 2012 and validation results of 2013. 
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2.5.5 Effect of optimization scenarios on estimated water stress and yield 

reduction  

Using the two-parameter optimization scenario (Table 2-4), the calculated potential-reference 

evapotranspiration (ETo) values for 2012 and 2013 (same period from 1 Mar. to 12 Sep.) were 

523 and 524 mm, respectively. The cumulative actual transpiration and evaporation, provided 

by the hydrological model, were 353 and 86 mm for the calibration (2012) and 343 and 114 

mm for validation (2013) periods. Calculated cumulative actual fluxes across the bottom of the 

soil profile were -15.4 mm (outflow/drained) and 63.3 mm (upward inflow/capillary rise), for 

2012 and 2013 respectively. The calculations are valid for the location where the soil moisture 

sensor was placed, i.e., in the drier part of the field with groundwater depths below 120 cm. 

The sum of irrigation and precipitation over the simulation period was 463 mm (64.5 mm 

irrigation and 398.5 mm precipitation) in 2012 and 428.7 mm (85.4 mm irrigation and 343.3 

mm precipitation) in 2013. In 2013, the amount of water from irrigation and rainfall was lower 

as compared to 2012, resulting in a larger recharge from the groundwater. Overall, the periods 

of water stress totaled 671 h in 2012 and 675 h in 2013 (Table 4). Despite the similarity, the 

extent of soil water stress was larger in 2013 as compared to 2012. This can be attributed to the 

fact that the first water stress event in 2012 with about 328 h duration is not related to soil water 

availability but is also due to climate limitations (low temperature and light-radiation limitation 

because growth is function of radiation, temperature, light and then water; see sections 1.4.1.1 

and 2.3.1.1). No significant reduction or increase in yield and LAI was achieved during this 

first water stress event in current and optimum conditions (Figure 2-3).  

There was a significant effect of the bottom boundary condition on the calculated water stress. 

A free drainage condition resulted in a larger number, longer duration of stress conditions 

(Figure 2-8 and Table 2-4) and overestimated water stress due to excessive recharge to the 

groundwater (more than 148 mm). On the other hand, a shallower imposed groundwater level 

(-120 cm) creates less estimated water stress (Figure 2-8 and Table 2-4), because this boundary 

condition allows inflow (upward flow) from groundwater table. When the GWL was -140 cm 

the outflow of the bottom flux increased from the six-optimized parameter scenario (-4.6 mm) 

to two-parameter scenario (-15.4 mm) in the calibration period, while upward flow increased 

with increasing number of optimized parameters in validation period (63.3 to 76.9 mm). But 

these inflows did not meet the crop water requirement (see next section). Huo et al. (2012) 

reported that the maximum contribution of GWL to crop water requirement occurred when the 

GWL was less than 100 cm.  
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*Lower degree of water stress shows the more water stress. 

Overall, to overcome the water stress effects on crop yield, additional required irrigation should 

be supplied for different optimization scenarios and boundary conditions. During water stress, 

yield reduction would be in range of 0 to 33% for different optimization scenarios (Table 2-4). 

In addition, two- to six-parameter optimizations showed a similar value in yield reduction (16% 

for two- and 13% for three- to six-parameter in calibration and 13% for two- and 11% for three- 

to six-parameters to be optimized in validation periods). The maximum yield reduction 

occurred in the free drainage condition among different boundary conditions and parameter 

optimization scenarios (see Appendix-Chapter 2, Figure A2-5). Different parameter 

optimization strategies (two-, three-, four- or six-parameter optimizations) do not affect the 

calculated water stress as significantly as does the bottom boundary. Therefore, these results 

 Boundary condition 
Number of 
parameters 
optimized 

Number 
of water 
stress 

periods 

Total 
Duration 
of water 
stress 

Degree 
of 

water 
stress* 

Profile 
bottom 

flux 

Additional 
required 
irrigation 

Yield 
reduction 

C
al

ib
ra

tio
n 

pe
rio

d 

   h  mm % 
Constant head (-140 cm) 

uncalibrated 
0 0 0 ≥1 -8.1 0 0 

Free drainage 
uncalibrated 

0 9 
1369 
(436) 

0.20 -310.1 120 28 

Free drainage 2 7 
867 

(345) 
0.37 -167.7 60 18 

Constant head (-120 cm) 2 0 0 ≥1 71.9 0 0 

Constant head (-140 cm) 2 7 
671 

(328) 
0.65 -15.4 50 16 

Constant head (-140 cm) 4 4 
524 

(277) 
0.65 -1 50 13 

Constant head (-140 cm) 
 

6 5 
540 

(276) 
0.66 -4.6 45 13 

V
al

id
at

io
n 

pe
rio

d 

Constant head (-135 cm) 
uncalibrated 

 0 0 ≥1 105.5 0 0 

Free drainage 
uncalibrated 

0 11 1371 0.05 -222.9 120 33 

Free drainage 2 7 1093 0.10 -148.7 70 23 

Constant head (-120 cm) 2 1 20 0. 85 64.4 5 0 

Constant head (-135 cm) 2 5 675 0.65 63.3 30 13 

Constant head (-135 cm) 4 4 598 0.65 76.6 20 11 

Constant head (135 cm) 6 3 579 0.65 76.9 20 11 

Table 2-4. Total duration, number and extent of water stress for different boundary conditions 
and scenarios (from 1 Mar. to 12 Sep.). Total rainfall and irrigation amount were 398.2 and 64.5 
mm in 2012 and 343.3 and 85.4 mm in 2013 respectively. Number between parentheses represents 
the duration of first water stress event due to light-radiation and temperature limitations. 
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suggest that simultaneous optimization is needed for irrigation management purposes, i.e. 

optimize/choosing boundary conditions to accurately describe recharge to or from groundwater 

and, in second order, optimize hydraulic parameters to accurately describe soil-water content 

variation in the topsoil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.6 Irrigation scheduling scheme 

The simulated results further showed that, to avoid drought stress during summer, a more 

accurate irrigation schedule would be needed in the drier part of the field. It would be better to 

supply water in June and July instead of a huge amount in late summer or at an inappropriate 

time (see Figure 2-8 and 2-9). Results revealed that the actual water supply exceeded crop 

Figure 2-8. Degree of water stress (DWS) at potential reference evapotranspiration in 
2012 and 2013 for various scenarios and bottom boundary conditions. 
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demand but did not meet the crop requirement (Figure 2-9 and Table 2-5). Irrigation volume 

affects soil water fluxes (see Appendix-Chapter 2, Figure A2-7). In the ‘no irrigation’ scenario 

for 2012 the upward/inflow fluxes from groundwater were larger than current and guided 

irrigation scenarios (Figure 2-10). The upward flow of water was not sufficient to meet the 

crop requirement. For guided irrigation, recharge from groundwater was larger than current 

irrigation in 2012 and 2013. Which means some part of crop water demand would need to be 

supplied from groundwater in guided irrigation.  

 

 

 

 

 

 

 

 

 

 

 

Results show that, despite reducing water supply throughout the growth period by about 22.5% 

in 2012 and 12% in 2013, yield would have increased about 4.5% in 2012 and 6.5% in 2013 

on average (Table 2-5, Figure 2-3), by rescheduling irrigation at the precise time when the crop 

is exposed to water stress. The number of irrigation events would remain similar to realistic 

applications (three times in each growing season). At the field scale non-uniform irrigation  

Figure 2-9. Comparison degree of water stress (DWS) between farmer’s conventional irrigation 
(current irrigation), without irrigation and optimi zed irrigation scheme for calibration and 
validation periods.  
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 distribution (water supply in drier parts with GWL below 120 cm) would be necessary.  

 

 

 

 

 

 

 

 

 

2.6 Conclusions  

The results of this part of study have demonstrated clearly the profound effect of the position 

of the groundwater table on the estimated soil-water content and associated water stress in a 

sandy two-layered soil under grass in a temperate maritime climate. Indeed, field scale 

Boundary condition 

Observed irrigation schedule  Optimized irrigation schedule Difference 

Time amount 
Yield 

observed 
Yield 

simulated 
Time amount 

Yield 
simulated 

amount 

day mm ton ha-1  day mm ton ha-1 mm 
Calibration period 

(2012) 
Constant head (-140 

cm) with 2 
optimized 
parameters 

20 May 22.5 

10.4 10.9 

27 May 15 

11.4 14.5 

11 June 21 2 July 15 

13 August 21 11 August 20 

Validation period 
(2013) 

Constant head (-135 
cm) with 2 
optimized 
parameters 

13 June 32.4 

10.8 11.1 

6 June 25 

11.8 10.4 

23 July 24.8 8 July 25 

23 August 28.2 17 July 25 

Table 2-5. Comparison of optimized irrigation schedule with farmer’s conventional irrigation 
schedule. 

Figure 2-10. Actual flux of farmer’s conventional irrigation ( current irrigation), without irrigation 
and optimized irrigation scheme (guided irrigation) for 2012 and 2013 (see also Fig. A 2-5. 
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variations in soil-water content can be very large, due to topography and variable depth of the 

groundwater. Furthermore, the model performance was affected by the spatial variability of 

hydraulic parameters such as Ks. Results show that the uniform distribution of water using 

standard gun sprinkler irrigation may not be an efficient approach since at locations with 

shallow groundwater, the amount of water applied will be excessive as compared to the crop 

requirements, while in locations with a deeper groundwater table, the crop irrigation 

requirements will not be met during crop water stress.  

The results show that the effect of groundwater level was dominant in soil-water content 

prediction, at least under conditions similar to those in our study. This reflects the need for 

accurate determination of the bottom boundary condition, both in space and time. In a 

subsequent field experiment in an adjacent field, the temporal fluctuations of the groundwater 

table based on diver (Mini-Diver, Eijkelkamp Agrisearch Equipment, Giesbeek, The 

Netherlands) measurements in boreholes revealed changes in groundwater depth of about 10 

cm between two lower and higher locations (Chapter 4). The changes were smaller than the 

expected variation due to topography which may well range more than 100 cm even for 

relatively flat areas. This has important consequences for precision irrigation management and 

variable water applications at sub-field scale. The use of detailed (cm scale) digital elevation 

models, geophysical measurement techniques such as electromagnetic induction or ground-

penetrating radar as proxies for hydraulic parameters will serve as valuable data sources for 

hydrological models to calculate variable irrigation requirements within agricultural fields. The 

parametrization scenarios in the calibration and validation stage of model development should 

be kept simple in view of the information they generate. We have shown that it is sufficient to 

estimate limited amount of key parameters for which the temporal variant information of the 

sensitivity is crucial. Furthermore, that optimization strategies involving multiple parameters 

do not perform better in view of the optimization of irrigation management. We have shown 

that a combined modeling approach could increase water use efficiency (12-22.5%) and yield 

(5-7%) by changing the irrigation scheduling. However, these efficiencies can only be achieved 

if rainfall is known a priori-while the soil water status could indicate when to irrigate, it would 

be impossible to know how much to irrigate if the rainfall cannot be accurately predicted. 

Therefore, the results of the study call for taking into account accurate weather forecast and 

water content data in irrigation management and precision agriculture. The combination of 

accurate and spatially distributed field data with appropriate numerical models will make it 

possible to accurately determine the field-scale irrigation requirements, taking into account 
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variations in boundary conditions across the field and the spatial variations of model parameters 

(see Chapters 3 and 5). The information gained in this study with respect to dominant 

parameters and the effect of boundary conditions at the plot scale (1D) will be scaled up in a 

2D approach to the field scale using detailed spatial information on groundwater depth and 

hydraulic conductivity Ks.  
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 Predicting saturated hydraulic conductivity in a sandy 

grassland using proximally sensed apparent electrical 

conductivity  

 

 

 

 

 

 

 

 

This chapter is based on the following journal article: 

 

Rezaei, M., Saey, T., Seuntjens, P., Joris, I., Wesley Boënne., Van Meirvenne, M, Cornelis, W. 

2016. Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed 

apparent electrical conductivity. Journal of Applied Geophysics. 126: 35-41.
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3.1 Introduction 

Agricultural management requires detailed data at relevant management scales such as the field 

or the landscape scale. Digital soil property mapping methods and characterization of hydraulic 

properties at the field scale using proxy data (Brosten et al., 2011; Chaplot et al., 2011; Doolittle 

and Brevik, 2014; Sudduth et al., 2013) are increasingly being used. Such data in combination 

with hydraulic properties measured at multiple locations in the field are vital to predict and 

understand flow, solute and energy fluxes in soil (Vereecken et al., 2007) and needed in various 

applications. An example is precision irrigation, where accurate information about the spatial 

variation of field-scale soil hydraulic properties is required (Carroll and Oliver, 2005; Slater, 

2007). 

Generally, accurate information about the spatial variation of field-scale soil hydraulic 

properties is required in water management, flow and transport processes (Farzamian et al., 

2015), hydrology and hydrogeology (Niwas and Celik, 2012) and irrigation management 

(Gumiere et al., 2014). Direct measurements of these properties (in the field or laboratory) are 

not only time-consuming, labor-intensive and expensive, but they also perturb the system. 

Moreover, a high sampling density (in size and space) is generally required (Jury and Horton, 

2004) to obtain an acceptable spatial resolution. 

Linking hydraulic properties to apparent electrical conductivity (ECa) measured with 

electromagnetic induction (EMI) may be a way forward to estimate the spatial distribution of 

these hydraulic parameters across a field. Such ECa measurements are extensive, less 

expensive, non-destructive, efficient, reliable and timely (Corwin and Lesch, 2005; Niu et al., 

2015; Segal et al., 2008; Sudduth et al., 2005). In addition, in precision agriculture, EMI 

measured ECa (Hedley et al., 2013) allows to complement the limited density of direct soil 

samples (Saey et al., 2009b) and assess soil hydraulic properties at higher resolution. Soil ECa 

is a function of a variety of soil properties including soil-water content, porosity, texture and 

structure (bulk soil properties), salinity (soil solution properties), cation exchange capacity 

(CEC), organic matter content, particle shape, size and distribution (solid particle properties), 

and soil layer thickness and topology (Corwin and Lesch, 2005; Friedman, 2005; Saey et al., 

2008; Sudduth et al., 2013). Parameters affecting ECa are similar to those that affect soil 

physical and hydraulic properties, especially hydraulic conductivity, K (Doussan and Ruy, 

2009; Niu et al., 2015; Pulido Moncada et al., 2014; Sudduth et al., 2005). Therefore, ECa can 

be considered as an indirect indicator of hydraulic properties.  
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Over the past two decades, a large volume of research has focused on predicting hydraulic 

properties from basic soil properties to map Ks distribution (Slater, 2007). On the other hand, 

empirical and semi-empirical relationships were established between ECa and soil properties. 

Researchers have applied Archie’s semi-empirical law (Archie, 1942) to link K and ECa 

(Huntley, 1986). Both positive and negative significant linear regressions between log ECa and 

log K were reported (Brosten et al., 2011; Chaplot et al., 2011; Doussan and Ruy, 2009; Morin 

et al., 2010; Mualem and Friedman, 1991; Purvance and Andricevic, 2000a).  

It was shown before that field water content predictions using a hydrological model are very 

sensitive to saturated hydraulic conductivity, Ks (Gumiere et al., 2014; Verbist et al., 2012). It 

is also addressed in second chapter of this thesis. In our study site, we concluded that the use 

of detailed digital elevation models, geophysical measurement techniques such as 

electromagnetic induction as proxies for hydraulic parameters will serve as valuable data 

sources for hydrological models to calculate variable irrigation requirements within 

agricultural fields (see previous chapter). Therefore, a better characterization of the field scale 

heterogeneity of Ks by using ECa data is very beneficial for precision management purposes. 

The present study investigates empirical relationships of field ECa data and Ks to predict Ks 

more effectively and precisely at the field scale. In a first step, we performed a statistical 

analysis of the soil properties (Ks, ECa, bulk density, texture and organic carbon). We 

established statistical relationships between co-located Ks, selected soil physical properties and 

EMI-ECa. These relationships were then evaluated using an independent dataset of Ks. Finally, 

we estimated the Ks at the locations where the ECa was measured and produced a detailed map 

of Ks which may be used for irrigation management at the field scale.  

3.2 Materials and Methods 

3.2.1 Study site description 

The study site was located in a sandy agricultural area at the border between Belgium and The 

Netherlands (central coordinates 51°19′05″ N, 05°10′40″ E). The field site is around 10.5 ha 

and is partly artificially drained by parallel pipes connected to a ditch in the North-West border 

of the field (Figure 3-1). The field was planted with grass during the study period 2011-2013. 

Further information about the study site are given in Chapter 2.  
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3.2.2 ECa measurements 

ECa was measured at 5 m intervals between the measurement lines with a DUALEM-21S 

sensor (DUALEM, Milton, ON, Canada) on 25 March 2011. In this work, the perpendicular 

coil configuration data were used, corresponding to depths of exploration near 50 cm (ECap,50) 

and 100 cm (ECap,100). Details about the applied methodology for measuring ECa with the 

DUALEM-21S sensor can be found in Saey et al. (2009a, 2011b, 2012). In brief, the 

DUALEM-21S EMI sensor consists of one transmitter and four receiver coils at 1, 1.1, 2 and 

2.1 m spacing from the transmitter coil. The receiver coils at 1 and 2 m from the transmitter 

are in horizontal coplanar mode and those at 1.1 and 2.1 m are in the perpendicular mode. In 

this study, all ECa measurements were converted to a reference temperature of 25° C (Slavich 

and Petterson, 1990).  

3.2.3 Sampling strategy and soil sample analysis 

Sampling locations for soil investigation were selected by combining design-based, model-

based and traditional sampling strategy to account for the maximum variation in soil properties 

that was suggested by a geophysical survey with the DUALEM-21S sensor (0-100 cm). We 

decided to use ECap,100 to account for maximum variation in both lateral and vertical directions.  

For the design-based sampling strategy, the software package ESAP-RSSD (Lesch, 2006) was 

applied for a full sampling design with 20 locations where soil cores were taken based on ECa 

survey data. This tool uses a response-surface sampling design (RSSD), which is proven to be 

particularly effective to account for the distribution of ECa survey data (Corwin and Lesch, 

2005). In this study 20 locations were randomly proposed. Hence, we needed to sample at a 

few (20) sites across the area in order to develop a prediction model (i.e., an equation which 

can be used to predict the value(s) of the soil variable(s) from the conductivity survey 

information). ESAP optimizes our sampling design by selecting sample sites, therefore, two 

factors (the design factor and the optimum criteria) should be manipulated to get the optimized 

result. After minimization, the design factor was adjusted to 1.11 and the optimum criteria to 

1.29 employing ESAP. A detailed discussion of the application of a design-based sampling 

strategy using ECa data can be found in Lesch et al. (1995) and Lesch et al. (2000). For the 

model-based sampling design, the FuzzMe software applying the Fuzzy k-means algorithm 

(Minasny and McBratney, 2002) was used to classify the ECa field data set. During 

classification, the fuzziness performance index (FPI), fuzziness exponent (phi), modified 

partition entropy (MPE), objective function value and number of performance iterations were 
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minimized to obtain a value of 0.363, 1.9, 0.365, 82.43 and 46 respectively. The ECa data 

revealed a zonation with three ECa classes crossing the whole field (class A: 0.02 < ECa < 

2.949 mS m-1, class B: 2.95 < ECa < 4.629 mS m-1, class C: 4.63 < ECa < 11.96 mS m-1). The 

suggested 20 locations from the ESAP model covered these classes well, with 7 locations in 

class A, 6 in class B and 7 in class C. Additionally, eight soil samples were taken along a 

transect during the growing season in 2011 for validation purposes. Figure 3-1 shows the map 

of 0-100 cm soil ECa, the 20 soil sampling locations from the ESAP software and eight 

additional sites on the validation transect. 

To determine Ks, and bulk density, ρb, two undisturbed soil samples consisting of cores of 5 

cm diameter by 5 cm height were taken (100 cm3 Kopecky rings, Eijkelkamp Agrisearch 

Equipment, Giesbeek, The Netherlands) at a depth of 20 cm within the Ap horizon at the 28 

locations shown on Figure 3-1 within the field during the growing season of 2011 and 2013. 

The undisturbed samples (primary and replicate soil core samples) were collected at the same 

depth but at a slightly different location (within maximum 20 cm radius). Saturated hydraulic 

conductivity was determined using a laboratory permeameter (M1-0902e, Eijkelkamp 

Agrisearch Equipment, Giesbeek, The Netherlands) maintaining

 

Figure 3-1. Location of the study field and the classified map of 0-100 cm soil ECa with location 
of the 20 soil sampling locations (black bullets) from the ESAP software (calibration) and the eight 
additional points along the transect (validation). The 20 locations are well distributed over the 
FuzzyMe-derived ECa classes, with 7 locations belonging to class A (0.02 < ECa 2.949 mS m-1), 6 
locations to class B (2.95 < ECa 4.629 mS m-1), and 7 locations to class C (4.63 < ECa 11.96 mS 
m-1) with indication of elevation contour intervals (labels in m a.s.l.). 
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a constant head. Therefore, each core was brought to saturation during 24 h. The weight of 

each saturated core was measured to support ρb determination before each Ks analysis. 

Subsequently, ρb was obtained by drying volumetric soil samples (100 cm3 Kopecky rings) at 

105 °C for 24 h (Grossman and Reinsch, 2002). For final analysis, an arithmetic average of 

two paired samples of Ks and ρb, were calculated.  

Additionally, at each location and at the same depth one disturbed sample was collected to 

measure both soil texture (Gee and Bauder, 1986) and soil organic carbon (Walkley and Black, 

1934), followed the procedures explained in Chapter 2.  

3.2.4 Statistical and geostatistical analysis 

Statistical analyses on Ks, ECa (0-50 and 0-100 cm) and selected physical properties were 

performed for all soil samples. The mean (m), minimum and maximum (min and max), 

skewness and standard deviation (SD) of soil properties and ECa surveys were calculated 

(Table 3-1). The Pearson correlation coefficient was computed between co-located ECa 

measurements, Ks and selected soil properties. All statistical analyses were performed using 

IBM SPSS Version 20. The laboratory Ks showed a lognormal distribution (p<0.05) according 

to a Shapiro-Wilk normality distribution test. The geometric mean and standard deviation of 

Ks were calculated based on the Parkin et al. (1988) recommendation for lognormal distributed 

populations with a sample size between 4 and 40 (Finney, 1941). The distribution of ECa was 

neither normal nor lognormal using a Kolmogorov-Smirnov normality distribution test. 

Therefore, Ks was log-transformed to obtain a normal distribution and the original values of 

ECap,50 and ECap,100 were used.  

The field ECap,50 data were interpolated using ordinary point kriging (OK) to a 0.5 by 0.5 m 

grid (Saey et al., 2012). The nugget variance (C0), sill (C0 + C1), and effective range (a) were 

0.31, 3.63 and 281.9 m, respectively, for a spherical variogram model (see the semivariogram 

in Appendix – Chapter 3). A maximum of 64 neighbors was used within a circular search area 

with a radius of 20 m. As mentioned previously, Ks was measured at 20 calibration and 8 

validation locations. Subsequently, ECa was extracted at these 28 locations from the 

interpolated 0.5 by 0.5 m grid (OK map) from the center of the corresponding grid cell. 

Afterwards, a predictive simple linear regression approach between extracted ECa (0-50 cm) 

and co-located ln Ks values (measured Ks) of 20 locations was applied to explain the spatial 

variation in Ks. The developed relation was applied to the interpolated kriged ECa map. We 

chose to only employ the ECa within the top 0-0.5 m soil volume to establish the relationship 
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with Ks because we assume the hydraulic conductivity of the topsoil layer (20 cm) is mainly 

related to ECa of the topsoil layers. Moreover, because both ECap,50 and ECap,100 are rather 

analogue (correlation r = 0.94), there is no added value of including ECap,100 within the 

regression. Consequently, a detailed Ks map (0.5 by 0.5 m grid) was produced. The predicted 

Ks values of co-located 8 validation points along the transect (Figure 3-1) were extracted from 

the modelled Ks map (8 extracted Ks values are co-located with 8 measured validation points). 

The relation was validated by comparing measured and predicted Ks values of eight locations.  

The simple interpolation was performed on measured data for comparison purposes and to 

show the accuracy of the produced maps. For the interpolation of the 28 Ks data (20 for 

calibration and 8 for validation), the inverse distance weighting (IDW) was performed (Chaplot 

et al., 2011; Corwin and Lesch, 2005) with 12 neighbors to a 0.5 by 0.5 m grid using GS+5.1 

version of Gamma Design Software (2009). The IDW interpolation method is more accurate 

than kriging when dealing with low density sample sites (Corwin and Lesch, 2003) such as our 

case study. The cross validations were used to optimize the estimation condition of Ks 

interpolation (e.g. optimizing parameter such as neighbors, radius, weighting power, 

smoothing factor etc.). To evaluate the uncertainty of the map, the validation data (Ks values), 

as 8 independent observations, were taken at the center of the grid cells of the specific locations 

of produced map, similar to the procedure mentioned above. 

The accuracy and reliability of Ks-ECa relation and the maps were evaluated using the mean 

estimation error (MEE), root-mean-square errors (RMSE), the coefficient of determination (r2) 

and the Nash–Sutcliffe coefficient of model efficiency (Ce). They are calculated as follows: 

Z�9 � ∑ �\]�^]�_]̀ �     (3-1) 

�Z�9 � Y∑ �\]�^]�_]̀ �     (3-2) 

�' � � ∑ �\]�\W��^]�^̅�]̀ab
Y∑ �^]�^̅�_∑ �\]�\W�_]̀ab]̀ab 	�'     (3-3) 

							R � 1 − ∑ �TU − �U�'�UV%∑ �TU − TW�'�UV%  (3-4) 

where O and S are observed and simulated values at time/place i, respectively. The optimal 

value of the statistics is as close as possible to zero for MEE and RMSE and to one for r2 and 

Ce. 
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3.3 Results and Discussion 

3.3.1 Spatial variation of selected soil physical properties, Ks and soil ECa 

The summary statistics of selected soil physical properties, Ks and ECa of the field site are 

given in Table 3-1. The mean values of ECa measured with DUALEM-21S increase with 

increasing depth of exploration (DOE). The higher electrical conductivity is due to the larger 

sampled soil volume (Saey et al. 2009a, 2011a) with the subsoil showing higher bulk density 

by subsoil compaction, and presumably a larger clay and a larger organic carbon content in the 

soil volume. Increasing the DOE increases the ECa standard deviation (SD) due to the higher 

differences in absolute values and due to larger soil-water content and clay content variations 

(Table 3-1). At greater depths (DOE = 0-100 cm), ECa could be affected by fluctuations in 

groundwater level. ECa gradually increased down-slope, reaching the highest level in the 

middle of the field (Figure 3-1). The ECa values showed large spatial variation with a 

coefficient of variation CV of 56 and 54% for 0-50 and 0-100 cm DOE. These CV values are 

of similar order as those of Ks, clay and OC content (Table 3-1). 

The hydraulic parameter Ks exhibited a lognormal distribution (p<0.05). This result agrees well 

with Botors et al. (2009) and Verbist et al. (2013a). Ks values ranged from 0.6 to 9.61 cm h-1, 

with a geometric mean 3.70 cm h-1. The Ks shows a standard deviation of 3.19 cm2/h2 

corresponding to a high coefficient of variation CV of 86%. Similar CV values for Ks at the 

field scale were reported previously by Mallants et al. (1996, 1997) on a sandy loam soil, Iqbal 

et al. (2005) on alluvial soils, and Jury (1985) on different textural soils. These results confirm 

the large spatial variability of Ks at the field scale. This could be attributed to the small sampel 

volume, thus measurement-scale dependent (see Chapter 4). 

Table 3-1. Summary statistics of selected topsoil properties across the field site. ρb is soil bulk 
density, OC is organic carbon content, Sand, Silt, Clay are sand, silt and clay content, respectively. 
Ks is laboratory saturated hydraulic conductivity. ECa is apparent electrical conductivity (at 25 
°C), with subscripts p,50 and p,100 denoting ECa of DUALEM-21S 0-50 cm and 0-100 cm 
perpendicular, respectively. Number between parentheses represents the geometric mean and its 
standard deviation of Ks. 

Variable No. of samples Min Max Mean SD CV (%) Skewness 
ρb (g cm-3) 28 1.43 1.69 1.61 0.06 3.72 -1.13 
OC (%) 28 1.06 4.46 2.20 0.59 26.86 1.85 
Sand (%) 28 88.1 93.5 90.99 1.31 1.43 -0.07 
Silt (%) 28 4.30 9.30 7.27 1.14 15.68 -0.85 
Clay (%) 28 1.10 3.60 1.72 0.54 31.39 1.89 
Ks (cm h-1) 28 0.61 9.61 3.23 (3.70) 2.30 (3.19) 71.21 (86.21) 1.51 
ECap,50 (mS m-1) 98216 0.06 9.99 2.84 1.59 55.98 0.94 
ECap,100 (mS m-1) 98442 0.02 10.91 3.44 1.85 53.77 0.73 
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Soil bulk density, ρb, varied between 1.43 and 1.69 g cm-3 with an average of 1.61 g cm-3. The 

average sand, silt and clay content were 91.0±1.3%, 7.3±1.1% and 1.7±0.5%, respectively. Soil 

organic carbon, OC, ranged between 1.06 and 4.46%. The largest CVs were observed for soil 

clay content (31%) and OC (27%), whereas those for ρb, sand and silt content are rather low 

(<16%) (Table 3-1).  

3.3.2 Relation between selected soil physical properties, Ks and soil ECa  

Pearson correlation coefficients between selected physical properties, Ks and ECa and are 

shown in Table 3-2. Obviously, the most significant correlation was observed between ECa 

values at different DOEs (r = 0.94). In general, the highest significant negative correlations 

with ECa are obtained between ln Ks and ECa from both soil volumes (r = -0.83 in both cases). 

A negative significant relation between log Ks and log ECa was also reported by Purvance and 

Andricevic (2000a) with 56 samples (r = -0.63) and by Brosten et al. (2011) with 10 observation 

points (r = -0.62). Morin et al. (2010) reported a negative correlation between log Ks and a 

normalized ECa for 15 observation points (r = -0.82). The ln Ks is negatively correlated with 

silt (r = -0.46, P <0.05) and clay (r = -0.38, P <0.05), while a positive significant correlation 

between ln Ks and sand (r = 0.55, P <0.01) was found. Similar relations were reported by 

Sobieraj et al. (2001). On the contrary, ECa was negatively and positively correlated with sand 

(r = -0.54, P <0.05; for ECap,50 and r = -0.49, P <0.05; for ECap,100 and) and silt (r = 0.55, P 

<0.05; for ECap,50 and r = 0.50, P <0.05; for ECap,100) respectively. An increasing Ks with 

increasing sand content and decreasing clay content (Chapuis, 2004) leads to a lower ECa 

(Lesmes and Friedman, 2005; Morin et al., 2010). Moreover, the negative correlation between 

Ks and ECa can be explained by the fact that highly permeable soils tend to drain and dry out 

relatively fast. Therefore, these soils have lower ECa as it relates to soil particle size 

distribution and soil-water content (Lesmes and Friedman, 2005). On the other hand, electrical 

current is affected by a low conductivity of soil solution in the field and existence and 

accumulation of humus fibers and clay as was the case for the Podzol in this study. Therefore, 

both factors lead to a more strongly negative correlation between Ks and ECa. No significant 

correlation could be detected between ρb, OC, and the ECa or Ks values measured from 

different soil volumes (Table 3-2). 
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**and * marked correlation significant at P ≤0.01 and P ≤0.05 level respectively. 

3.3.3 Estimation of Ks from ECa measurements  

A regression analysis between the field ECa data derived for the top 50 cm (ECap,50 collected 

in 2011) and the 20 ln Ks values taken at similar depth within Ap horizon, i.e. 20 cm (sampled 

in 2013), resulted in the following equation: 

ln "� � −0.398	9Rh/.i: + 2.13 �' � 0.694, �9 � 0.439 (3-5) 

where Ks and SE (standard error of estimation), in cm h-1 and ECa in mS m-1.  

The relatively low SE and large r2 provides a good estimate of Ks from ECa. The cross plot of 

co-located ln Ks for the 20 observation points versus ECa with the 95% confidence limits on 

the prediction is presented in Figure 3-2. The relationship (Figure 3-2) shows nonuniqueness 

for the lowest ECa and highest Ks values. This can be explained by the fact that only a small 

ECa range is present. Moreover, the low ECa values approach the noise level of the 

measurements. The lowest ECa values are unable to capture the variation in high Ks values. In 

addition, the relationship predicts the Ks with some limits. Local deviations or outliers are either 

caused by phenomena which could not be gathered by the ECa variations, or by high spatial 

variation and uncertainties of the Ks measurements (especially in the laboratory which may not 

represent the field condition).  

 

 

 

Table 3-2. Pearson correlation coefficient between the selected soil properties. ρb is soil bulk 
density, OC is organic carbon content, Sand, Silt, Clay are sand, silt and clay content, respectively, 
Ks is laboratory saturated hydraulic conductivity, ECa is apparent electrical conductivity (at 25 
°C), with subscripts p,50 and p,100 denoting ECa of DUALEM-21S 0-50 cm and 0-100 cm 
perpendicular, respectively. 

 ρb OC  Sand  Silt  Clay  lnKs ECap,50 ECap,100 

ρb 1        

OC  0.17 1       

Sand  -0.3 -0.41* 1      

Silt  0.26 0.46* -0.91** 1     

Clay  0.02 0.04 -0.52** 0.12 1    

lnKs -0.35 -0.03 0.55** -0.46* -0.38* 1   
ECap,5

 
0.17 0.27 -0.54* 0.55* 0.16 -0.83** 1  

ECap,1

 
0.18 0.12 -0.49* 0.50 0.15 -0.83** 0.94** 1 
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A simple linear site-specific relation between ln Ks and ECa was also reported by Huntley 

(1986), Purvance and Andricevic (2000b) and Chaplot et al. (2011). The relation between Ks 

and ECa can be influenced by grain size distribution, pore fluid chemistry, mineralogy 

(Huntley, 1986) similar to our study (Table 3-2), specific surface area (Slater, 2007), organic 

matter content, porosity and soil compaction. In fact, there are multiple potential relations 

between Ks and several soil geophysical properties, which makes an accurate prediction of a 

single parameter i.e. Ks, from geophysical attributes not straightforward (Corwin and Lesch, 

2003). On the other hand, using multiple regression to map a parameter demands more 

information about independent variables and detailed observations which are not only labor 

intensive and more expensive but also may increase the uncertainty of predictions due to their 

interactions and correlations. Therefore, using a linear geophysical relation is an effective 

approach to characterize Ks at the field scale.   

 

 

 

 

Figure 3-2. The scatter plot of co-located ln Ks for the 20 observation points versus ECap,50. The 
solid line shows the linear regression. The dashed lines show the 95% confidence limits on the 
prediction. Ks is laboratory saturated hydraulic conductivity, ECap,50 is apparent electrical 
conductivity (at 25 °C) measured with a DUALEM-2S EMI sensor over 0-50 cm. 
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Linking the developed relation between Ks and ECa with the ECa map (Figure 3-3a) resulted 

in a high resolution Ks map for the whole field (Figure 3-3b). This Ks map illustrates three 

distinct zones corresponding to the FuzzMe ECa classes (Figure 3-1). The Ks values measured 

at eight additional locations versus those predicted from Eq. 3-5 (obtained from the map) are 

presented in Figure 3-4. The validation indices prove that the modeled Ks map is fairly accurate 

in predicting the Ks variability across the study site. It should be noted that the accuracy of the 

estimated Ks values is only valid within the Ks data range used for calibration and validation 

(broad confidence at 95% confidence interval at the boundaries, Figure 3-4). Moreover, the 

validation transect has been located within the northern part of the study site, therefore the 

lowest ECa values (with associated high Ks values) were not covered. We acknowledge that 

the validation dataset is rather small to draw any meaningful conclusion outside this field. 

However, the validation transect shows a fairly good spread in ECa values, so we assume the 

validation observations are representative for estimating the average accuracy of modeled Ks 

within the field, making it valid within a Ks range from 0.5 to 5.5 cm h-1 of Ks.  

Figure 3-3. Kriged ECap,50 map and estimated Ks from the site-specific empirical (geophysical) 
relation (Eq. 3-5). Ks is laboratory saturated hydraulic conductivity, ECap,50 is apparent electrical 
conductivity (at 25 °C) measured with a DUALEM-2S EMI sensor over 0-50 cm. 
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The statistical performance indicators of the relation and its map showed a high r2 between 

predicted and measured Ks (0.67), coefficient of model efficiency (Ce = 0.64), and a relatively 

low RMSE (0.74 cm h-1). This indicates a good accuracy and prediction efficiency of the 

developed regression model compared to the other reports that addressed in section 3.3.2 (e.g. 

Brosten et al., 2011; Chaplot et al., 2011; Huntley, 1986; Morin et al., 2010; Purvance and 

Andricevic, 2000a). Ritter and Munoz-Carpena (2013) considered if the coefficient of model 

efficiency is <0.65, the model performance is unsatisfactory when using Ce as the only 

indicator. In addition, the model error is not linearly related with the indicator value, but the 

value is affected by other factors such as outliers and model bias (Ritter and Munoz-Carpena, 

2013). Therefore, a combination of performance indicators is suggested to evaluated the model 

performance and prediction efficiency. The model slightly over (at high values) and under-

estimated (at low values) Ks with a bias of 0.46 cm h-1 indicated by the MEE.  

Figure 3-5 shows the Ks map of interpolation using the invers distance weighting (IDW). The 

large bias (2.06) and RMSE (1.06) with a low coefficient of model efficiency (0.25) and a 

moderate coefficient of determination (0.42) were identical to the value obtained by direct Ks 

interpolation. The Ks values were strongly overestimated (Figure 3-6). Obviously, results show 

the developed semi-log relation (Eq. 3-5) between ln Ks and ECa is a better estimator for the 

prediction of Ks from IDW. To compare and represent the accuracy of the predictions, relative 

RMSE was computed by dividing RMSE to the standard deviation of the observations (in this 

case 1.29 cm h-1 for eight validation points). As a rule of thumb, if the relative RMSE value is 

Figure 3-4. Scatterplot of measured vs. predicted Ks (Eq. 3-5), for eight validation points. The 
dashed lines show the 95% confidence limits on the prediction. Ks is laboratory saturated 
hydraulic conductivity.  
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close to 40%, it is considered as a fairly accurate prediction while if it gets more than 71%, this 

means the model accounted for less than 50% of variability at the validation points and the 

prediction is unsatisfactory (Hengl et al., 2004; Saey et al., 2011a). The relative RMSE of the 

regression model and interpolation of Ks predictions were 57 and 82%, respectively. These 

results confirmed that the estimation of Ks from the established regression model using the ECa 

estimator is satisfactory and certainly reasonable for hydrological modeling in the sandy soil 

of the study site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. The Ks map of interpolation using inverse distance weighting (IDW). Ks is laboratory 
saturated hydraulic conductivity. 

Figure 3-6. Scatterplot of measured vs. predicted (IDW) Ks of eight validation points. The dashed 
lines show the 95% confidence limits on the prediction. Ks is laboratory saturated hydraulic 
conductivity, IDW is inverse distance weighing. 
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3.4 Conclusion 

We found good correlations of soil saturated hydraulic conductivity, and some selected 

physical properties to the ECa data derived by DUALEM-21S sensor measuring over 0-50 cm 

and 0-100 cm. A simple linear regression approach using high spatial resolution EMI-ECa data, 

was applied to predict and map Ks over the entire field. In this part of study, the semi-log 

empirical relation was established and validated to estimate the spatial distribution of Ks using 

ECa as a proxy. A detailed map of Ks was produced with satisfactory accuracy for hydrological 

modeling. The utilization of the semi-log empirical relation to produce the detailed map of Ks 

is an efficient way to predict spatial distribution of water content or water fluxes by 

hydrological models and to perform crop yield modeling for precision irrigation management 

purposes. 
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2016. The relevance of in-situ and laboratory characterization of sandy soil hydraulic properties 

for soil water simulations. Journal of Hydrology. 534: 251–265.
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4.1 Introduction 

Field water flow processes can be precisely delineated by using in situ and/or laboratory 

determined soil hydraulic conductivity functions, K(h) and soil water retention curve, θ(h). 

Proper sets of soil hydraulic properties are indispensable as input for crop and hydrological 

models which especially use a numerical solution of the Richards’ equation (Gandolfi et al., 

2006; Radcliffe and Šimůnek, 2010; Wollschlager et al., 2009) to predict water dynamics in 

field and laboratory situations. A typical example is Hydrus (Šimůnek et al., 2013a). Therefore, 

comparisons of individual and combined laboratory and in-situ derived hydraulic parameters, 

and investigations of their spatial variability allow to find appropriate hydraulic parameter sets 

and enhance our knowledge about the dynamic processes of water flow in the vadose zone. 

They not only provide information about the uncertainty but also would be helpful in reducing 

it in simulating the physical processes with various hydrological and crop-based models for 

precision irrigation management, increasing crop yield and investigating solute and pollutant 

transport.  

Several measurement techniques such as tension disc infiltrometer or constant/falling-head 

permeameter and sandbox-pressure chambers with soil cores have been developed to determine 

hydraulic properties in the field and the lab (Dane and Topp, 2002). The most popular methods 

and benchmarks for evaluating other methods are those that use undisturbed soil cores. The 

measurements are then carried out under more controlled conditions, and are thus reliable 

(Fodor et al., 2011) even though they do not necessarily represent field conditions. In that soil 

core one dimensional flow is imposed and as a result of sampling, preferential flow may be 

reduced (Jačka et al., 2014) and compaction may have occurred (Reynolds, 2008). The 

constant/falling head method to determine saturated hydraulic conductivity Ks is inexpensive, 

simple and convenient (Reynolds et al., 2000), whereas sand boxes-pressure plate methods for 

soil water retention determination are time consuming and labor intensive (Cornelis et al., 

2001). The advantages of laboratory methods for Ks is that it is calculated using Darcy’s law 

in which all the flow conditions are defined exactly, i.e., hydraulic head, one dimensional flow 

and temperature, and the effects of the entrapped air are minimized (Jačka et al., 2014).  

On the other hand, the tension disc infiltrometer is a standard method to measure soil hydraulic 

conductivity for quasi-steady state and transient flow in the field (Baetens et al., 2009; Latorre 

et al., 2015; Logsdon and Jaynes, 1993; Reynolds and Elrick, 1991; Verbist et al., 2013b). It is 

less time consuming and inexpensive, can be easily operated with minimal disturbance of soil 
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and consistently provides reliable hydraulic properties values (Hu et al., 2009) especially near 

saturation (Perroux and White, 1988) where soil macrospores are active (Ankeny et al., 1991). 

Measurements using the tension disc infiltrometer represent the soil matrix (i.e., part of 

macropores are excluded) and air may be entrapped during the rapid saturation process, thus 

preventing full saturation of the soil to be obtained. Consequently, hydraulic parameters like 

water content and hydraulic conductivity at saturation or residual water content, might be 

underestimated than when using laboratory methods (Fodor et al., 2011). Also under ponding 

conditions, i.e., at a small positive pressure head and thus including macropores in water 

transmission, higher Ks values are estimated (Kutílek and Nielsen, 1994), though they are still 

lower than laboratory values (Reynolds et al., 2000).  

Comparison of laboratory and in situ procedures showed different trends for various soil types 

and field conditions (Ankeny et al., 1991; Evett et al., 1999; Fodor et al., 2011; Hussen and 

Warrick, 1993; Ramos et al., 2006; Reynolds et al., 2000; Ventrella et al., 2005; Warrick, 

1992). Reynolds et al. (2000) encountered very high differences between Ks derived from 

tension infiltrometer and that from the classical laboratory soil core method, and found very 

little correlation among the methods used. Overall, the laboratory method mostly provides 

higher Ks values than field methods (Dušek et al., 2009; Fodor et al., 2011; Jačka et al., 2014; 

Reynolds et al., 2000), although Ventrella et al. (2005) reported an opposite trend.  

Ramos et al. (2006) and Schwartz and Evett (2002) found that the water retention curves 

obtained by numerical inversion of tension disc experiments closely matched the laboratory 

measured curves. In contrast, relatively poor agreements were yielded between estimated  

water retention curves using tension disc numerical inversion and laboratory retention data 

(Šimůnek et al., 1999; Ventrella et al., 2005). Recently, much research has been dedicated to 

inversion of tension disc data to soil hydraulic properties, comparing them or not with 

laboratory derived data (Latorre et al., 2015; Lazarovitch et al., 2007; Rashid et al., 2015; 

Ventrella et al., 2005; Verbist et al., 2013b), but most of them have not assessed the relevance 

of different approaches for their applications, e.g., evaluation of hydrological model 

performance and soil-water dynamics as regards to hydraulic parameter sets derived from 

different measurement methods. 

Therefore, in this chapter we focus on analyzing tension infiltrometer data along the vertical 

direction within two soil profiles in the field and traditional laboratory-derived data to 

determine soil hydraulic parameters of a sandy soil. In this study, three calculation procedures 
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were performed to derive hydraulic parameter sets, i.e., (i) a “quasi-steady state” procedure 

using Wooding’s equation, (ii) a “transient” procedure using inverse modeling with Richards’ 

equation, both for tension infiltrometer data and (iii) Darcy’s model in combination with curve 

fitting using the Mualem-van Genuchten equation for the soil core data from the laboratory. 

The objectives of this part of study were: i) to compare the results of in situ and laboratory 

measurements of soil hydraulic properties; and ii) to evaluate the relevance and the influence 

of differently calculated/estimated hydraulic properties on hydrological model performance 

with the purpose of finding a proper set of hydraulic parameters to describe water movement 

in typical Podzol profiles with sand texture in a potato field. 

4.2 Material and Methods 

4.2.1 Study site and soil profiles description  

The study site was located in a sandy agricultural area at the border between Belgium and The 

Netherlands (with central coordinates 51°18′40″ N, 05°10′04″ E), characterized by a temperate 

maritime climate with mild winters and cool summers. The farm is almost flat (less than 3% 

sloping up from NW to SE) and runoff is not considered to be important. The groundwater 

table fluctuated between 77 and 130 cm below the soil surface depending on the topography. 

Reel Sprinkler Gun irrigation (type Bauer rainstar E55, Röhren- und Pumpenwerk BAUER 

Ges.m.b.H., Austria) was used on a 230 m by 600 m field to improve potato growth in the 

sandy soil during dry periods in summer. The field was irrigated four times throughout the 

growing season (96 mm). Two locations were selected based on soil topography and 

agricultural activities, and soil-water content probes and tensiometers were installed (details in 

next section) for irrigation management purposes. At each location, a soil profile was 

excavated, analyzed and sampled to characterize soil hydraulic properties. Figure 4-1 shows 

the elevation map and layout of the field and the location of the soil profiles. 

Figure 4-2 shows the soil profile, a typical Podzol (Zcg type, moderately drained sandy soils 

with a clear B horizon, according to the Belgian soil classification) or Hortic-Ortsteinic Podzol 

(Arenic) according to WRB (FAO, 2014) consisting of a uniform dark brown layer of sandy 

soil (Ap/Ah horizon, 0 to 47 cm) with elevated organic matter content, followed by a bright 

brown to yellowish sand including stones and gravels (Bhsm horizon, 52 to 70 cm). The deeper 

horizon is light gray sandy soil (C horizon, 70 to 130 cm), including more stones and gravel 

(max 20%), but having similar hydraulic properties as the Bhsm horizon. The interface between 

Ah and Bhsm horizon is a compacted and cemented black layer of ~5 cm thickness (Bs 
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horizon). Maximum potato root density was found at about 4 to 25 cm and decreased from 25 

to 40 cm. The properties of the horizons are summarized in Table 4-1.  

 

 

 

 

 

 

 

Table 4-1. Soil properties of two soil profiles, A and B. ρb, φ and OC are bulk density, soil porosity 
and organic carbon, respectively. 

Profile 
Depth OC Sand Silt Clay ρb φ 

cm % g cm-3 cm3 cm-3 

A 

0-10 1.74 93.5 4 2.5 1.356 0.488 
20-30 1.73 93.5 4.1 2.4 1.449 0.453 
47-52 2.75 93.5 4.3 2.2 1.574 0.406 
60-70 0.23 98.2 0.3 1.6 1.677 0.367 
70-90 0.02 99 0.5 0.5 1.706 0.356 

B 

0-10 2.36 92.7 5.7 1.6 1.352 0.490 
20-30 2.36 92.3 5.9 1.8 1.424 0.463 
47-52 2.58 92.9 5.1 2.1 1.599 0.397 
60-70 0.06 97 2.2 0.9 1.729 0.348 

Figure 4-1. The elevation map and field layout with indication of the location of soil profiles A 
and B. 
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4.2.2 Field Monitoring System 

The site was equipped with a weather station (type CM10, Campbell Scientific Inc., Utah, 

USA) at the border of the field (Appendix Chapter 4, Figure A4-1 and 2). At the lower location 

A, soil-water content and water potential were recorded (from 12 Apr. until 22 Sep. 2014) using 

a water content profile probe (type EasyAG50, Sentek Technologies Ltd., Stepney, Australia, 

accuracy ±0.1%), placed vertically, that measured soil-water content at 10, 20, 30, 40 and 50 

cm depths and two tensiometers (type T4e, UMS, Munich, Germany, accuracy ±0.5 kPa), 

placed horizontally, that measured soil water potential at 10 and 50 cm depths. The weather 

station and tensiometers were connected to a CR800 data logger (Campbell Scientific Inc., 

Utah, USA) and the water content profile probe provided the soil-water content wirelessly.  

At the higher location B, only soil-water content was recorded using a Dacom soil moisture 

sensor (Dacom bv, Emmen, The Netherlands), placed vertically, that measured soil-water 

content at 10, 20, 30, 40, 50 and 60 cm depths. In addition, at each location a Diver (Mini-

Diver, Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) was installed in a 

borehole 2 meters below the soil surface to measure the groundwater fluctuations at each 

location. Also, a rain gauge was installed at each sensor location to account exact water inlet 

(rain fed and irrigation), which provided the data wirelessly. All measurements were taken on 

an hourly basis. The amount of irrigation was derived by subtracting measurements of the rain 

sensor (i.e. rainfall and irrigation) from those of rain gauges of the field’s weather station (i.e. 

only rainfall).  

Figure 4-2. A typical Podzol soil profile of the field close to the location of the sensors. 
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4.2.3 Field and lab measurements 

4.2.3.1 Field measurements  

As mentioned previously, at each sensor location (indicated by the star on the map in Figure 

4-1), a profile was dug. During the excavation the sensors were removed (i.e., water content 

profile probe, tensiometer and Diver). The field measurements were carried out using tension 

disc infiltrometer, TI, model 2825K1 (Soil moisture Equipment Corp, Santa Barbara, CA, 

USA) with a diameter of 0.20 m that was attached to the Mariotte system of a Guelph 

permeameter at harvesting time (22 to 24 September 2014). The distance of the infiltration 

experiments from the water-content profile probe was about 5-50 cm. 

Measurements were taken in two replications at the ridge (2 cm), the furrow (20 cm), the Bs 

horizon (47 cm) and Bhsm to C horizon (60 cm) for both profiles, and C horizon (80 cm) only 

for location A. For ridge and furrow locations where most structural dynamics were expected, 

any above plant material was removed carefully by shovel without altering the soil surface to 

preserve soil properties as much as possible. The soil surface was prepared as flat as possible 

by shovel and leveled without disturbing the soil structure. Additionally, a 25 cm long Time 

Domain Reflectometry (TDR) probe with three rods was inserted horizontally at a depth of 2.5 

cm directly below the tension disc to measure the water content in a minute time interval. To 

avoid soil disturbance within the flow domain, firstly the TI was installed at the soil surface, 

and secondly a small hole was hand dug for inserting the TDR probe. The hole was far enough 

from the disc to avoid soil disturbance. Then TDR insertion was performed as slow as possible 

(Figure A4-3). In case of soil disturbance, the installation was repeated. To ensure perfect 

hydraulic contact between the disc membrane and soil, a fine layer of sand (approximately 2 

mm thick) with much higher saturated hydraulic conductivity than the soil under study was 

placed and leveled as well. Reynolds (2006) found little effects of the contact layer on measured 

soil hydraulic conductivities. Then, no correction was required for the variable thickness of the 

contact sand layer at each location. Infiltration tests with four consecutive negative pressure 

heads of 12, 6, 3 and 0.1 cm were conducted. For each pressure head, flow rates were recorded 

every minute for at least 15 min or until the infiltration rate of three consecutive time intervals 

was constant (i.e., when steady state was reached). In addition, disturbed samples were 

collected before and after the infiltration experiment to determine the initial and final water 

contents of the soils. The initial water content was determined at a different location (max 10 

cm) from where the infiltration took place to avoid disturbance of the soil; however, the final 
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water content was determined directly under the disc membrane immediately after finishing 

the last pressure head (-0.1 cm) experiment and the removal of the sand layer. 

4.2.3.2 Laboratory measurements 

To avoid the effect of seasonal variability, sample collection was carried out together with the 

field infiltration experiment. In order to minimize the effect of spatial variability, all samples 

were taken under the disc and/or the least possible area (0.1 m2). Therefore, at the location of 

the infiltration experiment, three undisturbed soil samples (100 cm3 Kopecky rings, of 5 cm 

height and 5 cm diameter, Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) 

were taken to determine both the soil saturated hydraulic conductivity, Kls, and the water 

retention curve, SWRC, θ(h), and one disturbed sample to measure soil properties such as 

texture and organic matter, from the Ap to the C horizon.  

As mentioned in previous chapters, the SWRC, θ(h), was determined using the sandbox method 

(Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) up to a matric head of -100 

cm and the standard pressure plate apparatus (Soilmoisture Equipment, Santa Barbara CA, 

USA) for matric heads equal to or below -200 cm, following the procedure outlined in Cornelis 

et al. (2005). The Kls was determined using a constant head laboratory permeameter (M1-

0902e, Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) just after the first step 

of SWRC determination, i.e., after using the sandbox, in order to avoid any effect of subsequent 

measurements. The average hydraulic head was 2.25 cm. Bulk density was obtained by drying 

volumetric soil samples (100 cm3) at 105 °C. Soil porosity, φ, was calculated from the bulk 

density and the estimated mean density of soil solid particles i.e., 2.65 Mg m-3 (Rühlmann et 

al., 2006). Particle size distribution of the mineral component was obtained using the pipette 

method for clay and silt fractions, and the sieving method for sand particles (Gee and Bauder, 

1986). The organic matter content was determined by method of Walkley and Black (1934) . 

4.2.4 Assessment of hydraulic parameters 

4.2.4.1 Steady state flow - Wooding’s approach of field measurements 

For calculating three dimensional quasi-steady state infiltration rate under the disc 

infiltrometer, the nonlinear regression method of Logsdon and Jaynes (1993) was used first. 

This method is fast and it provides stable results from multi-tensions with nonlinear regression 

based on the Wooding (1968) equation, and does not give any negative values compared to 
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other methods. The Wooding equation for the unconfined condition of a circular disc can be 

written as: 

l�ℎ� � m�'"�ℎ� + 4�n	"�ℎ�   (4-1) 

where Q is the quasi-steady infiltration rate (L3T-1), K is unsaturated hydraulic conductivity 

(LT-1), h is applied head (L), r is the radius of the disc (L) and n is the macroscopic capillary 

length (L-1) (=αG
-1where αG is the slope of K(h) function in semi logarithmic form) as defined 

by Gardner (1958). In this equation water flow is controlled by hydraulic conductivity as 

influenced by gravity (first term on the right in Eq. 4-1) and soil sorptivity which represents 

the soil’s capillarity (second term on the right in Eq. 4-1). The unsaturated hydraulic can be 

calculated according to the exponential model of Gardner (1958):  

"�ℎ� � "A�	exp��rℎ�                     (4-2) 

Logsdon and Jaynes (1993) substituted Gardner’s equation (2) in the derivation of Wooding’s 

equation (1):  

l�ℎ�m�' � "A�	exp��rℎ� + K4"A�	exp��r	ℎ�Mm�r�    (4-3) 

which contains two unknowns Kfs and αG. With infiltration data for two or more successive 

pressure heads, the unknown parameters can be calculated using a nonlinear optimization 

technique by minimizing the sum of square error (SSE), i.e., the squared differences between 

measured and predicted values of quasi-steady state water fluxes (q=Q/ πr2):  

��9 �s�t�0�u�v − t/�vU	wv�'   (4-4) 

The hydraulic conductivities and αG derived using this approach were compared to the inverse 

estimation and laboratory approaches (methods 2 and 3, see next paragraphs).  

4.2.4.2 Transient flow- Inverse solution approach of field measurements 

The inverse modeling approach that indirectly estimates the hydraulic properties from transient 

tension infiltrometer data as described by Šimůnek and van Genuchten (1996) was used. The 

unknown hydraulic parameters were estimated from cumulative infiltration data with a quasi-

three dimensional numerical model in non-swelling, homogeneous, isotropic sandy soil by 

solving a modified Richards’ equation for axisymmetric Darcian flow (Warrick, 1992):  
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(�() � ((* $"��� +(ℎ���(* + 1,& + 1� ((� +�"��� (ℎ���(� ,   (4-5) 

where θ is the volumetric water content (L3 L-3), t is time (T), r is the radial and z is vertical 

coordinate taken positive downward (L), K is the hydraulic conductivity (L T-1) and h is the 

pressure head (L). This equation can be solved with the following initial and boundary 

conditions (Šimůnek et al., 2000; Warrick, 1992): 

���, *, )� � �U�*�	x�	ℎ��, *, )� � ℎU�*�,						) � 0   (4-6) 

ℎ��, *, )� � ℎ:�)�		, 0 < � < �:	,			* � 0    (4-7) 

yz��,{,w�y{ � −1	, � > �:,				* � 0    (4-8) 

ℎ��, *, )� � ℎU�*�,						�' + *' � ∞    (4-9) 

where h0(t) is the inlet pressure head (or supply pressure head) at the soil surface, hi and θi are 

initial pressure head and the initial water content, respectively. To solve the above equations, 

the finite element code Hydrus-2D/3D (Šimůnek et al., 2008) was applied using the van 

Genuchten (1980) and Mualem (1976) parametric models for soil water retention, θ(h), and the 

hydraulic conductivity function, K(h), respectively (Eqs. 2-1 – 2-4).  

Cumulative infiltration rates measured with a tension disc infiltrometer do not provide enough 

information to estimate more than two MVG soil hydraulic parameters (Šimůnek and van 

Genuchten, 1996). To obtain a unique solution and at least three unknown parameters (i.e., α, 

n, and Kfs), it is advised to combine multiple-tension cumulative infiltration data with measured 

values of the initial and final water contents (Šimůnek and van Genuchten, 1997).  

The inverse modeling approach was based on minimizing the objective function which 

expresses the discrepancies between the simulated and observed values, using the Levenberg-

Marquardt algorithm (Levenberg, 1944; Marquardt, 1963). The objective function (Ф) can be 

written as: 

Φ��, @�� �s�Us�U?
�H
UV%

�
?V%

�@?∗�)U� − @?�)U, ���'   (4-10) 

where pj
*(ti) represents specific measurement at time ti for jth measurement set, pj (ti, β) is the 

model simulation for the vector of optimized parameters β, (i.e., α, n, and Ks), M is the number 

of different sets of measurements, i.e., cumulative infiltration, pressure head or additional 

information, Ni represents the number of measurement in a particular measurement set, and vi 

and wij are weights associated with a particular measurement set j or measurement i within set 
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j, respectively. The weighting coefficients vj, which used to minimize differences in weighting 

between different data types because of different absolute values and numbers of data involved, 

are given as: 

vU � 1�U�?'   (4-11) 

As a result, the objective function is the average weighted squared deviation normalized by the 

measurement variances σj
2. 

To optimize the objective functions, two scenarios were performed: i) using final soil-water 

content and cumulative infiltration data with unit weighting (wij=1, assuming that variances of 

the errors inside a particular measurement set are all the same and the observation errors of the 

measurements are unknown), and ii) using soil-water content measured by TDR in one minute 

intervals and cumulative infiltration data with unit weighting. The initial condition was 

adjusted by initial measured water content of each experiment. Initial values of θs and n, were 

taken from neural network prediction based on Rosetta software (Schaap et al., 2001) at each 

measurement location, while Kfs and α were taken from Wooding’s approach, assuming the 

Gardner’s and van Genuchten’s α equivalency at near saturation condition (Rucker et al., 

2005). 

4.2.4.3 Classical approach of lab measurements 

Three soil hydraulic parameters (θs, α and n) were determined according to the van Genuchten 

(1980) and Mualem (1976) conductivity model (MVG model). Their initial parameter values 

were taken from neural network prediction based on Rosetta software at each measurement 

location. The parameters of the water retention equation were fitted to the observed data set 

using RETC, version 6.02 (van Genuchten et al., 1991). The MVG model (Mualem, 1976; van 

Genuchten, 1980) is given in Chapter 2 (Eqs. 2-1 – 2-4). Ks was determined directly by applying 

Darcy’s law based on measured discharges and preset hydraulic head gradients. 

4.2.5 Simulation of water flow  

Simulation of root water uptake and water flow, which is assumed to be in the vertical direction 

in the vadose zone, was carried out for growing season (from 12 Apr until 22 Sep. in 2014) 

using Hydrus-1D version 4.16 which solves the 1-D Richards’ equation (Eq. 2-5). The 

simulated soil profile in the model extended to 150 cm depth and was divided into three layers: 

Layer 1 (0 to 47 cm), Layer 2 (47-52) and Layer 3 (52 to 150 cm). The arithmetic average of 
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hydraulic parameters of the corresponding depths for each three layers was calculated as input 

value. 

To solve Eq. 2-5 (Richards’ equation), the MVG soil hydraulic model (Eqs. 2-1 – 2-4) without 

air entry value and hysteresis was used. The initial pressure head distribution was adjusted 

using the measured initial pressure head of each observation node (tensiometer data). These 

point values were then interpolated linearly from the deepest observation node to the 

groundwater level (h=0, GWL). The pore connectivity parameter of the MVG model was fixed 

at l=0.5. The upper condition for water flow was an atmospheric boundary condition, based on 

rainfall and irrigation water supply, measured leaf area index (LAI) and potential 

evapotranspiration (ETp) with surface runoff. LAI was measured 11 times during the growing 

season using ISARIA CROP SENSOR (CLAAS Agrosystems KGaA mbH & Co KG, 

Harsewinkel, Germany) and was provided by the farmer. ETp was calculated from the reference 

evapotranspiration (ETo) using Eq. 2-10. ETo was calculated based on the FAO Penman-

Monteith equation on an hourly basis (Allen et al., 1998) using weather station data. Crop 

factors and LAI were scaled to an hourly basis using linear interpolation between two adjacent 

moments. The Feddes model (Feddes et al., 1978) without solute stress was used for root water 

uptake. The default potato parameters values provided by Hydrus-1D were used (Taylor and 

Ashcroft, 1972). 

The variable bottom boundary condition (pressure head) was imposed by setting a measured 

groundwater depth using the Diver water level logger (Mini-Diver, Eijkelkamp Agrisearch 

Equipment, Giesbeek, The Netherlands). It should be noticed that the spatial fluctuations of the 

groundwater table were about 10 cm (comparing two location data), which were smaller than 

the expected variation due to topography with more than 100 cm variation even for relatively 

flat areas (Figure 4-1). While temporal fluctuations reached up to 35 cm. The model was run 

applying two different hydraulic parameter sets as input values, i.e. laboratory and field 

methods. The relevance/effects of these parameter sets on soil-water content and potential 

predictions were evaluated for two soil profiles. 

4.2.6 Statistical analysis 

To evaluate and compare the hydraulic parameters derived from the field and laboratory 

measurements using the three methods, comparisons were performed using the least significant 

difference (LSD) test at p ≤ 0.05, to look for significant differences among depths, profiles and 
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methods. The Pearson correlation coefficient was computed between co-located and specific 

depth soil hydraulic parameters derived by laboratory and field methods.  

The performance of Hydrus-1D in simulating water content from the different hydraulic 

parameter sets was evaluated with a variety of statistics. The root-mean-square errors (RMSE), 

the coefficient of determination (r2), and the Nash–Sutcliffe coefficient of model efficiency 

(Ce), are applied here to evaluate the difference between observed and modeled data. More 

information about these criteria are given in Chapter 2 and their formula are presented in Eqs. 

2-15 – 2-17.  

4.3 Results and Discussion 

4.3.1 Hydraulic parameters from lab measurements 

As shown in Table 4-1, bulk density increased with depth. The very high bulk density at deeper 

depth (≥60 cm) is primarily due to the very high sand content, whereas the high bulk density 

at 47-52 cm depth is due to soil compaction from the use of heavy machinery and cementation 

due to higher organic carbon content (OC) (Table 4-1), humus and iron accumulations (typical 

for Podzol) compared to the upper layers (Seuntjens et al., 2001). Note that the higher value of 

OC at topsoil of profile B (upland) is due to compost application at that location. Table 4-2 

presents the hydraulic properties of two soil profiles at location A and B, measured at the 

laboratory. The mean values of θs and αvG decrease with increasing depth in both profiles. The 

higher topsoil values may be due to soil tillage, higher clay content and lower bulk density 

(Table 4-1). The values of n and Kls increase with increasing depth as is expected because of 

increasing sand content with depth. The exception is the Bs horizon (47-52 cm) which shows 

lower values as compared to upper and deeper depths for reasons as outlined above. The highest 

sand content, larger fragments of particles such as stones and gravel, lowest clay content, and 

humus and Fe accumulation (low OC content) in the subsoil (60-80 cm) led to highest Kls values 

for both profiles. Within two profiles, considerable variations were observed for Kls as 

compared to other hydraulic parameters. Comparing results showed that profile B (upland) had 

lower n and Kls than profile A (lowland) particularly at subsoil layers (Table 4-2). Results show 

almost no differences in soil water retention data of the two profiles in the topsoil, but most 

differences were observed in the compacted and deeper layers of the profiles (see Figure 4-6). 

The largest changes in Kls were observed at depth 47 cm compared to upper and deeper layers 

for both profiles. Comparing hydraulic properties of the two profiles showed significant 
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differences of Kls values, whereas no significant differences were observed for the other MVG 

hydraulic parameters.  

 

 

 

 

* Not estimated (measured at 15000 cm). Means followed by the same letter do not differ across depths (in each 
profile) by the LSD test at the level of 5% probability. 

Overall, statistics show that three horizons with different soil hydraulic properties could be 

identified, i.e. a top layer (0-47 cm), a compacted/cemented layer (47-52 cm) and a sub layer 

(52-90 cm) (Table 4-2). Great differences in Kls of various depths were observed for two 

profiles (-0.2 to 0.8 order of magnitude). Kls of 20 cm depth was approximately five times 

higher than Kls of the compacted layer (at 47 cm depth) of both profiles. While Kls of compacted 

layer (47-52 cm) was 12 and 7.5 times lower than that at 60 cm depth for profiles A and B, 

respectively. These results indicate spatial variability of hydraulic properties in horizontal and 

vertical dimensions. Indeed, similar to findings of Schwen et al. (2014), we found that the 

pedogenical horizon boundaries correlated with soil hydraulic properties. However, the 

horizons may have functional contribution on water flow properties (Finke and Bosma, 1993; 

Finke et al., 1992). Therefore, we could define three distinct layers for hydrological modeling 

in the next steps (layer 1: 0-47, layer 2: 47-52 and layer 3: 52-150 cm). 

4.3.2 Hydraulic parameters from field measurements 

4.3.2.1 Field infiltration experiment  

The measured cumulative infiltration is shown in Figure 4-3 as a function of time for each 

replication and depth of profile A and B. The breaks and slopes in the cumulative infiltration 

curve are caused by momentary disruption when resupplying the infiltrometer with water and 

by adjusting the consecutive supply pressure heads (h=-12, -6, -3 and -0.1 cm). Overall, at top 

Table 4-2. Average values of soil hydraulic parameters of two soil profiles, A and B, measured at 
the laboratory. θr, θs are residual and saturated water content, respectively; αvG and n are shape 
parameters for the van Genuchten-Mualem equation. Kls denotes the measured saturated 
hydraulic conductivity in the laboratory. Samples at 2 cm were taken at the ridge, whereas those 
at 20 cm depths were from the furrow. 

Profile 
Depth θr

* θs αvG n Kls 
cm  cm3 cm-3 cm-1  cm h-1 

A 

2 0.053ab 0.525a 0.057a 1.567c 0.881c 
20 0.055ab 0.509a 0.050a 1.584c 10.01c 
47 0.075a 0.403b 0.040ab 1.449c 2.840c 
60 0.03b 0.35b 0.014c 2.213b 34.046b 
80 0.003bc 0.38.3b 0.020b 2.885a 60.423a 

B 

2 0.069a 0.545a 0.072a 1.456ab 1.483b 
20 0.072a 0.530a 0.059a 1.508ab 3.365ab 
47 0.084a 0.367b 0.0245b 1.444b 0.761b 
60 0.013b 0.361b 0.0292b 1.879a 5.752a 
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soil (2 cm depth) approximately 0.37 - 0.78 cm water infiltrated in 37 - 45 min at profile A, 

and 0.38 – 1.03 cm water infiltrated in 38-50 min at profile B. The highest infiltration rates 

were observed at the highest depths of profile A (1.16 and 3.23 cm in 30 and 40 min 

respectively) and profile B (2.9 and 3.14 cm in 35 and 36 min respectively). As expected, the 

lowest infiltration rate was observed within the compacted layer (47 cm depth), with 10.1  cm 

in 40 min at profile A and 0.17 cm in 38 min at profile B on average.  

The infiltration data simulated in the inverse modeling procedure with Hydrus-2D/3D in 

combination with final water content at the end of the experiments matched well the observed 

ones (Figure 4-3) enabling to obtain an effective parameter set. In all cases, the model reached 

convergence on the solution and resulted in low root mean square and mass balance errors 

values (results not shown). It should be noted that the objective function that incorporated both 

cumulative infiltration and the TDR-derived soil-water contents (rather than using only final 

water content as above) performed poorly, and the model did not convergence to a solution in 

several experiments (more than 60%); therefore, results are not shown and their discussion is 

beyond the aim of this study.  
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4.3.2.2 Wooding’s solution and inverse optimization 

Table 4-3and 4-4 show the average value of initial and optimized hydraulic parameters for 

tension infiltrometer experiments at two profile locations (A and B) and different depths. As 

mentioned earlier, the Logsdon and Jaynes (1993) approach was applied to determine the 

unsaturated and saturated hydraulic conductivity and Gardner’s αG. The values of this approach 
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Figure 4-3. Observed cumulative infiltration in the field and corresponding fitted values using 
Hydrus-2/3D for two replications at different depths of profiles A and B, and at pressure heads 
of 12, 6, 3 and 0.1 cm. 
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were used as initial values in inverse optimization (Table 4-3 and 4-4), allowing also to test the 

hypothesis about the equivalency of Gardner’s αG and van Genuchten’s αvG at near saturation 

condition, i.e. h≥-20 cm (Rucker et al., 2005). At profile A, the optimized parameter values for 

Kfs were mostly close to or slightly lower than the initial values from Logsdon and Jaynes 

(1993) approach (Wooding’s solution). The largest difference for α and Kfs were observed at 

47 cm and 2 cm depths, respectively. On the contrary, optimized n values were almost half the 

initial values for the middle depths, while for the highest and deepest layers they were slightly 

lower and higher, respectively (Table 4-3).  

Depth   Initial value Optimized value 
 θi θf θs αG n Kfs θs αvG n Kfs 

cm cm3 cm-3 cm3 cm-3 cm-1  cm h-1 cm3cm-3 cm-1  cm h-1 
2 0.130 0.230 0.431 0.102a 2.955 0.559bc 0.219a 0.101a 2.313b 0.281bc 
20 0.134 0.237 0.403 0.087ab 3.181 0.546bc 0.225a 0.064abc 1.714c 0.543abc 
47 0.181 0.239 0.364 0.124a 3.222 0.101c 0.203a 0.030c 1.352c 0.119c 
60 0.075 0.179 0.332 0.123a 3.804 1.194ab 0.164a 0.080ab 1.791bc 1.165ab 
80 0.181 0.238 0.323 0.056b 3.978 1.681a 0.232a 0.045bc 4.485a 1.326a 
Means followed by the same letter don’t differ across depths by the LSD test at the level of 5% 
probability. 

The optimized values for θs were completely different from the initial values predicted from 

the neural network build in in Hydrus-2D/3D (Rosetta Lite v. 1.1, Schaap et al. (1998)) or 

laboratory θs and were close or slightly lower than the final water content at the end of the 

infiltration experiments (h=-0.1 cm), i.e. θf (Table 4-3 and 4-4). However, laboratory measured 

θs and predicted θs from the neural network are in good agreement with soil porosity (Table 

4-1 and 4-2). After the optimization process, three distinct layers were identified based on 

hydraulic parameter variations which correlated with pedogenic horizons (similar to laboratory 

results as discussed in 4.4.1.). The compacted layer (47-52 cm) was significantly different in 

n, α and Kfs compared with deeper depths (60 and 80 cm) and upper depth (2 cm). No significant 

differences of n, α and Kfs between 20 and 47 cm depths were detected. Similar results are 

observed for profile B. The only difference is that the optimized values for Kfs were slightly 

lower at upper depths (2 and 20 cm) and were slightly higher at deeper depths (47 and 60 cm).  

Table 4-3. Average of initial and optimized values of hydraulic parameters of profile A. θi and θf 
are initial and final water content, respectively; the initial value of α and Kfs were derived from 
Wooding’s solution, and θs and n initial values were estimated from neural network prediction of 
Hydrus-2D/3D. 
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Means followed by the same letter don’t differ across depths by the LSD test at the level of 5% 
probability. 

Results indicate no significant differences of θr, n, α and Kfs values of profiles A and B, whereas 

significant differences can be observed for θs values. Overall, α and Kfs values of Wooding’s 

equation were 1.67 and 1.23 times larger than their optimized values using inverse solution, 

respectively. This result indicates that αG from using the analytical solution of Wooding’s 

solution may not be equivalent to van Genuchten’s αvG, at least for sandy soil. We found 

Gardner’s αG to be related to van Genuchten’s parameters αvG and n as αG ≈αvG n, while 

Ghezzehei et al. (2007) found their relation to be αG ≈1.3 αvG n for a broad range of porous 

media. However, the close correspondence of initial and final estimates of hydraulic parameters 

(especially Kfs) confirms the accuracy of Logsdon and Jaynes’ solution of Wooding’s equation 

in sandy soil such as our study field. 

4.3.3 Hydraulic conductivity curves 

Figure 4-4 shows the average hydraulic conductivity curves obtained by inverse optimization 

using Hydrus-2/3D and Wooding’s solution using the Logsdon and Jaynes (1993) approach 

from tension disc infiltration data for each depth of profile A and B. Results indicate that the 

hydraulic conductivity values derived with analytical and numerical solutions deviate. This 

deviation is most pronounced at upper layers (2 and 20 cm depths) for both profiles (Figure 

4-4). This could be due to the loose structure of top layers caused by tillage. Unsaturated 

hydraulic conductivities obtained from numerical inversion were lower than those from 

Logsdon and Jaynes’ solution of Wooding’s equation. This has also been observed by Rashid 

et al. (2015), because complete steady state conditions were not achieved. In this case, 

Wooding’s solution overestimates the soil hydraulic conductivity (Šimůnek et al., 1999). On 

the contrary, inverse solution may underestimate soil hydraulic conductivity under incomplete 

steady state conditions (Table 4-2, 4-3 and 4-4). However, as discussed earlier, both methods 

Depth   Initial value Optimized value 
 θi θf θs αG n Kfs θs αvG n Kfs 

cm cm3 cm-3 cm3 cm-3 cm-1  cm h-1 cm3 cm-3 cm-1  cm h-1 
2 0.158 0.308 0.429 0.152a 2.859 0.713a 0.278a 0.103a 1.634bc 0.611b 
20 0.187 0.345 0.408 0.089ab 3.055 0.836a 0.335a 0.061b 2.032b 0.536b 
47 0.244 0.285 0.356 0.056b 3.113 0.130b 0.270a 0.046b 1.422c 0.175b 
60 0.111 0.201 0.319 0.078b 3.594 0.902a 0.196b 0.036b 3.430a 1.180a 

Table 4-4. Average of initial and optimized values of hydraulic parameters of profile B. θi and θf 
are initial and final water content, respectively; the initial value of α and Kfs were derived from 
Wooding’s solution, and θs and n initial values were estimated from neural network prediction of 
Hydrus-2D/3D. 
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(Wooding and inverse approaches) gave almost similar saturated hydraulic conductivity values 

and this confirms the usability of inverse optimization using initial values of Wooding’s 

solution in the modeling process.  

There were significant differences (p ≤ 0.05) of Ks values for laboratory and field (optimization 

and Wooding approaches) measurements between the two profiles and within layers. The 

graphical comparison of Ks values (q-q plots in Figure 4-5 (left)) suggest differences of 

laboratory and field methods with similar shapes of measured distributions. Similar to Jačka et 

al. (2014) results, distinctly lower Ks values were measured using field method. The laboratory 

measurements yielded much higher values than the field method (two to thirty times from top 

to subsoil layers). The laboratory saturated hydraulic conductivities were almost two times 

higher than those derived from the field measurements for 2 cm depth in both profiles, whereas 

they were 4-6 and 18-30 times higher for profiles B and A, respectively, from top to subsoil 

layers (Table 4-2, 4-3 and 4-4).  
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Figure 4-4. The average hydraulic conductivity curves obtained by inverse optimization using 
Hydrus-2/3D and wooding’s solution using Logsdon and Jaynes (1993) approach from tension 
disc infiltration data at different depths of profi les A and B. 
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This might not be surprising since Ks is the most difficult parameter to accurately determine in 

view of tempo-spatial variability and use of small rings (Ramos et al., 2006). Indeed, Ks 

measured in the laboratory often results in higher values than when measuring it under field 

conditions, since in that latter case because soil is not fully saturated (even if a positive pressure 

head on the soil surface is applied and macropores are included). By the way, the tension 

infiltration experiments never resulted in complete saturation (Šimůnek and van Genuchten, 

1996).  

It has been reported that the ratio of Ks with full saturation to field Ks was equal to 2, and this 

was attributed to entrapped air (Gupta et al., 1993; Reynolds and Elrick, 1985a). Jačka et al. 

(2014) found a similar ratio for Podzols. Indeed, estimation of Ks using tension infiltrometer is 

an indirect procedure and this estimation represents the soil matrix only. On the other hand, 

because laboratory samples represent a small sampled volume, a large number of replicates is 

often needed to derive a representative parameter estimation. Lower Kfs than Kls values were 

also reported by Reynolds et al. (2000), who attributed this due to restricted flow through cracks 

and other preferential flow zones under the disc, thus excluding macropores and only 

considering matrix flow. They also stressed that this underestimation was not resulting from 

three-dimensional vs. one-dimensional vertical flow for sandy soil. Higher laboratory Kls 

values could on the other hand be explained by the impact of elimination of entrapped air. 

Anyhow, surprisingly a significant correlation was found between Ks values derived from 

laboratory and field measurements (r = 0.75) (Table 4-5). The relation between pairwise Ks 

values of both methods presented in Figure 4-5 (right). This confirms that one dimensional 

flow in the laboratory may be equivalent/correspond to three dimensional flow in the disc 
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method in the sandy structureless soil without distinct anisotropy of this study. In their study 

on sandy soils, Reynolds et al. (2000) did not find any significant correlation between lab-

determined Ks and that from tension infiltration measurements in the field. 

 

 

 

 

**and * marked correlation significant at P ≤0.01 and P ≤0.05 level respectively. 

4.3.4 Water retention curves 

The water retention curves estimated from parameter optimization of infiltration data and from 

the van Genuchten curve fitted to the laboratory data are depicted in Figure 4-6. Statistical 

analysis showed significant differences of MVG parameters θs, n and αvG values between 

laboratory and field measurements, with parameters derived from both methods being 

positively correlated (Table 4-5). There was a significant correlation between the slope of the 

water retention curves, represented by n, estimated from parameter optimization of infiltration 

data and from the van Genuchten curve fitted to the laboratory data (r = 0.81) (Figure 4-6 and 

Table 4-5).  

  Field optimization approach 
 θs α n Ks 

Laboratory 
measurement 

θs 0.59* 0.63* -0.36 -0.47 

α 0.57 0.55 -0.36 -0.49 

n -037 -0.18 0.81**  0.84**  

Ks -0.32 -0.15 0.68**  0.75**  

Table 4-5. Pearson correlation coefficient between the hydraulic properties of laboratory 
measurements and field optimization approach. Ks is saturated hydraulic conductivity; θs is 
saturated water content; α and n are shape parameters for the van Genuchten-Mualem equation. 
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Figure 4-6. The water retention curves estimated from parameter optimization of infiltration 
data and the RETC curve fitted to the laboratory data at different depths of profiles A and B. 
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Overall, the retention curves estimated from infiltration measurements were not in good 

agreement with those estimated from laboratory data. As discussed earlier, results suggest 

higher saturated water content up to 48% for profile B (upland) as compared to profile A 

(lowland) (Table 4-2– 4-4). It is definitely related to higher organic carbon observed in profile 

B (Table 4-1). The saturated water content θs estimated from infiltration measurements was 

close to the final water content θf, and θf was significantly lower than the laboratory saturated 

water content (Table 4-2 and 4-3). The underestimation of saturated water content results from 

the matrix not being fully saturated (the last applied pressure is -0.1 cm and thus not positive) 

and the tension infiltrometer limitations which are addressed in introduction section. Similar 

results were reported by Verbist et al. (2009b), Schwartz and Evett (2003), de Vos et al. (1999) 

and Šimůnek et al. (1998). Šimůnek et al. (1998) reported highly underestimated retention data 

from an inverse solution compared to laboratory measurements, while a good fit to cumulative 

infiltration was obtained. They optimized θs with a value ~46% less than laboratory measured 

θs. However, a unit weighting coefficient (i.e. wij = 1) was used in the objective function for θf 

(at h=-0.1 cm, i.e. near field effective saturation) and infiltration rates, indicating the high 

influence of θf on water retention curve estimation. Indeed, θf was not in agreement with total 

porosity or laboratory θs. Verbist et al. (2009b), Schwartz and Evett (2003) and de Vos et al. 

(1999) explained the discrepancy by air entrapment during wetting front movement, the 

presence of flow irregularities, and deviations from equilibrium flow theory (such as gradually 

increasing water contents even when the infiltration rate and the pressure head reach quasi-

steady state). This contrasts with observations of Ramos et al. (2006), who found estimated θs 

being very close to θf and laboratory θs (using four consecutive supply pressure heads of -15, -

6, -3 and 0). Additionally, the deviation of water retention curves estimated from infiltrometer 

measurements and those from laboratory measurements could be explained by the hysteresis 

phenomenon. Hysteresis could be present in the retention curves because the infiltration and 

laboratory experiment represented wetting and drying processes, respectively.  

4.3.5 Relevance of hydraulic parameter set on model performance 

The Hydrus-1D model was run using the field and laboratory expriments’ parameter sets 

discussed in the previous sections. As discussed, hydraulic properties variations were found in 

both analyzed soil profiles. Moreover, results suggested three distinct layers (0-47, 47-52 and 

52-150 cm depths) based on field observation (pedogenic layers) and experimental results. The 

performance results (with the different parameters values) under similar upper (rainfall and 

water supply, ETo, LAI) and different lower boundary conditions (groundwater depth 
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variations), show that the model performs almost similarly in soil-water content predictions 

(with some differences in volumetric water content of on average 5%) for both parameters sets 

at all observation depths (Figure 4-7). 

Comparing the simulation results indicates that the model over and under predicted soil-water 

content using laboratory and field experiments data sets, respectively, for both profiles at 10 

and 20 cm nodes (Figure 4-7). Different parameter sets of laboratory and field experiments 

resulted in under predicted soil-water content at 30 and 40 cm nodes and over predicted at 50 

cm node of profile A (Figure 4-7). In profile B, soil-water content simulations based on the 

laboratory data set were closer to the observations at 30, 40 and 60 cm nodes compared to those 

from the field data set (Figure 4-7). The underestimation of hydraulic parameters, especially 

θr, using field methods (inverse modeling approach) could be a possible reason for the under 

prediction of soil-water content. In addition, due to temporal variation of soil hydraulic 

properties, e.g. Ks, their value can change during a growing season (Alletto and Coquet, 2009; 

Bamberg et al., 2011). However, our parameter sets were measured only once at harvesting. 

As we have tried to reduce the distance between sensor location, and infiltration measurement 

and sampling (measurement not exactly performed in the same location as sensors are installed 

~ 5-50 cm variation), there is also local spatial variability of the soil hydraulic properties. 

Indeed soil tempo-spatial variability of Ks (even at a pedon scale) caused by local heterogeneity 

and small sample volume (for both, laboratory and field methods) may be very high (Fodor et 

al., 2011; Jačka et al., 2014; Lauren et al., 1988). This local spatial variability and time 

dependence of hydraulic properties during a season could increase the mismatch between 

observed and simulated soil-water content. To eliminate the effect of local spatial 

heterogeneity, larger number of samples, especially for Ks estimation, would be needed.  

The performance results of the different parameter sets of laboratory and field approaches 

according to the performance criteria and different boundary conditions are presented in Table 

4-6, for both soil-water content and pressure head. Obviously, results indicate that different 

initial parameter sets influence the simulated soil-water potential and soil-water content 

differently. 

The field experiment data set resulted in lower RSME and higher Ce and r2 values as compared 

to that from the laboratory data set at nodes 10 cm for soil-water content and soil-water 

potential (Table 4-6). Moreover, according to the Ce and RMSE criteria (in Table 4-6, profile 

A, Node 20cm), the laboratory method yielded slightly better results. However, lower RSME 
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and higher Ce and r2 values were achieved using the laboratory data set at 30 to 60 cm nodes 

for soil-water content, whereas, soil-water potential was predicted less well, especially for the 

50 cm node in profile A (Table 4-6).  

†RMSE, Ce and r2 are the root-mean-square deviation (cm and cm3cm-3), the Nash–Sutcliffe 
coefficient of efficiency and the coefficient of determination. 

Field methods are usually considered more realistic than laboratory methods because of the 

larger volume of soil involved (as compared with the small size of soil cores, soil disturbance 

during sampling and short circuit flow through macropores or along core wall in lab methods) 

and because of continuity in the soil profile versus depth (Ramos et al., 2006). However, 

estimation of parameters is rather indirect and is based on many assumptions. Indeed, the 

sampled volume, the flow field and the boundary conditions are not known. In this method, 

quasi-steady flow is usually reached during a relatively short time of measurement at each 

small negative pressure head rather than true steady state (part of pores and macropores are 

excluded) (Fodor et al., 2011). But, the differences in hydraulic properties found in our study 

do not indicate whether laboratory or field experiments data sets are most successful to predict 

soil water fluctuations perfectly in a whole soil profile.  

 

 

 

 

Table 4-6. Calculated performance criteria describing the correspondence between measured and 
simulated soil-water content and soil water potential for field and laboratory measured data set 
at different depths of profiles A and B.  

Node 
(cm) 

Profile 

 A B 
 Field Lab Field Lab 
 RMSE † Ce † r 2 † RMSE † Ce † r 2 † RMSE † Ce † r 2 † RMSE † Ce † r 2 † 

water content            
10 0.044 0.11 0.42 0.063 -0.85 0.44 0.052 -3.0 0.38 0.056 -3.55 0.31 
20 0.053 -1.06 0.29 0.050 -0.78 0.20 0.046 -3.6 0.26 0.054 -5.33 0.09 
30 0.072 -2.87 0.37 0.034 0.10 0.33 0.055 -19.3 0.40 0.037 -7.99 0.17 
40 0.070 -4.58 0.27 0.043 -1.13 0.42 0.043 -25.4 0.37 0.024 -7.29 0.49 
50 0.051 -3.64 0.39 0.045 -2.65 0.45 0.101 -391.2 0.29 0.062 -144.8 0.55 
60       0.156 -121.6 0.38 0.122 -73.1 0.30 

water potential            
10 217.7 -0.35 0.16 197.1 -0.10 0.01       
50 99.0 0.05 0.30 156.4 -1.38 0.19       
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Figure 4-7. Observed and simulated time series of soil-water content with laboratory and field 
experiments hydraulic parameters sets for profiles A (left) and B (right). GWL is groundwater 
level (cm), ETp and LAI are potential evapotranspiration and leaf area index respectively. 
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It should be noted that the model convergences on the solution were slightly faster using the 

laboratory dataset than when using the field experiment dataset. The presented simulations are 

based on an input dataset that was not optimized against observed soil-water content or 

potential values. Calibrating the model using those data, would improve the model performance 

substantially (see Chapter 2). 

4.4 Conclusions  

In this chapter, we compared soil hydraulic properties of typical laboratory measurements and 

field tension infiltration experiments using Wooding’s analytical solution and inverse 

optimization in two soil profiles. Results indicated spatial variability of hydraulic properties in 

horizontal and vertical dimension. Inverse optimization resulted in excellent matches between 

observed and fitted infiltration rates in combination with soil-water content at the end of the 

experiment using Hydrus-2D/3D and resulted in close correspondence of α and Kfs with those 

from Logsdon and Jaynes (1993) solution of Wooding’s equation in sandy soil such as our 

study field. We found the Gardner parameter αG to be related to the optimized van Genuchten 

parameters αvG and n as αG ≈αvG n. 

Laboratory tests yielded 2–30 times higher Ks values from top to subsoil layers than those 

derived when using field infiltration measurements. Anyhow, significant correlation was found 

between Ks values from laboratory and field measurements (r = 0.75). We found significant 

differences in MVG parameters θs, n and α values between laboratory and field measurements, 

with positive correlations being observed between laboratory and field MVG parameters 

(r≥0.55). Overall, the estimated retention curves of the inverse solution were not in good 

agreement with those fitted to laboratory data. 

The relevance of the difference in laboratory and field hydraulic parameter sets was evaluated 

using the hydrological model Hydrus-1D. Results indicated a better simulation performance 

when using laboratory data set from middle to deeper depths. In the two soil profiles under 

study, field experiment parameter sets, which were achieved fast and simple (less time 

consuming and labor intensive), resulted in slightly better soil-water content simulation 

performance in the topsoil where the plant roots are concentrated, and soil-water potential in 

the subsoil. Generally, in view of precision agriculture, field measurements and inverse 

optimization approaches are preferred to determine soil hydraulic properties. But based on the 

simulation results of the study, it is not possible to judge whether laboratory or field methods 



     Chapter 4  

 

121 

should be preferred. The under estimation of hydraulic parameters especially θr using the 

inverse modeling approach, temporal dynamics and spatial variability of soil hydraulic 

properties (even at a pedon scale) caused by local heterogeneity and small sample volume (for 

both, laboratory and field methods) could be possible reasons for poor predictions of soil-water 

content. However, the reasons behind the deviations should be further unraveled. In Chapter 2 

we found that model output, i.e., changes in soil-water content, was mainly affected by the soil 

saturated hydraulic conductivity Ks and the Mualem-van Genuchten retention curve shape 

parameters n and α in a field experiment in an adjacent field. On the other hand, results also 

suggested that to obtain an effective parameter set, not only parameter optimization over long 

time such as a growing season in combination with independent soil-water content and soil-

water potential data is necessary but also a deeper knowledge of the effect of temporal and 

spatial changes in hydraulic properties is needed to achieve excellent agreement between 

measured and simulated values. Therefore, further research is required to test the optimization 

processes. 
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5.1 Introduction 

Soils are intrinsically heterogeneous, and some heterogeneities, such as those of hydraulic 

properties control the ability of soil to store and conduct water at the field scale. Additionally, 

spatial variation of bottom boundary conditions, i.e., groundwater level (GWL), and 

topography considerably affect soil-water content variability, water flow and root water uptake 

at the field scale. Efficient techniques to characterize soil physical variability remain the object 

of scientific pursuit (Teixeira et al., 2014). Moreover, irrigation management strategies aiming 

at heterogeneous distribution of water under different field conditions and sustainably 

optimizing soil water conditions on large fields with spatial soil heterogeneity, groundwater 

and topography variability are needed effectively. However, modern technologies such as those 

using automated soil probe sensors and tensiometers, can quantify flow processes and soil-

water status but only in a limited number of sites, mostly because of labor and cost requirements 

(Bastiaanssen et al., 2004). As an alternative, advanced numerical modeling for simulating 

hydrological processes through the vadose zone and understanding the interaction between soil, 

vegetation, atmospheric forcing and groundwater (Zhu et al., 2012) can be carried out to control 

soil water status and irrigation in precision agriculture. 

Due to the complexity of flow systems, a variety of conceptual simplifications have been made 

to flow models (Kuznetsov et al., 2012). Such simplifications include e.g. the assumption of 

water transport in the unsaturated zone as a one-dimensional phenomenon, by considering i) 

lateral flow and transport as not significant (Sherlock et al., 2002; Tian et al., 2012) unless the 

capillary fringe is involved (Abit et al., 2008); ii) a simple representation of the bottom 

boundary condition using a constant or unit-gradient (Carrera-Hernández et al., 2012) or 

perched saturated layers (Twarakavi et al., 2009); iii) effective homogeneity within and 

between soil layers (Niswonger and Prudic, 2009) and isotropy of hydraulic properties; iv) the 

porous matrix as rigid and water density not dependent on solute concentration and temperature 

(Kuznetsov et al., 2012); and vi) unlike small-scale experiments, similar micro-climate for 

initial and upper boundary for different parts of the field or region.  

In such cases as addressed above, evaluation of the uncertainty and/or sensitivity of the models 

by performing multiple simulations at different scales or resolutions, investigation of the cost 

effectiveness of simulation times (pre and post processing), and application of an approach to 

optimize irrigation management are the challenging issues. However, outputs of field scale 

water flow simulations depend primarily on uncertainties in model structure, in model input 
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parameters, in geometry of heterogeneous profiles (layer thicknesses) and in upper and bottom 

boundary conditions. Recently, a number of studies evaluated the uncertainties of input 

boundary conditions, profile geometry and input parameter using different methods and 

algorithms such as the Bayesian methods, Monte Carlo, Fuzzy set theory and an ensemble 

Kalman filter (Carrera-Hernández et al., 2012; Li et al., 2015; Verbist et al., 2012; Verma et 

al., 2009; Vrugt et al., 2008; Wöhling and Vrugt, 2008) mostly at a plot scale. Beside these 

efforts, the challenges still remain between the field scale modeling approaches and practical 

water irrigation strategies.  

From a field to a regional water management perspective, the most important challenge in 

numerical modeling is to fully model the water flow (unsaturated and saturated flows from the 

soil surface to groundwater) in a spatially variable context. In addition, generalizing field scale 

water application based on the results of modeling approach at the plot scale (1D) (i.e., only 

one spot), is subjected to significant uncertainty. During past decades, a bulk of efforts has 

been made to develop numerical models, i.e., fully three-dimensional (3D) codes (Arnold et 

al., 1993; Saxton et al., 1974; Šimůnek et al., 2006b; Therrien et al., 2009; van Dam et al., 

1997) and new approaches such as coupling/integrating existing coded modeling concepts (2D 

or quasi 3D modeling) to simulate water flows in the vadose zone and saturated-unsaturated 

interactions (Cartwright et al., 2006; Kuznetsov et al., 2012; Refsgaard and Storm, 1995; 

Twarakavi et al., 2008; Zhu et al., 2012) and in irrigation management (Condon and Maxwell, 

2013; Perez et al., 2011; Wu et al., 2015b; Zhu et al., 2012). Despite simplifications and 

assumptions, they are usually computationally most expensive, particularly 3D tools which are 

not suitable for modeling large field water problems, as well as in terms of parameterization, 

uncertainty and sensitivity evaluations (Condon and Maxwell, 2013; Kuznetsov et al., 2012) 

unless massive parallel computing is used (Coumou et al., 2008). By the way, application of 

these approaches is complicated and less feasible for applicants (farmers).  

It is concluded that the combination of accurate and spatially distributed field data with 

appropriate numerical models will allow to accurately determine field scale water flow and 

thus field scale irrigation requirements, taking into account the information gained at the plot 

scale (1D), variations in boundary conditions across the field and spatial variations of model 

parameters (Chapter 2). Therefore, it is important to develop an approach that can efficiently 

simulate field scale water flow. In such case, a quasi 3D modeling approach can be used to 

apply 1D simulations to cover the field scale (Chapter 2). 
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To address the challenges discussed above and the need for an integrated water management 

tool, this chapter focuses on the ability of using a numerical soil hydrological 1D model 

(coupled with a crop growth model) to predict soil-water content, water stress and crop yield 

over an entire crop field in a quasi 3D way. This will allow to evaluate the impact of irrigation 

strategies that account for spatial soil heterogeneity on crop yield at the field scale. In the 

present study, we simultaneously quantify the uncertainty of model parameters, i.e., hydraulic 

conductivity, of bottom boundary conditions and of various soil layer depths, and evaluate its 

effect on soil-water content, soil-water storage and water stress, as well as yield in a sandy 

grassland. Our approach will illustrate how combined prior information with different 

resolutions can be used in water flow modeling for managing irrigation more effectively and 

practically in precision farming. We thus simulated water flow on a large scale field with high 

resolution characteristics of input factors to i) evaluate the computational efficiency and 

uncertainty of this modeling approach/framework); and ii) evaluate different irrigation 

scenarios to find an optimized and cost-effective irrigation scheduling. In this stage the 

proposed modeling approach is evaluated by implementing different irrigation plans with 

different resolution allowing to show which resolution of input data is sufficient to optimize 

irrigation scheduling. Overall, this approach can be a useful decision support tool to help 

decision makers and applicants in assessing the resolution of data needed for precision 

agriculture management, in optimizing irrigation scheduling and to address how this results in 

economic benefits. 

5.2 Materials and Methods  

5.2.1 Study site description  

The study site is located in an agricultural area at the border between Belgium and the 

Netherlands (with central coordinates 51°19′05″ N, 05°10′40″ E) (Figure 5-1), characterized 

by a temperate maritime climate with mild winters and cool summers. More information is 

given in Chapter 2 and 3.  

The most common drought that occurs in the study area is precipitation shortage 

(meteorological drought) in combination with higher than normal temperature (Van Passel et 

al., 2016), severe wind and lower humidity (atmospheric drought) (Zamani et al., 2015). In 

Belgium, around early April the average daily evapotranspiration surpasses the average daily 

precipitation: a deficit can therefore accumulate from April onwards. After September, the 

precipitation deficit tends to decrease as evapotranspiration reduces and rainfall increases. The 
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rainfall exceedance probability (%) for the experimental years (April-September, i.e., growing 

season which constitute the time period during which irrigation takes place) was calculated 

using RAINBOW software (Raes et al., 2006b) with 31 years (1985-2015) of rainfall data from 

a nearby station (Eindhoven, The Netherlands) on which a square transformation was carried 

out to obtain a normal distribution. A probability of exceedance of 20% corresponds to a ‘wet’ 

year and of 80% to a ‘dry’ year. 2012 was a ‘wet’ year with a probability of exceedance of 5%, 

while 2013 was close to a ‘dry’ year with 72% probability of exceedance.  

5.2.2 Numerical modeling setup 

As discussed earlier, some assumptions are necessary in 1/2/3D modeling. The following 

assumptions were made in this study; 1) only vertical flow in the vadose zone was considered; 

2) the upper boundary conditions are uniform for all locations over the field; and 3) a constant 

head bottom boundary condition was assumed. The latter is justified for the field study site 

owing to the presence of the drainage system. 

Simulation of root water uptake and water flow was carried out for two growing seasons (from 

1 Mar. until 25 Nov. in 2012 and 2013) using Hydrus 1D version 4.16 (Šimůnek et al., 2013b) 

which solves the 1-D Richards water flow equation (Eq. 2-5). The hydrological model was 

integrated with the crop growth model LINGRA-N (Wolf, 2012) which can calculate grass 

growth and yield under potential (i.e. optimal), water limited (i.e. rain fed) and nitrogen limited 

growing conditions. Details about this model and the coupling procedure can be found in 

Chapter 2. 

The soil profile in the hydrological model extended to 200 cm depth and was divided into two 

layers. To solve Richards’ equation, the van Genuchten-Mualem, MVG (Mualem, 1976; van 

Genuchten, 1980) soil hydraulic model (Eqs. 2-1 – 2-4) without hysteresis was used. The initial 

pressure head distribution was interpolated linearly from the node at the groundwater level 

(h=0, GWL) to the soil surface for each run (head gradient between the soil surface and GWL). 

The upper boundary condition for water flow was an atmospheric one, i.e., Dirichlet and 

Neumann (based on rainfall and irrigation water supply, leaf area index, LAI calculated by 

LINGRA-N and reference evapotranspiration, ETo) with surface runoff. ETo was calculated 

based on the FAO Penman-Monteith equation on an hourly basis (Allen et al., 1998) using 

local weather station data. The Feddes model (Feddes et al., 1978) without solute stress was 

used for root water uptake. The default grass parameters values provided by Hydrus-1D were 

used (Taylor and Ashcroft, 1972). 
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5.2.3 Model parameterization 

5.2.3.1 Hydraulic parameters 

Sampling locations for soil characterization were selected by combining a design-based (the 

ESAP-RSSD software package, (Lesch, 2006)), a model-based (FuzzMe software applying the 

Fuzzy k-means algorithm, (Minasny and McBratney, 2002)) and a traditional sampling strategy 

to account for the maximum variation in soil properties that was suggested by a geophysical 

survey (electromagnetic induction technique, EMI) with a DUALEM-21S sensor (0-100 cm). 

The comprehensive procedure of this methodology and sampling design is described in Chapter 

3. Figure 5-1a shows the apparent soil electrical conductivity (ECa) map produced by the 

DUALEM-21S, and the 20 soil sampling locations from the ESAP-RSSD software and eight 

sample locations along a transect according to the traditional approach. 

In the same study field and using the Hydrus-1D model at one spot (Chapter 2), we showed 

that changes in soil-water content are most sensitive to Ks. We also found that calibrating the 

model by optimizing the key parameter Ks and keeping all other hydraulic parameters constant 

should suffice for irrigation management purposes. Therefore, in this study the arithmetic 

average value of SWRC measured at the various sampling locations was used to determine the 

MVG hydraulic parameters. The Ks value of the second layer was taken from the optimized 

value derived in Chapter 2, while Ks values of the first layer were taken from relationships 

established in the same field described in Chapter 3, allowing to predict and upscale laboratory 

Ks in 0.5 by 0.5 m resolutions over the entire field using proximally sensed ECa (Figure 5-1b). 

Another study in the same field (Chapter 4) supports this methodology, in that it showed that 

there is almost no difference in model performance when using field or laboratory determined 

hydraulic data sets to simulate water flow. 

5.2.3.2 Bottom boundary condition and profile geometry 

Groundwater and thickness of the first layer at the 28 locations discussed above (Figure 5-1a), 

were measured on 4 June and 25 October 2013 by augering. The spatial groundwater level 

distribution was then determined as follows and using Surfer software (Surfer 13, Golden 

software, LLC). First, the measurements at the 28 locations were converted from level below 

surface to an absolute groundwater height using detailed (cm scale) digital elevation data, 

including the water level of the ditch at the border (Figure 5-1). Second, the 28 measurements 

(expressed as height) were interpolated using ordinary kriging (OK, 0.5 by 0.5 m) over the 
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field. The interpolated map was then converted to the depth below the surface by subtracting 

the groundwater height map from the digital elevation map. The same procedure was applied 

for the distribution of the first layer thickness. Assumptions that were made here are: (i) there 

are no other layers between layers and in sublayer; (ii) these layers are spatial continuous. The 

maps of field GWL and first layer thickness are shown in Figure 5-1c and 5-1d respectively. 

 

 

5.2.4 Model implementation 

Instead of running Hydrus-1D in a batch setup using workstation cluster boots parallel 

computation techniques which would need considerable endeavors in preparing input files for 

each run and intensive computational efforts, we implemented the Hydrus code into PythonTM 

Figure 5-1. Location of the study field and a) the classified map of 0–100 cm soil ECa with 
indication of the 20 soil sampling locations (black bullets) from the ESAP software, the eight 
additional points along the transect, and the elevation contour intervals (labels in m a.s.l.); b) 
estimated saturated hydraulic conductivity, Ks from the site-specific empirical (geophysical) 
relation (Chapter 3); c) interpolation of groundwater level, GWL and d) first layer depth, FLD. 
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software (Appendix – Chapetr 5). This allowed to minimize the run time and automatize pre 

and post processing analysis. This also prevented hampering of model solutions when using 

high resolution datasets. Several scripts/routines were written to manage the communication 

between PythonTM and the hydrologic tool.  

The field is represented as a collection of 1D columns each parameterized using the spatially 

distributed input parameters and boundary conditions (Ks, GWL, FLD) at various resolutions 

ranging from 5 x 5 m to 400 x 400 m. PythonTM scripts/routines were programmed to automate 

the calculations, in which, profile geometry, initial and bottom boundary conditions, as well as 

hydraulic conductivity were generated automatically using the provided datasets for each 

column run. A computational flowchart is given in Figure 5-2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.5 Model outputs 

5.2.5.1 Crop yield  

Figure 5-2. Flowchart of the quasi 3D modeling approach, with implementation of the coupled 
hydrologic-crop growth model in PythonTM  software. 

Step 2. Checkup programing 
 

Read and check all files and model routines 
Build coupled hydrologic-crop growth model in the desired directory/path 

Pre-test of scripts by running the program 
Replacement and set of input data for each run of location 

 

Step 1. Initialization 
 

Initialize coupled hydrologic-crop growth models 
Programmed scripts/routines in Python 

Prepare input text file i.e., GWL, FLD and Ks file in the same resolution 

Step 3. Pre-processing 
 

Run the coupled model in a desired resolution 
Save the initial results  

Step 4. Post-processing 
 

Reload and read the output files 
Analyzing the results 

Compute field scale soil-water stress and storage, infiltration and yield  
Visualize the results and interpret 
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The ratio between actual crop evapotranspiration and potential evapotranspiration was 

introduced as a water stress factor equal to the crop yield reduction due to water shortage 

(Doorenbos and Kassam, 1979), which is given in Eq. 2-9. The values are provided by the 

model and calculation of yield was made using PythonTM scripts.  

5.2.5.2 Water stress and yield reduction 

Feddes’ model (Feddes et al., 1978) was used to represent the sink term in Richards’ equation 

(Eq. 2-5), and thus to quantify the potential root water uptake and water stress (Eq. 2-6). By 

assuming that root water uptake is equal to actual transpiration, the ratio of actual to potential 

transpiration by root uptake was introduced as a degree of water stress, DWS (Jarvis, 1989) 

(Eq. 2-8). In optimal and stress free conditions, this ratio should be (close to) unity (>0.90 of 

maximum reference evapotranspiration). 

5.2.5.3 Soil-water storage 

The top 20 cm of the soil profiles, where root density is maximum, was taken to calculate soil-

water storage (cm) in each run/simulation. To do so, simulated soil-water content at 

discretization nodes within the top 20 cm were multiplied by the node internal and summed.  

5.2.6 Uncertainty and effectiveness of simulations 

The resolution of the input data has a great impact on the computational performance of the 

code (Figure 5-3). To assess the effect of the data resolution on the uncertainty of the water 

stress and yield predictions and consequently, the irrigation strategy, the tool was run (forward 

modeling) for several resolutions. Soil columns were constructed with grid cells of 5 x 5 m 

(4490 runs), 7 x 7 m (2290), 9 x 9 m (1390), 10 x 10 m (1212 runs), 15 x 15 m (499 runs), 20 

x 20 m (280 runs), 25 x 25 m (180 runs), 30 x 30 m (130 runs), 35 x 35 m (92 runs), 40 x 40 m 

(75 runs), 45 x 45 m (55 runs), 50 x 50 m (45 runs), 100 x 100 m (11 runs), 150 x 150 (five 

runs), 200 x 200 m (three runs), 250 x 250 (two runs), 300 x 300 (two runs), 350 x 350 m (one 

to two runs) and 400 x 400 m (one run for entire field) with different combinations of their 

unique conditions, i.e., GWL, FLD, and Ks on a personal computer with a CPU of 2.50 GHz 

and 8.0 GB RAM. For coarser resolutions, the location of the soil column within its 

corresponding grid was changed randomly (40 times for the lowest resolution to 5 times for 

the highest one) in order to have a smooth representation of the field (see Appendix – Chapter 

5).  



Quasi 3D modeling of vadose zone soil-water flow for optimizing irrigation strategies: 
challenges, uncertainties and efficiencies 

132 

The efficiency of the modeling approach was evaluated by comparing the computational time 

of pre and post processing. The uncertainty of the simulations, i.e., uncertainty of combinations 

of different GWL, FLD and Ks of each grid with different resolutions was evaluated by 

comparing the average and the standard deviation of the water stress, soil-water storage and 

calculated yield (Eq. 2-8) of each resolution scenario. 

In addition, three different resolutions, i.e., 10 x 10 m, 100 x 100 m and 400 x 400 m, were 

tested in a triggered irrigation scenario (automated irrigation implemented in Hydrus when the 

pressure at a selected observation depth drops below a specific value, e.g. the upper limit of 

field capacity (-300 cm), to eliminate water stress, see the next section). The uncertainty of our 

modeling approach was evaluated with regards to irrigation management purposes as well. 

5.2.7 Cost-effective irrigation scenarios 

The value of water stress, and the number and the duration of stress periods was considered as 

an indicator for the performance of the irrigation scheduling (van Dam et al., 2008). After 

selecting the optimal resolution, four different irrigation scenarios were conducted. They 

consisted of a) current irrigation, in which all actual water supply and rainfall were taken into 

account as the upper boundary condition, i.e., model input; b) no irrigation, in which the actual 

water supply (all irrigation events) was deleted from the model input; c) optimized irrigation 

or trial and error, in which the actual water supply (all irrigation events) was first deleted from 

the model input. Subsequently, LAI simulated with the LINGRA-N for optimal conditions (no 

water stress) was used as a variable in the hydrological model. The hydrological model was 

then run with the new input variables to calculate water stress without actual water supply, and 

subsequently, the appropriate (minimum) amount of the required irrigation (using trial and 

error) was added to the precipitation at the beginning of each water stress period to exclude 

water stress from the simulations (see Chapter 2 for further information); and d) triggered 

irrigation, in which all irrigation events were deleted from the input data and then 2.5 cm of 

water was added automatically by the Hydrus model to retain a pressure head above -300 cm 

(field capacity hence avoiding any water stress) within 2 hours with a rate of 1.25 cm h-1. At 

the end, total water supply by the model was calculated. 

Crop yield of each run was calculated using Eq. 2-8 to show to what extent different scenarios 

affect soil-water stress and crop yield. Accordingly, the efficiency and cost-effectiveness 

(watering amount, and price and yield increase) of different irrigation scheduling scenarios in 
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combination with different resolutions were calculated and compared. Finally, the best optimal 

irrigation scenario was selected. 

5.3 Results and Discussion 

In the calculation procedure, model columns with optimized second layer Ks (Chapter 2), 

average MVG parameters (Table 5-1), and their unique FLD, GWL and first layer Ks were 

used. Overall, the quasi 3D flow modeling approach described above and performed in this 

study differs from the quasi 3D flow modeling procedure presented by Kuznetsov et al. (2012); 

Perez et al. (2011); Twarakavi et al. (2008); Zhu et al. (2012) in which coupled unsaturated-

saturated water flow models (i.e., 1D models-fully 3D models) were applied at the regional and 

the catchment scale, and from the parallel modeling approach presented by Coumou et al. 

(2008) in which a 3D model was used to solve fluid flow in complex geologic media. However, 

it is similar to the approach presented by Joris et al. (2014) in which the Hydrus-1D model was 

applied to simulate contaminate leaching/transport for the Belgian-Dutch transnational 

Kempen region (200 x 200 m resolution), though we assessed water flow in the root zone and 

under the specific conditions of an agricultural field with a dense dataset. It should be noted 

that model calibration was not an objective of this study since the coupled hydrologic-crop 

growth model performance was already assessed at the study site against measured soil-water 

content data (Chapter 2 and 4). Therefore, the model evaluation focused on whether the model, 

when using a high resolution data set, could reproduce the spatial pattern of water flow in the 

root zone and consequently water stress, storage and crop yield. 

 

 

 

 

 Ks θr θs α n 

 cm h-1 cm3 cm-3 cm-1  

Topsoil 
3.94 

(78.0) 
0.08 

(20.9) 
0.39 
(5.3) 

0.017 
(39.3) 

2.05 
(22.8) 

Subsoil 
2.27 

(59.3) 
0.05 

(59.6) 
0.32 

(11.94) 
0.020 

(40.62) 
2.52 

(27.68) 

Table 5-1. Average of soil hydraulic properties of two layers of entire field. θr, θs are residual and 
saturated water content, respectively; α and n are van Genuchten-Mualem shape parameters. Ks 
is the saturated hydraulic conductivity. GWL is the groundwater level. Number between 
parentheses represents the coefficient of variation (CV %).  
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5.3.1 Computational efficiency of the modeling approach  

The computational time (pre and post processing which provided about 200 maps of water 

stress, water storage and yield at different times) for the various resolution scenarios is shown 

in Figure 5-3. It ranged from 1.5 s to 9200 s when moving from lower to higher resolutions. 

The highest resolution scenario (5 x 5 m) showed a computational time of less than 3 hours for 

the whole 10.5 ha field, which is reasonable for such a dense resolution that provides detailed 

information on water flow. This efficiency in time performance (in terms of CPU and time 

consumption of the approach) is indeed significantly larger and less expensive (computational 

burden) than in previous studies (e.g. Coumou et al., 2008; Kuznetsov et al., 2012; Li et al., 

2015; Perez et al., 2011; Wu et al., 2015b; Zhu et al., 2012). The cost of high resolution 

simulations (below 10 x 10 m; 1950 s) significantly increases with increasing the number of 

grid cells. At the highest resolution (5 x 5 m), the computational time of the approach was 

significantly higher (> 400%) as compared to that of the 10 x 10 m resolution. Kuznetsov et al. 

(2012) reported that computational efficiency (CPU) of a quasi-3D approach (with coupled 

Hydrus-MODFLOW model) was significantly higher than that of a full-3D model (VFS 

model). Zhu et al. (2012) compared Hydrus-1D with their coupled unsaturated-saturated model 

(only for one spot) and reported that the simulation time of the Hydrus-1D was 28 times less 

than that of the coupled model, while similar outputs, i.e., simulated water content and 

infiltration were observed for both approaches. The approach developed in this study shows a 

large effectiveness in that the large number of soil columns does not induce an obvious and 

relevant flow modeling cost, especially for resolutions below 10 x 10 m. What thus matters 

only are the expenses (the labor and analysis cost) associated with measuring/determining the 

input data needed for the spatially explicit input parameters. 



     Chapter 5  

 

135 

 

 

Figure 5-4 demonstrates the performance of the approach to represent the simulated soil water 

status. As expected, the spatial pattern of the predictions agrees well with the spatial 

distribution of the input variables, GWL, FLD and Ks (Figure 5-1). Comparing the drier and 

wet zones, the soil-water storage changes drastically due to varying input variables in the root 

zone (mainly in the top 20 cm). The simulations show a noticeable influence of the GWL as 

well as FLD and Ks on water stress and storage and consequently crop yield. They also provide 

new insight on the effectiveness of water management which was considered as satisfactory 

for the purpose and the scale of the approach. 

 

 

Figure 5-3. Computational pre and post process time of modeling approach for various grid 
resolutions (5 x 5 m to 400 x 400 m). 
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Figure 5-4. Soil-water storage and water stress distribution before (day 72 and 140) and after (day 
144) water supply and total yield for current irrigation management (growing season 2013, 
resolution 20 x 20 m, plus sign shows the grid column locations). 
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During transient stages the vertical fluxes and consequently soil-water storage and 

redistribution may vary at different locations, and an insufficient number of soil columns might 

then cause a deviation in the estimations of the soil-water content at the field scale. Zhu et al. 

(2012) found no obvious differences in simulations of water flow - vertical flux - with 

analytical 1D, coupled and full 3D numerical models while taking into account a constant head 

boundary condition. In comparing 1, 10, 20 and 41 simulation columns along 40 m distance, 

they also found that the number of soil columns used and how and where these columns were 

placed, did not matter (although one column overestimated the flux and reduced the accuracy 

of simulations). In contrast, in our study, the uncertainty in predicted soil-water content was 

high when lower resolutions were chosen (will be further discussed, Figure 5-5). Lower 

resolutions lead to both over- and underestimation of soil-water content for drier and wetter 

zones respectively. Therefore, it seems necessary to have denser column simulations, as can be 

observed in Figure 5-5, which shows the coefficient of variation (CV) of the soil-water storage, 

water stress, stressed area and yield simulations for different resolutions (5 x 5 to 400 x 400 m) 

for the year 2012. It is acknowledged that spatial correlation (via the kriging method as proven 

by the semivariogram model) exists in the soil characteristics and input parameters. This leads 

to similar spatial variability (i.e., same CVs) of input parameters for different resolutions. But 

based on Figure 5-5, the coefficient of variation of the soil-water storage, water stress, stressed 

area and yield was larger for calculations at lower resolution as compared to the higher 

resolution in the modeling approach, while their CVs exhibit the same behavior and trend (i.e., 

fluctuations of CVs) especially for coarser resolutions. Result showed that the CV is high 

because the standard deviation is high while the average value is the same. The water stressed 

area shows the largest CV which reaches up to 140% for the lowest resolution. The calculated 

soil-water storage exhibits a CV of up to 40% depending on the resolution (Figure 5-5). This 

is not reflected in crop yield and water stress to the same extent, where CVs of only 5-10 % are 

noted. Crop yield, water stressed area and soil-water storage at various times (and thus various 

environmental conditions) show relatively larger discrepancies if low resolutions (grid sizes 

larger than 20 x 20 m) are assigned (Figure 5-5). Increasing the resolution results in a drastic 

reduction of the uncertainty to less than 1% CV for water stress, soil-water storage and yield 

(Figure 5-5). Figure 5-6 shows the deviation of simulated water storage, water stress and yield 

for different locations at 10 x 10 m resolution. It shows that a denser column grid, i.e., higher 

resolution, can represent the simulated water flow more accurately in the entire domain, which 

reflects the importance of the resolution on reducing the uncertainty of simulation in this view. 
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Hence, results showed that the CV values of soil-water storage, water stress and yield did not 

change significantly for resolutions larger than 10 x 10 m. Since the accuracy of our modeling 

approach depends on how precisely the input factors are described, assessing the reduction of 

simulation uncertainty needs more in depth evaluation which is addressed in the next section 

(irrigation scenarios and their efficiencies).        

Our modeling approach provides high resolution predictions and fast performance, which can 

be easily applied for any smaller or larger area (aggregation level) with shallow groundwater, 

since with the fairly small thickness of the vadose zone lateral flow was ignored. However, in 

the deep soil the error could be more pronounced (Hunt et al., 2008; Sheikh and van Loon, 

2007) when lateral flow becomes dominant (Zhu et al., 2012). In case of deeper groundwater 

tables, the approach may not be generalized or specific conditions should be defined. Based on 

the overall analysis for different resolution scenarios, our approach satisfactorily simulates the 

spatial pattern of soil water status, water stress and crop yield. This confirms that in predictions 

of field water status based on single sites or management zones (e.g. some limited sites) plenty 

of information for the entire field is missed, which might be problematic in view of precision 

Figure 5-5. The average coefficient of variation (CV) of simulated soil-water storage, water stress, 
stressed area and yield for different resolutions (5 x 5 m (blue color line) to 400 x 400 m (red color 
line)) over the growing season 2012 for the entire field.  
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agriculture and irrigation management (e.g. see Chapter 2). It thus seems that resolutions higher 

than 10 x 10 m do not increase the information content further, specifically since current 

irrigation technology such as Reel sprinkler at the particular site cannot go beyond a resolution 

of 12 x 12 m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6. The deviation of simulated water storage, water stress and yield for different locations 
of 10 x 10 m resolution. 
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5.3.2 Irrigation scenarios 

5.3.2.1 No irrigation 

As shown in Figure 5-4, there was water shortage and consequently water stress in some parts 

of the field (with deeper GWL) during the summer period. The water stress could be attributed 

mostly to the position of the GWL (and thus less water supply by capillary rise from deeper 

GWL) and lower water holding capacity (linked to first layer thickness and hydraulic 

parameters) of the root zone at that area (Chapter 2). Additional water supply further eliminates 

water stress. 

Figure 5-7 represents the average of water stressed area and water stress with time for the entire 

field (1212 columns, i.e, 10 x 10 m resolution) (upper two panels) for non-irrigated conditions 

for the year 2012 and 2013. According to the results, on average 5 and 13% of the area was 

under stress in 2012 and 2013, respectively, for the no-irrigation scenario. As shown in the 

third panel, the time-average soil-water storage was lower and both the stressed area and water 

stress were larger in those parts of the field with deeper GWL and higher Ks, which should be 

taken into account in the irrigation strategy. In those parts, crop yield was reduced for both 

years but most pronounced in 2013 (linked to more water stressed area and water shortage) 

(Figure 5-7). The differences in hydraulic behaviors, GWL and FLD between the three distinct 

zones shown in Figure 5-1a, combined with the results of no irrigation scenario (Figure 5-7), 

justify to adapt the irrigation plan and to find the optimal scenario at different resolutions. 

According to Figure 5-1a and 5-7, zone C (indicated on the map in Figure 5-1a) exhibits wetter 

conditions during the growing season and requires less water than zones B and A. When the 

GWL drops below 120 cm, the crop seems to experience water stress, but for GWL above 100 

cm, no irrigation seems to be required. Sufficient water seems then to be provided by capillary 

rise as to keep the soil-water potential within an extractable range. Huo et al. (2012) also 

reported larger water content in a soil profile (topsoil/root zone) with a GWL at 120 cm below 

surface as compared to a GWL at 200 to 300 cm, which was attributed to capillary rise (similar 

to our results). Consequently, water fluxes through the soil profile were greater for water tables 

shallower than 120 cm. Results suggest that the overall spatial relationship between input 

parameters and simulated water storage is linear and it seems that is dominated by the GWL. 

This suggests that GWL fluctuation over the field should be considered when attempting to 

optimize irrigation strategies. On the other hand, water (supplied by irrigation or rainfall) 

drained faster in the dry zones than the wet zones due to differences in Ks. In fact, the wetter 
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zone showed a lower Ks compared to the drier zone and water tends to stagnate at the surface 

and within the profile (which was observed during field work), and this zone thus meets most 

of the crop water demands. Similar findings were reported by Gumiere et al. (2014).  

 

 

Figure 5-7. Water stressed area, water stress, soil-water storage and yield of no irrigation scenario 
(resolution 10 x 10 m) for the year 2012 (left) and 2013 (right). Lower degree of water stress shows 
the more water stress. 
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5.3.2.2 Current and optimized irrigation 

Three types of irrigation scenarios were considered: (1) current irrigation (homogeneous 

application over the whole field); (2) optimized (trial and error) irrigation scheduling 

(optimized timing and amount but homogeneous application); and (3) triggered irrigation (this 

scenario automatically suggests the right time and specified amount of irrigation based on 

model predictions of soil moisture content in which a plant is exposed to water stress). Figure 

5-8 and 5-9 illustrates the effects of different irrigation scenarios on water stress and soil-water 

storage and eventually crop yield in 2012 and 2013, respectively (resolution: 10 x 10 m). As 

discussed later, the applied water reduced water-stress and consequently increased yield for 

both 2012 and 2013. When comparing the optimized and current irrigation scenarios, it is clear 

that the optimized scenario is remarkably more successful than the current one in reducing 

water stress and increasing yield, using less water at appropriate time, which means higher 

water application efficiency (Figure 5-8 and 5-9).  

In the current and optimized irrigation scenario (left and middle panels in Figure 5-8 and 5-9), 

huge amounts of water drain from the vadose zone because irrigation is uniformly distributed 

over the field and a drainage system is present. Comparing Figure 5-7, 5-8 and 5-9 shows that 

a significant water surplus (which can be defined as supplied water minus water demand or as 

supplied water minus soil-water storage) existed in most of the area where a shallow GWL was 

present and water stress did not occur, in both growing seasons. This also illustrates that soil-

water storage was not changed significantly by the supplied water. However, there is variability 

in soil-water storage which can be attributed to the characteristics of the soil columns 

(shallower GWL, Ks and FLD). It should be noted that the supplied water, however, 

significantly reduced the stressed area and water stress (duration and amount) over the field in 

2013. Under the current irrigation the stressed area reduced from 5% to 3.5% (2012) and from 

13% to 10% (2013). Under optimized irrigation the stressed area further reduced to 3% (2012) 

and 4% (2013). The modeling approach emphasizes the effect of the irrigation plan under dry 

and wet year conditions on crop water demand and water stress. Besides soil-water storage, 

i.e., water status as found by (Kourgialas and Karatzas, 2015), our results confirm that duration 

of water stress and stressed area are good benchmarks for irrigation management, as their 

calculations consider crop water requirements, as we showed in Chapter 2. Simulation results 

also illustrate that under no irrigation and the current irrigation scenario, yield was reduced in 
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2013 as compared to the 2012 growing season due to metrological drought. Furthermore, crop 

yield was correlated to water stress and soil-water storage (r=0.93 and r=0.89, respectively).  

 

The results of the spatially explicit approach with high resolution simulation columns agreed 

well with results derived from one column simulation with the calibrated model (Table 2-5 in 

Chapter 2, see also Table 5-2). It suggests that if the representative spot on the field is chosen 

adequately, the results may be generalized for the whole field. As a result, it is enough to 

calibrate the model (by inverse optimization of Ks) based on limited spots and apply it for a 

whole domain. This is relevant for the practitioners to select the best location when using one 

or limited spots for agricultural water management evaluations. 

Figure 5-8. Water stressed area, water storage (SWS) and yield of current (left), optimized 
(middle) and triggered (right) irrigation scenarios with their applied water over the field for 
2012 (resolution 10 x10 m). 
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5.3.2.3 Triggered irrigation 

As the right panels of Figure 5-8 and 5-9, and Table 5-2 demonstrate, the triggered irrigation 

scenario ensured a significant reduction of the water application for most of the field area 

(zones A and B, Figure 5-1a) and an increase for most of the dry locations. This results in a 

yield increase in the dry zones and a continued optimal level in the wet zones. The triggered 

irrigation scenario eliminated water stress for 2013 and maximally reduced it for 2012, as 

delivery of water is based on demand and on predefined soil-water pressure at which the plant 

starts to experience water stress (Figure 5-7, 5-8 and 5-9). The triggered irrigation scenario 

resulted in optimal crop yield for all locations over the field (see Table 5-2). 

Figure 5-9. Water stressed area, soil-water storage (SWS) and yield of current (left), optimized 
(middle) and triggered (right) irrigation scenarios with their applied water over the field for 
2013 (resolution 10 x 10 m). 
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Figure 5-8 and 5-9 further show that the model-based triggered irrigation approach would 

ensure that highest yields are obtained and minimal amount of water is applied, when water is 

distributed accordingly. Results confirm that many of the water shortages could be mitigated 

by precision management or by improved infrastructure. This scenario is valid for sprinkler 

irrigation. The modeling approach is generic and also applicable to other types of irrigation 

such as drip irrigation. The method (distribution of water supply) still uses actual precipitation 

and evapotranspiration and does not take into account weather forecast data. It should therefore 

be acknowledged that performing this approach needs accurate weather forecasting, especially 

in outdoor farming. Our simulations for different irrigation strategies highlighted that spatial 

and temporal water demand can be modeled and introduced precisely and efficiently.  

5.3.3 Irrigation efficiency and modeling approach 

5.3.3.1 Effect of modeling resolution on irrigation uncertainty  

As noted previously, the robustness, reliability and effectiveness of the modeling approach and 

the uncertainty in the simulations were evaluated using different resolutions and various 

sampling locations generated by the triggered irrigation scheme. Figure 5-10 shows the effect 

of resolution and sampling design impact on irrigation water management. Obvious differences 

can be found among the different resolutions and locations. When using a low resolution (100 

x 100 m), large uncertainties can be seen in simulation results and consequently in the irrigation 

plan (Figure 5-10). Changing the locations of calculations shifts the irrigation plan from one 

zone to another zone. Therefore, the lower resolution barely represents the field scale flow 

characteristics (columns are too sparse to characterize the flow, therefore an inaccurate area to 

be irrigated was proposed). It shows that inappropriate locations of modeling may lead to 

improper irrigation management. In contrast, varying sampling locations (i.e., changing 

randomly the location of the soil column within its corresponding grid) did not significantly 

change the irrigation scheme when using a high resolution (10 x 10 m). Additional columns 

are able to capture the flow process more accurately and precisely.
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Figure 5-10. Effects of different resolutions and sampling location on irrigation scheme (resolution: 10 x 10 m and 100 x 100 m with 5 and 10 different 
sampling locations, respectively, to have a smoother representation). 
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The results thus advocate selecting a 10 x 10 m resolution (as discussed in section 4-3-1) and 

use the modeling design presented here, and also clearly notify the effective irrigation scheme. 

Therefore, a dense modeling setup would be recommended for precision agricultural purposes. 

Results also demonstrate that in evaluating the uncertainty of the approach, not only providing 

reliable statistics provide a distinctive insight but also, visualization of the results are very 

helpful for better understanding of this matter.  

5.3.3.2 Irrigation cost-effectiveness 

Figure 5-11 further shows the difference in simulated water storage, stressed area and yield 

between the four different irrigation scenarios. According to our results, a proper irrigation plan 

(triggered irrigation scenario) can be adapted at every location within the modeling domain. 

Water consumption was reduced with up to 285% as compared to the current irrigation practice 

(Figure 5-11 and Table 5-2). The triggered irrigation scenario (10 x 10 m resolution) used less 

water which is beneficial in view of water saving, while it increased yield (non-significant) and 

decreased the irrigation cost (the operational-maintenance costs) which is important towards 

economic profitability. As regards average soil-water storage of the top 20 cm, it was increased 

in this irrigation scenario in the dry year 2013, whereas in the wet year 2012 it was lower than 

in the current irrigation scheme. However, this would not affect yield and water stress. Results 

also revealed that optimized/current irrigation strategy (10 x 10 m) required a higher water 

supply and resulted in less yield compared to triggered irrigation (10 x 10 m resolution). 

 

Table 5-2. Comparing cost-effective irrigation scenarios. Irrigation cost includes operational and 
water costs. 

 2012 2013 
Irrigation 
scenario 

Simulated 
yield 
(kg/ha) 

Irrigation 
amount 
(mm) 

Irrigation 
cost (euro) 

Simulated 
yield 
(kg/ha) 

Irrigation 
amount 
(mm) 

Irrigation 
cost (euro) 

No  13972 0 0 12056 0 0 
current 13987 65 304 12097 85.4 427 
optimized 13990 60 300 12143 75 375 
Triggered 
(10x10 m) 

14000 11.9 60 12162 29.9 149 

Triggered 
(100x100 m) 

13989 14.2 70 12136 33.9 156 

Triggered 
(400x400 m) 

13977 47.5 237 12056 - - 
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Figure 5-11. Effects of different irrigation scenarios (no- (a), current- (b), optimized- (c), 
tr iggered-10 x 10 m (d), triggered-100 x 100 m (e) and triggered-400 x 400 m (f)) with their 
applied water on yield and the average soil-water storage and water stress with time for 2012 
(left) and 2013 (right). 

5.6 

Ê 4 ~). 

~ 5.2 

~ .s 5.0 

"' .... 
Q,j 

-;; 
::: 
~ 

4 .2 

0.95 

8 
~ 0.90 

~ 
0:: 

~ 0.85 

"' "' Q,j ... 
~ o.xo 
.... ... 
-;; 
:=::: 0.75 

(2012) 

o.7oL---------~---~---~-' 

0 50 100 200 250 

a f 

6.5~------------------, 

a 
b 

- c 
d 

- e 
- f 

50 100 

Time 
150 



     Chapter 5 

 

149 

In order to avoid yield reduction, annual total irrigation cost was the most expensive for the 

low resolution triggered irrigation scenario (resolution 400 x 400m) followed by the moderate 

resolution current and triggered irrigation scenario (200 x 200 m), the high resolution optimized 

irrigation scenario (10 x 10 m) and the high resolution  triggered irrigation scenario (10 x 10 

m) (Table 5-2). This illustrates the large water use efficiency and cost-effectiveness of 

irrigation planning using triggered irrigation with high resolution (10 x 10 m) by reducing 

irrigation cost. The best irrigation scheduling (triggered) requires only 124 and 300 m3/ha in 

2012 and 2013, which is 500% and 285% lower than under the current irrigation scenario, 

respectively. With a cost of 0.5 euro per m3 of water at the study site at each irrigation event 

(including operational costs; 125 euro per ha for 25 mm irrigation), this results in a substantial 

cost reduction. Consequently, the economic benefit on a yearly basis is about 245 and 307 

euro/ha for 2012 and 2013, respectively. An interesting result is the potential economic benefit 

in terms of yield (production) associated with different irrigation scenarios (Table 5-2). The 

yield deviation between the current and optimized irrigation scenario was 5 and 50 kg/ha for 

2012 and 2013, respectively. It means that the efficiency of the optimized scenario was larger 

in 2013. The maximum yield difference between lower and higher resolutions in the triggered 

irrigation scenario was 22 and 107 kg/ha in 2012 and 2013, respectively. The yield difference 

between the high resolution current and triggered irrigation (10 x 10 m) was 13 and 65 kg/ha 

in 2012 and 2013, respectively. Considering the high resolution triggered irrigation scenario 

(10 x 10 m), the yield increased by 0.2 and 0.9% compared to the current irrigation regime in 

2012 and 2013.  

From a profitability point of view, a significant increase in yield cannot be seen. But in a dry 

year as in 2013, increase in yield was more than in a wetter year as in 2012. The results 

generated by coarser resolutions (100 x 100 and 400 x 400 m, in Table 5-2) are based on the 

“best sampling location” scenario (e.g. Figure 5-10, 100 x 100 m resolution- panels 6 and 8). 

In this example, other sampling locations did not change the yield but increased the irrigation 

amount (, 100 x 100 m resolution- panels 1-10). As discussed in the previous section, this 

confirms the importance of selecting the proper resolution as well as the proper strategic 

sampling location (the best sampling location). For irrigation management purposes at lower 

spatial resolution, it is important to select the optimal location to characterize a field. For 

management at higher resolution such as in precision agriculture, the sampling location does 

not matter that much, and when data are available at high resolution, this high spatial resolution 

is preferred (i.e., 10 x 10 m). The profitability should be considered as irrigation cost in our 
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case study. According to Table 5-2, it seems that “no-irrigation” is the best economic option 

among other scenarios. But the irrigation can be also considered in terms of security and quality 

of plant production. Nevertheless, yield increase can be more pronounced if the crop is changed 

to another one like potato. In this study, discussion about the fixed cost and investments is not 

given and it is beyond the objectives (we used numbers provided by the farmer as a lump sum 

of investment and fixed costs). The major costs we dealt about are the irrigation expenses (both 

operation, maintenance and water cost). When reducing irrigation events, duration and the area 

to be irrigated, the yield remains at the same level as with uniform irrigation (with larger 

number and amount of water consumption). Therefore, we would emphasis that the benefits 

are not the yield increase but the reducing other management costs. 

Therefore, the final water productivity (economic benefit/water usage) could be high in case of 

high resolution triggered irrigation scheduling, compared to all other scenarios. It should be 

noted that we assumed the uncertainty of input factors (hydraulic parameters, FLD and GWL) 

to be uniform for all irrigation scenarios and different resolutions in this study which can affect 

the output uncertainty. Indeed, the contribution of GWL fluctuation should be taken into 

account in water flow simulation and hence, the investigation on this subject is an interesting 

path for agricultural applications and also future research. The presented approach and 

performing triggered irrigation seems hence applying variable irrigation distribution can be 

adopted by changing the speed of the Reel sprinkler and rate of water application in practice. 

5.4 Conclusions  

We developed an analyzing and visualization setup tool using the same flow model through 

the whole flow domain. To that end, we integrated Hydrus-1D with PythonTM software and ran 

the tool for the whole field taking into account the spatial variability of input factors. In this 

modeling setup, the field was modelled as a collection of 1D columns (parallel columns) 

representing the different field conditions (combination of soil properties, GWL, root zone 

depth or first layer depth, FLD). Our developed quasi 3D modeling approach was able to 

reproduce high resolution spatial patterns of water stress, soil-water storage and crop yield 

more efficiently and effectively which can help to optimize irrigation strategies adequately and 

practically. The computational time efficiency of each model running strategy (pre and post 

processing) was calculated and evaluated. Results highlight the reasonable and good 

performance of the approach. Indeed, results show that higher grid resolutions reduced the 

uncertainty of the simulations which were affected by GWL, FLD and Ks. The approach allows 



     Chapter 5 

 

151 

to scrutinize how simulations and performance are affected by various hydrological variables 

and their resolutions. Initial results demonstrate the need for an optimal irrigation strategy with 

water being supplied to different zones of the field. Four different irrigation scenarios with 

various resolution were tested to optimize irrigation scheduling with an optimal resolution. 

This study further illustrates that water consumption can be reduced significantly when taking 

into account the spatial variability of soil and field conditions. The potential of water saving, 

and thus cost and potential contamination and solute leaching hazard, essentially stems from 

reducing the non-beneficial water supply from the current irrigation strategy and/or optimized 

irrigation based on only limited points and taking into account the shallow groundwater 

influences particularly (i.e., trial and error (optimized) irrigation scenario). 

The study clearly illustrated the benefits of using the modeling approach both in research and 

application. However, the model cannot precisely predict soil-water content at a specific 

location unless the model is calibrated and model parameters are optimized (Chapter 2 and 4). 

Nevertheless, our approach predicted soil water status in a reasonable range and it is promising 

to fill the gap between modeling and real situations in view of irrigation management. But, it 

is preferably used to evaluate relative changes in soil-water content in a spatial context, 

specifically when groundwater level plays a major role in water status simulations (Chapter 2). 

Indeed, this approach allows to evaluate irrigation strategies, to find the optimal irrigation 

scheduling to reduce the water consumption up to 300% with respect to common irrigation 

practice and ensuring water productivity. Therefore, the economic benefit could reach up to 

2472 - 2971 Euro for the field on top of a yield increase of ~1%. This modeling approach and 

methodology could be used as an appropriate tool for water management (pave the path of 

decision-making) at any scale, with estimating the availability of water at each time and space, 

and contributing to a cost-effective irrigation program.   
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6.1 Introduction  

Further improvement of current irrigation strategies with robust and novel irrigation technology 

is crucial. Advanced monitoring and modeling may promote efficient water utilization and an 

optimal water supply/distribution to increase food, feed, fiber and fuel production in response 

to worldwide water scarcity, climate change, growing populations and increasing water 

demands. This dissertation dealt with precision irrigation planning and agricultural 

management to achieve an optimal yield with a minimal water use. The main aim of this 

dissertation was to develop and test methods for optimizing irrigation efficiency using a 

combination of sensors and process-based soil hydrological models integrated with crop 

growth models. These methods are not only extremely relevant for arid and semi-arid 

conditions, but also for the management of intensively used agricultural fields in West- and 

Southern Europe suffering from summer droughts related to climate change. To address the 

general aim of study, the focus was put on different aspects of modeling, i.e. model 

parameterization, sensitivity analysis, calibration and validation, integration of hydrological 

and crop growth models, irrigation optimization, on providing the required hydraulic input data 

for field scale modeling, i.e., by estimation methods, field and lab measurements of hydraulic 

parameters, and on developing a modeling approach for simulating water distribution at the 

field scale.  

6.2 Plot scale modeling  

A first step in the thesis was the evaluation of the soil hydrological model that is used in the 

remainder of the dissertation at the plot scale through modeling one dimensional water flow 

and redistribution in the soil profile (Chapter 2). Parameterization scenarios for the calibration 

and validation of the model were tested. The results demonstrated clearly the profound effect 

of the position of the groundwater table on the estimated soil-water content and associated 

water stress for a sandy two-layered soil under grass in a temperate maritime climate. 

Furthermore, field scale variations in soil-water content were found to be very large, due to the 

spatial variability of hydraulic parameters such as Ks, topography and groundwater level 

(GWL). The study also provided a suitable procedure to apply the hydrological model in 

combination with crop growth modeling for irrigation scheduling by the practitioners. This 

type of modeling setup for precision agricultural management may be extended from the field 

to a local or regional scale and to different crops from the studied area.  
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6.2.1 Model concept and boundary conditions  

When using hydrological models for irrigation calculations, a sensitivity analysis allows 

evaluating the appropriate model conceptualization and parameterization together with the 

appropriate boundary conditions to calculate soil-water stress. In this work, a variety of 

conceptualizations was carried out to select the appropriate conditions and to identify the 

associated parameters for a 1D soil profile. The effect of soil layering (Chapter 2) was evaluated 

by comparing the two layered-soil profile with a homogeneous profile using the effective 

hydraulic conductivity and the arithmetic average of hydraulic properties based on soil layer 

thickness. Simulations using the heterogeneous profile with two layers fitted the observed 

water content data best, which was also confirmed by field observations showing distinct 

layers. 

The results showed that the water content was not sensitive to separating evaporation and 

transpiration in the reference evapotranspiration (ETo), which has its own uncertainty in 

calculating the split between the two. Therefore, ETo was entered as one of the upper boundary 

variables for the hydrological model and the leaf area index, LAI was used to take into account 

crop water uptake. The results clearly showed the great importance of the bottom boundary 

condition (e.g. free drainage, variable and constant head) in estimating soil-water content and 

water stress in the soil profile, even for groundwater depths well below 120 cm depth and sandy 

soils. The effect of the boundary condition may well exceed the impact of the uncertainty on 

hydraulic parameters in a parameter optimization. This reflects the need for an accurate 

determination of the bottom boundary condition i.e., GWL, both in space and time (Chapter 2). 

The tempo-spatial changes of groundwater levels have important consequences for precision 

irrigation management and variable water applications at sub-field scale. Therefore, the 

variable bottom boundary condition would be a better option to simulate water content in better 

agreement with observations. Consequently, groundwater depth fluctuations should be 

monitored continuously using for example a Diver (Mini-Diver, Eijkelkamp Agrisearch 

Equipment, Giesbeek, The Netherlands) at different locations in the field (Chapter 4). 

Before optimizing hydraulic model parameters, the effect of model conceptualization and of 

the boundary conditions should therefore be assessed. Accordingly, testing model 

conceptualizations (with different degrees of complexity) and parameter sensitivity analysis 

provide insight in the most important aspects in model performance assessment. 
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6.2.2 Sensitivity analysis 

A time-dependent local sensitivity analysis of the hydraulic parameters showed that changes 

in soil-water content were mainly affected by the soil saturated hydraulic conductivity Ks and 

the Mualem-van Genuchten retention curve shape parameters n and α (Chapter 2). The fact that 

the model predictions, especially in the upper part of the soil profile, were extremely sensitive 

to variations in hydraulic parameters in dry periods. Specifically, for irrigation management 

which occurs in the dry periods of the year, this is of great importance. To improve the timing 

of irrigation in these crucial periods, numerical soil models that are used to determine irrigation 

requirement, need to be well parametrized for α, n and Ks. Determining the initial values 

(initial-estimates) of these hydraulic parameter is the first step since in the parametrization 

process, the optimized values are strongly dependent on their initial values and the initial 

estimates must be reasonably close to their true values. The initial estimations can be taken 

from various sources: from pedotransfer functions (PTFs) applied to soil basic information, 

with different datasets depending on available information (Chapter 4). Secondly, they can be 

determined from laboratory or in situ experiments (Chapter 2 and 4). Thirdly, the initial 

parameter values can be estimated using field proximally sensed data such as ECa derived by 

EMI techniques (Chapter 3). The effect of these various sources of basic soil information was 

tested in this dissertation.   

The application of a time variant sensitivity analysis is crucial with respect to parameterization 

of hydraulic parameters for irrigation management and will be useful in a wide set of 

conditions, climates and soil types. In the chapters 1 and 2 we elaborated on the drawbacks of 

a local sensitivity analysis (LSA). LSA is a straightforward methodology, which we consider 

as an essential step within the modeling workflow to learn about model behavior and to identify 

key parameters. We found that the selection of a LSA is sufficient since the interest goes 

specifically to the measured parameter values. However, the results of the LSA of this study 

cannot be generalized towards other applications, due to the case-specific aspects.  

6.2.3 Model parameterization 

This study was conducted based on relatively simplified assumptions in modeling approach, in 

which optimized irrigation scheduling is the main concern. It was found that in optimizing the 

hydraulic model parameters, the effect of the boundary conditions should be assessed 

simultaneously and then the appropriate boundary conditions should be chosen in terms of 

water stress (root water uptake) and soil-water content. 
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Special attention was given to possible problems of parameter non-uniqueness related to the 

inverse solution. The parametrization scenarios in the calibration and validation stage of model 

development were kept simple in view of the information they generate. The scenarios clearly 

showed that it is sufficient to optimize only a limited number of key parameters (i.e., Ks). 

Furthermore, it was shown that optimization strategies involving multiple parameters (as result 

of LSA) do not perform better in view of optimization for irrigation management.  

The choice of the calibration period may influence the results of parameter optimization. In our 

study the observed soil-water content range and dynamics, rainfall intensity and ETo were 

similar in the calibration and validation periods (relevant for irrigation management) and a 

similar model response and performance is expected in other periods. Therefore, selecting a 

sufficiently long period in a growing season with several drying and wetting events was 

suggested as good modeling practice. 

6.2.4 Optimizing irrigation schemes 

The degree of water stress is a good criterion to evaluate irrigation supply scenarios in irrigation 

management. Soil-water status was converted into water stress and crop yield using a crop 

growth model. Different optimization scenarios were tested that affected water stress and crop 

yield. Variations in parameter optimization (two-, three-, four- or six-parameter optimizations) 

did not affect the calculated water stress and yield reduction as significantly as does the bottom 

boundary. Therefore, these results again confirm the importance of the optimization of the 

boundary conditions (to accurately describe recharge to or from groundwater) on top of the 

hydraulic parameters (to accurately describe soil-water content variation in the topsoil) for 

irrigation management purposes. 

Overall, we would stress that at the field scale non-uniform irrigation distribution (water supply 

in dryer parts with groundwater level below 120 cm) may be necessary and will result in cost 

saving for the farmer. Also, timing of the irrigation could be improved by considering actual 

soil-water status, crop condition and weather forecast using a combined hydrological and crop 

growth model in irrigation management and precision agriculture. Using soil-water stress as a 

benchmark, it was shown that a combined modeling approach could increase water use 

efficiency (12-22.5%) and yield (5-7%) by changing the irrigation scheduling from the current 

strategy to ‘trial and error’ irrigation optimization at a plot scale study (Chapter 2). Another 

irrigation scheme which can automate the irrigation scheduling is the triggered irrigation that 
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is implemented in Hydrus. Using this option, irrigation can be triggered when the pressure head 

at a selected observation depth drops below a specific value e.g. field capacity, to eliminate 

soil-water stress. However, high efficiencies can only be achieved if rainfall is known a priori, 

i.e. while the soil-water status could indicate when to irrigate, it would be impossible to know 

how much to irrigate if the rainfall cannot be accurately predicted. Therefore, the results of the 

study call for taking into account accurate weather forecast and water content data in irrigation 

management and precision agriculture.  

6.3 Field scale Ks prediction  

To accurately determine the field-scale irrigation requirements, determining the spatial 

distribution of the most sensitive model parameters (in our case study: Ks) is crucial. Results 

(Chapter 3) demonstrated the large spatial variability of all studied properties with Ks being the 

most variable one (CV = 86.21%). Good correlations were found between Ks and ECa data 

derived by a DUALEM-21S sensor. A semi-log empirical relation was proposed and validated 

(using an independent dataset of measured Ks) to estimate the spatial distribution of Ks using 

ECa as a proxy. The statistical performance indicators of the relation and its map demonstrate 

a high coefficient of determination between predicted and measured Ks (r2 = 0.67), a high 

coefficient of model efficiency (Ce = 0.64), and a relatively low root-mean-square estimation 

error (RMSEE = 0.74 cm h-1). These indicate the good accuracy and prediction efficiency of 

the developed regression model. Based on the relationship, a detailed map of Ks was produced. 

This approach offers a promising perspective to facilitate the collection of high resolution data 

by geophysical surveys and provide more comprehensive information of Ks distribution. The 

inverse distance weighting (IDW) interpolation method was also tested and compared with the 

empirical relation. Results showed that the developed semi-log relation between Ks and ECa is 

a better estimator for the prediction of Ks than IDW interpolation. The relative RMSEE of the 

regression model and IDW interpolation of Ks predictions were 57 and 82%, respectively. 

Overall, these results confirm that the estimation of Ks from the established regression model 

using the ECa estimator is satisfactory and certainly reasonable for hydrological modeling. 

6.4 In-situ and laboratory hydraulic parameter sets and model 

performance 

The value of measuring soil hydraulic properties with field (infiltrometry and inverse 

modeling) and lab methods was assessed (Chapter 4). Results show that both are correlated 
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(with positive correlations being observed between lab and field MVG parameters (r≥0.55)), 

though both methods generated significantly different values. Laboratory tests yielded 2–30 

times higher Ks values than those derived from field infiltration measurements. Inverse 

optimization resulted in an excellent match between observed and fitted infiltration rates in 

combination with soil-water content at the end of the experiment. This method also resulted in 

close correspondence of α and Kfs with those from the Logsdon and Jaynes (1993) solution of 

the Wooding’s equation for the sandy soil in the study field. We found the Gardner parameter 

αG to be related to the optimized van Genuchten parameters αvG and n as αG ≈ αvG n. 

The relevance of the difference in lab and field hydraulic parameter sets was evaluated by 

comparing water content predictions to observations. Results indicated a better performance 

when using the laboratory data set from middle to deeper depths (i.e., 30 to 60 cm). In the two 

soil profiles under study, field parameter sets, which were less time consuming and labor 

intensive to achieve, resulted in slightly better soil-water content simulations in the topsoil (0 

to 20 cm) where the plant roots are concentrated, and soil-water potential in the subsoil (50 cm 

depth). Generally, in view of precision agriculture, field measurements and inverse 

optimization approaches are preferred to determine soil hydraulic properties. Based on the 

simulation results of the study, it is not possible to judge whether laboratory or field methods 

should be preferred.  

6.5 Field scale irrigation optimization, quasi 3D approach 

The plot scale model was coupled to the 2D maps of groundwater depth, first layer thickness 

and hydraulic conductivity Ks. Thus, a quasi 3D modeling approach was developed to simulate 

and visualize high resolution spatial patterns of water flow, water storage, water stress and crop 

yield over the entire heterogeneous sandy field (Chapter 5).  

Evaluating computational performance and time efficiency of the modeling setup (pre and post 

processing) illustrated good performance and high effectiveness of the approach. Taking into 

account higher resolution input data for GWL, FLD and Ks, reduced the uncertainty of 

simulations while, approaches treating the field as a homogeneous unit or dividing the field in 

a limited number of management zone lose information in view of irrigation management. 

Results showed that a 10 x 10 m resolution is sufficient, reasonable and fits with current 

irrigation technology which can be selected in view of modeling approach, precision 

agriculture and water management strategy. Future developments in irrigation technology can 
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be assessed using the proposed 3D-modeling approach. This approach provides high resolution 

predictions and could also be generalized for any area of interest.  

We found that the uniform distribution of water using standard gun sprinkler irrigation may 

not be an efficient approach since at locations with shallow groundwater, the amount of water 

applied will be excessive as compared to the crop requirements, while in locations with a deeper 

groundwater table, the crop irrigation requirements will not be met during crop water stress. 

Therefore, four irrigation scenarios (no, current, optimized (trial and error) and triggered 

irrigation scenarios) were assessed using a quasi 3D modeling approach to find the optimal and 

most cost-effective irrigation scheduling. Numerical results showed that optimal irrigation 

scheduling was obtained by triggered irrigation, using the aforementioned water stress 

(duration and extension) and stressed area calculations and soil pressure heads resulting in 

saving up to ~300% irrigation water as compared to the current irrigation regime, while yield 

was not significantly affected (increase of ~1%). Reducing the water consumption would result 

in an economic benefit which could reach up to 2472 - 2971 euro for the study area (10.5 ha) 

on top of yield increase. Overall, it can be stated that the presented approaches and the modeling 

methodology applied in this study are generic and can be used for a range of crops, soils and 

topography. 

6.6 Future perspective 

Further knowledge is required to design and improve spatially distributed irrigation strategies 

at the field scale. Throughout the different chapters in the manuscript, efforts were made to 

characterize and model water flow in soils for irrigation optimization. This study proved that 

the modeling approach we suggested is a feasible solution for precision irrigation management. 

From the results and conclusions, the following ideas are suggested regarding prospective 

research:  

• The effects of soil layering and boundary conditions on model performance have been 

taken into account based on the observation and subsequent conceptualization (see 

Chapters 2 and 4). It would be interesting to know what happens to the model output if 

the soil profile is divided into several individual layers (model abstraction) with their 

specific hydraulic parameters and also in such cases with no evidence of pedogenic 

layers. A kind of model abstraction can show the differences of model 

conceptualization on the model performance. In this study, specific boundary 
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conditions for temperate climatological conditions, i.e., shallow groundwater, rainfed 

and irrigation water supply were considered to affect water fluxes in the subsoil, and 

the results were limited to the soil type at the study site. Further research is necessary 

to apply the model to soil water flow and solute transport processes in different soil 

types especially in arid and semi-arid area with deeper GWL and without rainfall during 

the growing season. 

• Because of the lack of information on GWL fluctuation in time and space (one of the 

limitation factor in the study), it is suggested to integrate the tool with groundwater 

models such as MODFLOW. These models provide time series of GWL which can be 

used in unsaturated zone tools in an iterative approach. This approach can further help 

to evaluate the effects of variable and constant bottom boundary conditions on water 

flow and consequently water management strategies. 

• In an effort to optimize irrigation management using a combination of hydrological and 

crop growth models, this study highlighted advantages and limitations to be addressed 

here and by future work. The integrated model (quasi 3D modeling) performed 

efficiently in this study and can be regarded as a general tool for irrigation management. 

However, it is not clear from the current results how the model will perform in more 

complicated optimization problems e.g., multiobjective optimization at different 

locations of the field. We found that the Levenberg-Marquardt algorithm is sufficient 

in our study to calibrate the model for shallow groundwater conditions and to 

investigate the sensitivity of hydraulic parameters and boundary conditions. However, 

we did not compare different optimization processes using different algorithms. Future 

studies may compare different complexity levels of optimization problems (using 

several algorithms and models). In that case, multiobjective optimization could also be 

used to evaluate the simultaneous optimization of boundary conditions, hydraulic 

parameters and other variables especially for deeper GWL.  

• As mentioned previously, the study was carried out based on a relatively simplified 

modeling setup, in which optimized irrigation scheduling was the main concern. More 

realistic modeling approaches may incorporate other considerations such as water 

quality, solute and fertilizer leaching (nitrate), etc. so this would warrant a separate 

study on these matters. 

• The research study presents a new modeling approach to optimize full irrigation with 

an integrated crop growth model, hydrological model and optimization processes. 
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Hence an optimal irrigation scheduling (full irrigation) was out forward and applied in 

the study region. However, we suggest to also use the provided framework of this study 

to examine deficit irrigation strategies.  

• The output of downscale climate model can be used as input of hydrological model to 

evaluate what would be need for future irrigation management. It is also suggested that 

the tool couple with the downscale regional climate models. 

• It is suggested that the approach will be tested for different soils and presence of the 

slope and other possible conditions regards to different crops. 

• A user friendly application (graphical interface) could be developed in which the 

integrated model implementation in PythonTM could be easily and more efficiently used 

by farmers or applicants.  

• Precision irrigation management requires accurate information on spatial variation of 

field hydraulic properties and in-detail observations. Characterizing field scale soil 

hydraulic properties can be done by linking them to ECa, which can be measured 

efficiently and inexpensively, so a spatially dense dataset for describing within-field 

spatial soil variability could be generated. Further research may attempt to answer the 

following specific question: how can theoretical and empirical relationships of field 

ECa data, hydraulic conductivity K, and soil water retention data SWR, be applied to 

predict K and SWR more accurately and effectively at the field scale. It can be explored 

to estimate MVG hydraulic parameters (K and SWR) by establishing an in-situ 

relationship between ECa and hydraulic parameters using empirical and semi-empirical 

relations such as Archie’s first and second laws (1942).   

• Results of our study do not confirm whether laboratory or field experiments data sets 

are most appropriate to predict soil water fluctuations in a complete soil profile, while 

field experiments are preferred in many studies. On the other hand, results also 

suggested that parameter optimization is necessary over a longer time such as a full 

growing season, in combination with independent soil-water content and soil-water 

potential data, to obtain an effective parameter set. In addition, a deeper knowledge of 

the effect of temporal and spatial changes in hydraulic properties is needed to achieve 

better agreement between measured and simulated values. Therefore, further research 

is required to test the optimization processes in this respect. However, the validity of 

optimized parameters should always be carefully evaluated because they may merely 

be a result of modeling rather than reflecting actual realistic soil physical values. 
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Figure. A2. 1. A topographic map of the study sites area. 
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The scripts for local SA programmed in PythonTM  software linking to Hydrus-1D 

(Definitions and example). 

''' 
Hydrus Parameter file  adaptor: 
    This modules changes a specific parameter of th e Hydrus input file   
    and  runs the model with the adapted parameter files. 
    Specifically created for  the 1D columns model of the project, 
    but easy to adapt to other model configurations  
Project: PhD Meisam Rezaei 
Author: Van Hoey Stijn 
 
TODO: 
    Hydrus Routine 
        -OK input: change water parameter and  rerun hydrus 
        -OK output: read  the output file  and  prepare for  plot, save,... 
    Local sensitivity: 
        -OK define parameter-adjustment step 
        -OK sensitivity calculation function in for  loop  (all pars and all 
outputs)  
        -OK plots in time (4 output plots, all pars in one plot)  
    Globale sensitivity: 
        - Sample MonteCarlo 
        - decide the output variable 
        - run  model 
        - visual sensitivity with scatter plots 
        - calculate SRC's 
import os 
import sys 
import time 
import subprocess 
import pandas  as pd  
import numpy as np  
import matplotlib . pyplot  as plt  
import matplotlib . gridspec  as gridspec  
#-------------------------------------------------- -----------------------  
# INPUT/OUTPUT ROUTINES 
#-------------------------------------------------- -----------------------  
def replaceInputWater ( path_to_dir ,  newvalue ,  parname ='Ks' ,  layer =1):  
    The Hydrus input file Selector.in always puts t he water flow in BLOCK B 
    The parameters values are given for each profil e layer under the 
parameter 
    name. As such, this definition search for the p arameter and layer and  
    changes the par. 
    Parameters 
    ----------- 
    path_to_dir:  
        Directory with the Hydrus-input and output files in 
    newvalue:  
        New parameter value to be used, %.9f value 
    parname: 
        The name of the parameter as is appears in the file 
    layer: 
        The layer where the parameter need to be ch anged 
    '''  
    try :  
        
os . rename ( os . path . join ( path_to_dir , 'Selector.in' ), os . path . join ( path_to_dir ,
'Selector_old.in' ))  
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    except :  
        os . remove ( os . path . join ( path_to_dir , 'Selector_old.in' ))  
        
os . rename ( os . path . join ( path_to_dir , 'Selector.in' ), os . path . join ( path_to_dir ,
'Selector_old.in' ))  
         
    fin  = open ( os . path . join ( path_to_dir , 'Selector_old.in' ), 'r' )  
    fout  = open ( os . path . join ( path_to_dir , 'Selector_new.in' ), 'wt' )  
    fintext  = fin . readlines ()  
    #Get line with par headers assuming Ks is always a parameter  
    #using the parameter is not possible, since eg 'n' woul give errors  
    parstartline  = fintext . index ([ x  for x  in fintext  if 'Ks'  in x][ 0])  
    #Get index (column) of the parameter  
    parcolumn  = fintext [ parstartline ]. split (). index ( parname )  
     
    #adapting the lines after it  
    adaptline  = parstartline  + layer  
    parline  = fintext [ adaptline ]. split ()  
    parline [ parcolumn ]  = '%.9f'  % newvalue  
    #we assume the floats are printed in eigth characte rs '%8s'  
    parline_new  = [ '%18s' %i  for i  in parline ]  
    fintext [ adaptline ]  = '' . join ( parline_new )+ '\n'  
    fout . writelines ( fintext )  
     
    fin . close ()  
    fout . close ()  
    
os . rename ( os . path . join ( path_to_dir , 'Selector_new.in' ), os . path . join ( path_to_
dir , 'Selector.in' ))  
def runHydrus ( guessed_runtime =8,  
path_to_dir ='D:\\Python_sensitivity\\1Dmodel2' , install_dir ="C:\\Program 
Files (x86)\\PC-Progress\\Hydrus-1D 4.xx" ):  
    ''' 
    Run the Hydrus model from within Python 
     
    Parameters 
    ------------ 
    guessed_runtime: 
        runtime of the model, in seconds (take some  seconds more) 
    path_to_dir: 
        path to the working directory with input/ou tput of Hydrus 
    install_dir: 
        path to the installation directory of the H ydrus software        
    '''  
#    cdtorun='"C:\\Program Files\\PC-Progress\\Hydr us-1D 
4.xx\\H1D_CALC.EXE"  D:\\Projecten\\2013_Meisam\\1D _model'  
    cdtorun =os . path . join ( install_dir , 'H1D_CALC.EXE' )+ ' ' +path_to_dir  
    print cdtorun  
    proc  = subprocess . Popen( cdtorun )  
#    proc = subprocess.call(cdtorun)  
#    proc = subprocess.Popen(cdtorun, stderr=subpro cess.PIPE, 
stdout=subprocess.PIPE)  
    time . sleep ( guessed_runtime )  #time nothing is happening to let model run  
    proc . terminate ()  
    #WINDOWS ONLY: ADAPT FOR LINUX:  
#    subprocess.Popen("taskkill /F /T /PID %i"%proc .pid , shell=True)  
    #control if sleep was long enough  
    #all files with the .out extension need to have 'en d' in the last line  
    #except of the balance, which has the runtime  
    #When doing multiple runs, the calculation time of the first will be 
reused if this one was too short  
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    files_in_dir  = os . listdir ( path_to_dir )  
    for file_in_dir  in files_in_dir :  
        if file_in_dir [- 4:]== '.out' :  
            f =open ( os . path . join ( path_to_dir , file_in_dir ))  
            f . seek (- 100 ,  os . SEEK_END)  #100 should be enough for the purpose 
here  
            line  = f . readlines ()[- 1]  
            if file_in_dir  ==  'Balance.out' :               
                print line  
            else :  
                if line  <> 'end\n' :  
                    print 'The sleep time was not long enough to perform 
the entire simulation. The file' , file_in_dir , 'has not the entire simulation 
period written.'  
            f . close ()  
 
 
def 
filter_on_timestep ( infile ='Obs_Node.out' , outfile ='Obs_Node_filtered.out' ,  
nnodes =5):  
    ''' 
    Reads the node file and deletes the not-measure ment timesteps 
    control the presence oif every timestep 
    '''  
    #calculate columns with data  
    cols  =nnodes * 3+1 
 
    fin  = open ( infile )   
    fout  = open ( outfile ,  'wt' )   
    for line  in fin . readlines ():   
        if not len ( line . split ())== cols :  #copy the none-data rows  
            fout . write ( line )   
        elif line . split ()[ 0]  =='time' :  #copy the data header row  
            fout . write ( line )  
            ftaker =True 
        else :  
            if ftaker ==True :  #Always take first line/timestep up  
                fout . write ( line )  
                old  = float ( line . split ()[ 0])  
                ftaker =False 
            if line . split ()[ 0][- 4:]== '0000' :  #only take timesteps with 
measurements  
                new= float ( line . split ()[ 0])  
                if not abs ( old - new)  == 1.0 :  
                    print 'Filtering on 
timestep' , line . split ()[ 0], 'failed.' ,  abs ( old - new),  'hour is considered as 
timestep'  
                fout . write ( line )   
                old  = new 
    fin . close ()  
    fout . close ()  
def readoutput_to_dataframe ( filename ='Obs_Node_filtered.out' ,  
startdate ='3/1/2012 00:00' ,  enddate ='6/13/2012 03:00' ,  variable ='theta' ,  
nnodes =5):  
    ''' 
    Reads data from file and puts it in a pandas da taframe to plot, 
handle,... 
    Always considerd 5 nodes measured, hourly frequ ency and 12 header lines   
     
    Parameters 
    ------------- 
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    filename: 
        Name of the file with the outputs of the mo del 
    startdate:  
        Hour of the first output 
    enddate: 
        Hour of the last output 
    variable: 
        string of theta, h or flux, representing mo isture, head or flux 
    Notes 
    ------ 
    #start-date=1march 2012, 00u 
    #end-date=13jun 2012, 3u 
     
    We do the date-managing with pandas here, since  scikits outdated 
    '''  
    if nnodes ==5:  
        if variable  == 'theta' :  
            cols  = ( 2, 5, 8, 11 , 14)  
        elif variable  == 'h' :  
            cols  = ( 1, 4, 7, 10 , 13)  
        elif variable  == 'flux' :  
            cols  = ( 3, 6, 9, 12 , 15)  
        else :  
            raise Exception ( 'Variable must be theta, flux or h' )  
    elif nnodes ==4:  
        if variable  == 'theta' :  
            cols  = ( 2, 5, 8, 11)  
        elif variable  == 'h' :  
            cols  = ( 1, 4, 7, 10)  
        elif variable  == 'flux' :  
            cols  = ( 3, 6, 9, 12)  
        else :  
            raise Exception ( 'Variable must be theta, flux or h' )  
             
    outarray  = np. loadtxt ( filename ,  skiprows =11 ,  usecols =cols ,  
comments ='end' )  
    rng  = pd. date_range ( start =startdate ,  end=enddate ,  freq ='H' )  
    if nnodes ==4:  
        df  = pd. DataFrame ( outarray ,  index =rng ,  columns =[ 'Node 10' , 'Node 
20' , 'Node 30' , 'Node 40' ])     
    elif nnodes ==5:  
        df  = pd. DataFrame ( outarray ,  index =rng ,  columns =[ 'Node 10' , 'Node 
20' , 'Node 30' , 'Node 40' , 'Node 50' ])     
    return df  
def read_current_value ():  
    ''' 
    instead of giving a value, just read the origin al value from the 
current selector.in 
    TODO 
    '''  
    pass 
def check_for_error ( path_to_model ):  
    ''' 
    Check in model directory for error messages 
    '''  
    files_in_dir  = os . listdir ( path_to_model )  
    if 'Error.msg'  in files_in_dir :  
        raise Exception ( 'ATTENTION: ERROR in model run!' )  
def create_default_selector ( path_to_model ):  
    ''' 
    To make sure, the default parameters are always  used before the  
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    sensitivity indices are calculated. 
 
    #original values 
    #   thr     ths    Alfa      n         Ks       l 
    #      0     0.4   0.015     2.4       2.18     0.5  
    #      0    0.35  0.0196     2.5      2.271     0.5   
     
    TODO: adapt to make generic 
    '''  
    parnames =[ 'thr' , 'ths' , 'Alfa' , 'n' , 'Ks' , 'l' ]  
    parlayer1 =[ 0.0 , 0.4 , 0.015 , 2.4 , 2.187 , 0.5 ]  
    parlayer2 =[ 0.0 , 0.35 , 0.0196 , 2.5 ,  2.271 , 0.5 ]  
    ide =0 
    for par  in parnames :  
        replaceInputWater ( path_to_model ,  parlayer1 [ ide ],  
parname =parnames [ ide ],  layer =1)  
        replaceInputWater ( path_to_model ,  parlayer2 [ ide ],  
parname =parnames [ ide ],  layer =2)  
        ide +=1 
#-------------------------------------------------- -----------------------  
#  LOCAL SENSITIVITY ANALYSIS  
#-------------------------------------------------- -----------------------  
#Central relative sensitivity (CRS), as calculated in CierkensK  
#1/ run model 2/ run with perturbation minus 3/ run  with perturbation plus  
#4/ compare both visually 5/ calculates sensitvitiy  (normalised stuff) for 
each timestep  
#original values  
#   thr     ths    Alfa      n         Ks       l  
#      0     0.364   0.01452     2.4693       2.187      0.5  
 #      0    0.3764 0.06227     2.537      2.271     0.5   
#Preliminar tests for perturbation factor  
#--------------------------------------  
##smaller perturbation factors not feasible with cu rrent output writing 
profile  
##0.01 should be better, but the output accuracy is  not fine 
enough!##perturbation_factor = 0.1  
#path_to_model = 'D:\\Projecten\\2013_Meisam\\1D_mo del'  
#dename = 'Alfa'  
#depar = 0.01965  
#llayer=2  
#create_default_selector(path_to_model)  
#run model with par    
#replaceInputWater(path_to_model, depar, parname=de name, layer=llayer)  
#runHydrus(guessed_runtime=8)   
#filter_on_timestep(infile='1D_model\Obs_Node.out', outfile='1D_model\Obs_No
de_filtered1.out')  
#df_Ks1 = 
readoutput_to_dataframe(filename='1D_model\Obs_Node _filtered1.out', 
startdate='5/4/2011 13:00', enddate='9/2/2011 11:00 ', variable='theta')  
#run model with par + pert  
#replaceInputWater(path_to_model, depar + perturbat ion_factor*depar, 
parname=dename, layer=llayer)  
#runHydrus(guessed_runtime=8)   
#filter_on_timestep(infile='1D_model\Obs_Node.out', outfile='1D_model\Obs_No
de_filtered2.out')  
#df_Ks1_plus = 
readoutput_to_dataframe(filename='1D_model\Obs_Node _filtered2.out', 
startdate='5/4/2011 13:00', enddate='9/2/2011 11:00 ', variable='theta')  
#run model with par - pert  
#replaceInputWater(path_to_model, depar - perturbat ion_factor*depar, 
parname=dename, layer=llayer)  
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#runHydrus(guessed_runtime=8)   
#filter_on_timestep(infile='1D_model\Obs_Node.out', outfile='1D_model\Obs_No
de_filtered3.out')  
#df_Ks1_min = 
readoutput_to_dataframe(filename='1D_model\Obs_Node _filtered3.out', 
startdate='5/4/2011 13:00', enddate='9/2/2011 11:00 ', variable='theta')  
##output creating of the testenvironment  
##tt1 = df_Ks1_min - df_Ks1  
##tt2 = df_Ks1_plus - df_Ks1  
##tt1.columns = ['minus 10', 'minus 20','minus 30', 'minus 40','minus 50']  
##tt2.columns = ['plus 10', 'plus 20','plus 30','pl us 40','plus 50']  
##tt = tt1.join(tt2)  
##tt.plot(subplots=True, figsize=(16, 8))  
# 
#plt.figure()  
#plt.plot(df_Ks1_plus['Node 10']-df_Ks1['Node 10'])  
#plt.plot(df_Ks1['Node 10']-df_Ks1_min['Node 10'])  
#dp_plus = df_Ks1_plus['Node 10']-df_Ks1['Node 10']  
#dp_min = df_Ks1['Node 10']-df_Ks1_min['Node 10']  
#plt.plot((dp_plus+dp_min)/2.)  
#plt.plot(dp_min-dp_plus)  
#--------------------------------------  
#Sensitivity calcluations  
#--------------------------------------  
def calculate_sens ( path_to_model ,  parameter_value ,  perturbation_factor  = 
0.01 ,  parameter_name ='Ks' ,  parameter_layer =1,  
                   startdate ='3/1/2011 00:00' ,  enddate ='6/13/2012 03:00' ,  
variable  = 'theta' ,  guessed_runtime =8,  
                   nnodes =5):  
    ''' 
    run model two (or three) times and get outputs to calculate the 
sensitivity indices 
    one parameter changes, all the rest stays the s ame; all outputs are 
plotted 
     
    make class from it to avoid the startdate/enddd ate arguments... TODO! 
    '''  
    #Make default parameter file before starting analys is  
    create_default_selector ( path_to_model )  
     
    #run model with parameter value-> depreciated  
#    replaceInputWater(path_to_model, parameter_val ue, 
parname=parameter_name, layer=parameter_layer)  
#    runHydrus(guessed_runtime=guessed_runtime)   
filter_on_timestep(infile=os.path.join(path_to_mode l,'Obs_Node.out'),outfil
e=os.path.join(path_to_model,'Obs_Node_filtered1.ou t'))  
#    df_par = 
readoutput_to_dataframe(filename=os.path.join(path_ to_model,'Obs_Node_filte
red1.out'), startdate=startdate, enddate=enddate, v ariable=variable)  
    #run model with parameter value plus perturbation   
    replaceInputWater ( path_to_model ,  parameter_value  + 
perturbation_factor * parameter_value ,  parname =parameter_name ,  
layer =parameter_layer )  
    runHydrus ( guessed_runtime =guessed_runtime )    
    
filter_on_timestep ( infile =os . path . join ( path_to_model , 'Obs_Node.out' ), outfil
e=os . path . join ( path_to_model , 'Obs_Node_filtered2.out' ),  nnodes =nnodes )  
    df_par_plus  = 
readoutput_to_dataframe ( filename =os . path . join ( path_to_model , 'Obs_Node_filte
red2.out' ),  startdate =startdate ,  enddate =enddate ,  variable =variable ,  
nnodes =nnodes )  
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    #run model with parameter value minus perturbation  
    replaceInputWater ( path_to_model ,  parameter_value  -  
perturbation_factor * parameter_value ,  parname =parameter_name ,  
layer =parameter_layer )  
    runHydrus ( guessed_runtime =guessed_runtime )    
    
filter_on_timestep ( infile =os . path . join ( path_to_model , 'Obs_Node.out' ), outfil
e=os . path . join ( path_to_model , 'Obs_Node_filtered3.out' ),  nnodes =nnodes )  
    df_par_min  = 
readoutput_to_dataframe ( filename =os . path . join ( path_to_model , 'Obs_Node_filte
red3.out' ),  startdate =startdate ,  enddate =enddate ,  variable =variable ,  
nnodes =nnodes )  
    #calculate sensitivity for this parameter, all outp uts     
    average_out  = ( df_par_plus +df_par_min )/ 2.  
    #sensitivity indices:  
    CAS = ( df_par_plus - df_par_min )/( 2. * perturbation_factor * parameter_value )  
#dy/dp  
    CPRS = CAS* parameter_value      
    CTRS = CAS* parameter_value / average_out  #or average_out  -> run less!  
    #check for error files:  
    check_for_error ( path_to_model )  
    return CAS,  CPRS,  CTRS,  average_out ,  df_par_plus ,  df_par_min  
#sensitivity for all pars in the two layers  
def local_sensitivity ( path_to_model , parnames ,  parvalues ,   
                      perturbation_factor  = 0.1 ,  nnodes =5,  
startdate ='3/1/2011 00:00' ,   
                      enddate ='6/13/2012 03:00' ,   guessed_runtime =8):  
    Fo all parameters and all layers, do sensitivit y 
    plot CAS and CRS for all parameters 
    TODO: save outputs for later evaluations and ch eckup for global 
sensitvity testing 
    TODO: choose output types to save to file  
    '''  
    #thr is assumed to be zero, sp not included  
    #    parnames=['ths','Alfa','n','Ks','l']  
    #    parlayer1=[0.4,0.015,2.4,2.18,0.5]  
    #    parlayer2=[0.35,0.01965,2.5, 2.271,0.5]  
    #    parvalues=([0.4,0.015,2.4,2.18,0.5],[0.35,0.01 965,2.5, 2.271,0.5])  
    #TODO: control the tuple construction     
    layers  = len ( par_values )  #length of the tuple defines the number of 
layers  
    ide =0     
    for par  in parnames :  #for every parameter  
        print 'Running the model for sensitivity calculation of p arameter 
' , par  
        for lay  in range ( layers ):  
            worklayer =lay +1 
            print 'currently changing in layer ' , str ( worklayer )  
            #calcluate for first layer  
            CAS,  CPRS,  CTRS,  outputs ,  df_par_plus ,  df_par_min  = 
calculate_sens ( path_to_model ,  parvalues [ lay ][ ide ],  parameter_name =par ,   
                                                                               
parameter_layer =worklayer ,   
                                                                               
perturbation_factor  = perturbation_factor ,   
                                                                               
nnodes =nnodes ,  
                                                                               
startdate =startdate ,  enddate =enddate ,   guessed_runtime =guessed_runtime )                       
            #Save outputs of CPRS in files without dates  
            CPRS. to_csv ( 'CPRS_l' +str ( worklayer )+ '_' +par +'.txt' , index =False )  
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            CAS. to_csv ( 'CPRS_l' +str ( worklayer )+ '_' +par +'.txt' , index =False )  
            CTRS. to_csv ( 'CTRS_l' +str ( worklayer )+ '_' +par +'.txt' , index =False )  
        ide +=1  
def plot_sensitivity ( par ='Ks' ,  senstype ="CTRS" ,  nnodes =5):  
    ''' 
    Plot the outputs 
    '''  
# read Rain data  
    rain  = pd. read_csv ( '1DModel2\\rain.csv' ,  index_col =0,  names=[ 'rain' ],  
parse_dates =True ,  
                   dayfirst =True )  
    #read the CPRS outputs  
    CPRS1 = pd. read_csv ( senstype +'_l1_' +par +'.txt' )  
    CPRS1. index =rain . index  
    CPRS1_rain =rain . join ( CPRS1)  
    CPRS2 = pd. read_csv ( senstype +'_l2_' +par +'.txt' )  
    CPRS2. index =rain . index  
    CPRS2_rain =rain . join ( CPRS2)     
    #PLOT THE CPRS-outputs----------------------------- -------------  
    f  = plt . figure ( figsize =( 16 ,  8))  
    gs  = gridspec . GridSpec ( 3,  1, height_ratios =[ 1, 3, 3])  
     
#    ax1 = plt.subplot(gs[0])  
#    ax2 = plt.subplot(gs[1])  
#    ax3 = plt.subplot(gs[2])  
    plt . subplots_adjust ( hspace =0.08 )  
     
    ax1  = f . add_subplot ( gs [ 0])  
    ax2  = f . add_subplot ( gs [ 1],  sharex =ax1 )  
    ax3  = f . add_subplot ( gs [ 2],  sharex =ax1 )      
     
#    rain in ax1  
#  CPRS1_rain['rain'].plot(kind='bar',style='black' ,ax=ax1, 
xticks=[],yticks=[10,20,30,40])  
    CPRS1_rain [ 'rain' ]. plot ( style ='black' , ax =ax1 ,  
xticks =[]) #,yticks=[10,20,30,40])  
    ax1 . set_ylabel ( r'rain (mm)' )  
     
    #parchange of layer 1 in ax2                
    CPRS1_rain [ 'Node 10' ]. plot ( ax =ax2 , style ='b' ,  xticks =[])  
    CPRS1_rain [ 'Node 20' ]. plot ( ax =ax2 , style ='g' ,  xticks =[])  
    CPRS1_rain [ 'Node 30' ]. plot ( ax =ax2 , style ='r' ,  xticks =[])  
    CPRS1_rain [ 'Node 40' ]. plot ( ax =ax2 , style ='y' ,  xticks =[])  
    if nnodes ==5:  
        CPRS1_rain [ 'Node 50' ]. plot ( ax =ax2 , style ='purple' ,  xticks =[])  
    ax2 . set_ylabel ( r' ' +senstype +' - ' +par +'$_1$' )  
    #parchange of layer 2 in ax3  
    CPRS2_rain [ 'Node 10' ]. plot ( ax =ax3 , style ='b' )  
    CPRS2_rain [ 'Node 20' ]. plot ( ax =ax3 , style ='g' )  
    CPRS2_rain [ 'Node 30' ]. plot ( ax =ax3 , style ='r' )  
    CPRS2_rain [ 'Node 40' ]. plot ( ax =ax3 , style ='y' )  
    if nnodes ==5:  
        CPRS2_rain [ 'Node 50' ]. plot ( ax =ax3 , style ='purple' )  
    ax3 . set_ylabel ( r' ' +senstype +' - ' +par +'$_2$' )  
    # Shink current axis's height by 10% on the bottom  
    box  = ax3 . get_position ()  
    ax3 . set_position ([ box . x0 ,  box . y0  + box . height  *  0.1 ,  
                     box . width ,  box . height  *  0.9 ])  
    # Put a legend below current axis  
    ax3 . legend ( loc ='lower center' ,  bbox_to_anchor =( 0.5 ,  - 0.35 ),  
              fancybox =False ,  shadow =False ,  ncol =5)             
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#    ax1.xaxis.set_visible(False)  
#    ax2.xaxis.set_visible(False)  
    for tl  in ax1 . get_xticklabels ():  
            tl . set_visible ( False )  
    for tl  in ax2 . get_xticklabels ():  
            tl . set_visible ( False )  
    plt . savefig ( 'CPRS_newversion' +par +'.pdf' )  
def quickplot ( df , nnodes =5):  
    """ 
    Test for docu;entation 
    """  
    f =plt . figure ( figsize =( 16 , 8))  
    gs  = gridspec . GridSpec ( 2,  1, height_ratios =[ 1, 3])  
    plt . subplots_adjust ( hspace =0.08 )  
    ax1  = f . add_subplot ( gs [ 0])  
    ax2  = f . add_subplot ( gs [ 1],  sharex =ax1 )  
    rain . plot ( ax =ax1 , style ='k' ,  xticks =[])  
    df [ 'Node 10' ]. plot ( ax =ax2 , style ='b' )  
    df [ 'Node 20' ]. plot ( ax =ax2 , style ='g' )  
    df [ 'Node 30' ]. plot ( ax =ax2 , style ='r' )  
    df [ 'Node 40' ]. plot ( ax =ax2 , style ='y' )  
    if nnodes ==5:  
        df [ 'Node 50' ]. plot ( ax =ax2 , style ='purple' )  
    # Shink current axis's height by 10% on the bottom  
    box  = ax2 . get_position ()  
    ax2 . set_position ([ box . x0 ,  box . y0  + box . height  *  0.1 ,  
                     box . width ,  box . height  *  0.9 ])  
    # Put a legend below current axis  
    ax2 . legend ( loc ='lower center' ,  bbox_to_anchor =( 0.5 ,  - 0.25 ),  
              fancybox =False ,  shadow =False ,  ncol =5)   
#-------------------------------------------------- -----------------------  
#TUTORIAL HOW TO USE THE MODEL RUNNING 
#-------------------------------------------------- -----------------------  
###Put the defqult parameters  
#path_to_model='D:\\Python_sensitivity\\1Dmodel2'  
##create_default_selector(path_to_model)  
###replace a parameter  
#replaceInputWater(path_to_model, 3., parname='Ks',  layer=1)  
###run the model  
#runHydrus(guessed_runtime=4, path_to_dir= 
'D:\\Python_sensitivity\\1Dmodel2',install_dir="C:\ \Program Files 
(x86)\\PC-Progress\\Hydrus-1D 4.xx")  
####prepare the filtered output file  
#filter_on_timestep(infile='1Dmodel2\Obs_Node.out', outfile='1Dmodel2\Obs_No
de_filtered.out', nnodes=4)  
####read output in dataframe  
#df = readoutput_to_dataframe(filename='1Dmodel2\Ob s_Node_filtered.out', 
startdate='3/1/2012 00:00', enddate='6/13/2012 03:0 0', variable='theta', 
nnodes=4)  
####plot the outputs in graph  
##df.plot(subplots=True, figsize=(16, 8), yticks=[0 .0,0.2,0.4])  
##get the rain from the data  
#rain = pd.read_csv('D:\\Python_sensitivity\\1Dmode l2\\rain.csv', 
index_col=0, names=['rain'], parse_dates=True, dayf irst=True)  
#quickplot(df,nnodes=4)               
#TUTORIAL SENSITIVTY  
#-----------------------------------------------  
#path_to_model='D:\\Python_sensitivity\\1Dmodel2'  
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#CAS, CPRS, CTRS, average_out, df_par_plus, df_par_ min = 
calculate_sens(path_to_model, 22.2, perturbation_fa ctor = 0.1, 
parameter_name='Ks', parameter_layer=1,  
#                   startdate='5/4/2011 13:00', end date='9/2/2011 11:00', 
variable = 'theta', guessed_runtime=8)  
#bf=CTRS               
#f=plt.figure(figsize=(16,8))  
#gs = gridspec.GridSpec(2, 1,height_ratios=[1,3])  
#plt.subplots_adjust(hspace=0.08)  
#ax1 = f.add_subplot(gs[0])  
#ax2 = f.add_subplot(gs[1], sharex=ax1)  
#rain.plot(ax=ax1,style='k', xticks=[])  
#bf['Node 10'].plot(ax=ax2,style='b')  
#bf['Node 20'].plot(ax=ax2,style='g')  
#bf['Node 30'].plot(ax=ax2,style='r')  
#bf['Node 40'].plot(ax=ax2,style='y')  
#bf['Node 50'].plot(ax=ax2,style='purple')  
## Shink current axis's height by 10% on the bottom  
#box = ax2.get_position()  
#ax2.set_position([box.x0, box.y0 + box.height * 0. 1,  
#                 box.width, box.height * 0.9])  
## Put a legend below current axis  
#ax2.legend(loc='lower center', bbox_to_anchor=(0.5 , -0.25),  
#          fancybox=False, shadow=False, ncol=5)                    
####DO SENSITIVITY FOR ALL  
#par_names=['ths','Alfa','n','Ks','l']  
par_names =[ 'Ks' ,  'Alfa' ,  'n' ,  'ths' ,  'l' ]  
#par_names=['Ks']  
#par_values=([2.18],[2.271])      
par_values =([ 2.18 ,  0.015 ,  2.4 ,  0.4 ,  0.5 ],[ 2.271 ,  0.0196 ,  2.271 ,  0.35 ,  0.5 ])       
local_sensitivity ( path_to_model , par_names ,  par_values ,  nnodes =4,  
guessed_runtime =2,  startdate ='3/1/2012 00:00' ,   
                      enddate ='6/13/2012 03:00' )   
plot_sensitivity ( par ='Ks' ,  senstype ="CTRS" ,  nnodes =4)  
plot_sensitivity ( par ='Alfa' ,  senstype ="CTRS" ,  nnodes =4)  
plot_sensitivity ( par ='n' ,  senstype ="CTRS" ,  nnodes =4)  
plot_sensitivity ( par ='ths' ,  senstype ="CTRS" ,  nnodes =4)  
plot_sensitivity ( par ='l' ,  senstype ="CTRS" ,  nnodes =4)  
plot_sensitivity ( par ='Ks' ,  senstype ="CPRS" ,  nnodes =4)  
plot_sensitivity ( par ='Alfa' ,  senstype ="CPRS" ,  nnodes =4)  
plot_sensitivity ( par ='n' ,  senstype ="CPRS" ,  nnodes =4)  
plot_sensitivity ( par ='ths' ,  senstype ="CPRS" ,  nnodes =4)  
plot_sensitivity ( par ='l' ,  senstype ="CPRS" ,  nnodes =4)   
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Figure A2-2. Effects of homogeneous and heterogeneous of free drainage and different 

constant head conditions on water content estimation for 2012. 
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Figure. A2-3. Parameter sensitivity as a function of time (constant head) in 2012. The 
numbers 1 and 2 correspond to the first and second layer. 
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Figure. A2-4. Parameter sensitivity as a function of time (free drainage) in 2011. The 
numbers 1 and 2 correspond to the first and second layer. 
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Figure A2-5. Yield reduction of various scenarios and bottom boundary conditions in 2012 

and 2013 (Eq. 2-9). 
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Figure A2-6. Cumulative fluxes of different boundary condition and parameter scenarios for 

calibration and validation periods (top), Actual fluxes of different boundary condition and 

parameter scenarios for calibration and validation periods (bottom).   
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Figure A2-7. Cumulative flux of farmer’s conventional irrigation (current irrigation), without 

irrigation and optimized irrigation scheme (guided irrigation) for calibration and validation 

periods.  
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Appendix-Chapter 3. 

 

 

 

Figure A3-1. Semivariogram of soil electrical conductivity, ECa, (DOE of 0-50 cm). 
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Appendix-Chapter 4. Photos of location of sensors and field hydraulic conductivity 

measurements.  

 

 

 

 

 

 

Figure A4-1. Local weather station and installed sensors in the field. 
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Figure A4-2. Sensors location at late growing season and the tensiometer which was installed 

the interface of layers (right)..  
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Figure A4-3. Field hydraulic conductivity measurement at different depths. 
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Appendix-Chapter 5. The scripts for quasi 3D modeling approach programmed in 

PythonTM  software linking to Hydrus-1D (Definitions and example). The scripts are 

based on SA scripts (Appendix-Chapter 1) 

Run Hydrus in Batch  
@author: Jan De Pue,  
#================================================== =======================  
# Run Hydrus in Batch  
#================================================== ======================  
import  os 
import  sys 
import  numpy 
import  pylab 
import  shutil 
import  distutils . dir_util as  dir_util 
import  linecache 
import  glob 
from  matplotlib . path import  Path 
import  matplotlib . patches as  patches 
from  scipy . interpolate import  griddata 
import  time 
from  Hydrus_Funky import  *  
from  matplotlib . backends . backend_pdf import  PdfPages 
figlist =[]  
#figsize=[10,8]  
figsize =[ 20 , 16 ]  
dpi =None 
pylab . ioff ()  
font = { 'family'  :  'monospace' ,  
        'size'    :  11}  
pylab . rc ( 'font' ,  ** font )  
HydrusPath ="C:\\Program Files (x86)\\PC-Progress\\Hydrus-1D 4. xx"   #  
RefProjectPath ="C:\\HydrusProjects\\Quasi3D_ResolutionTest\\quasit est2012triggered
_NoInverse"   
OutputPath ="C:\\HydrusProjects\\Quasi3D_ResolutionTest\\Output "  
FinalOutputPath ='Z:\\shares\\bw12\\OG 
Bodemfysica\\WorkInProgress\\Quasi3D_ResolutionTest '   
#================================================== ======================  
# Get Input Data  
#================================================== ======================  
print ( 'Open Input' )  
InputFilename_FL ="C:\HydrusProjects\Quasi3D_ResolutionTest\FL_50cm.t xt"   
# PATH TO KS & GWT INPUT DATA  
InputFilename_GWT ="C:\HydrusProjects\Quasi3D_ResolutionTest\GWL_50cm. txt"  # PATH 
TO KS & GWT INPUT DATA  
InputFilename_KS ="C:\HydrusProjects\Quasi3D_ResolutionTest\KSAT_50cm .txt"  # PATH 
TO KS & GWT INPUT DATA  
InputFilename_Irrigation ="Z:\\shares\\bw12\\OG 
Bodemfysica\\WorkInProgress\\Quasi3D_ResolutionTest \\Hydrus_Meisam_BatchSampleGrid
Run_quasitest2012triggered_NoInverse_2.npz"  # PATH TO KS & GWT INPUT DATA  
FL_Source =numpy. genfromtxt ( InputFilename_FL , delimiter ='\t' , skip_header =1)  
nI =FL_Source . shape [ 0]  
X_FL=FL_Source [:, 0]  
Y_FL=FL_Source [:, 1]  
FL=FL_Source [:, 2]  # cm  
 
KS_Source =numpy. genfromtxt ( InputFilename_KS , delimiter ='\t' , skip_header =1)  
nI =KS_Source . shape [ 0]  
X_KS=KS_Source [:, 0]  
Y_KS=KS_Source [:, 1]  
KS=KS_Source [:, 2]  # cm  
GWT_Source=numpy. genfromtxt ( InputFilename_GWT , delimiter ='\t' , skip_header =1)  
nI =GWT_Source. shape [ 0]  
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X_GWT=GWT_Source[:, 0]  
Y_GWT=GWT_Source[:, 1]  
GWT=GWT_Source[:, 2]* 100  # cm  
#================================================== ======================  
# Run Hydrus  
#================================================== ======================  
Resolution_All =numpy. array ([ 10. ,])  
nR=Resolution_All . size 
Hull =[[ 651634.0 , 5687522.0 ],[ 651617 , 5687567 ],[ 651617 , 5687571 ],[ 651901 , 5687667.5 ],[ 6
51993 , 5687435.5 ],[ 651738 , 5687261.1 ],[ 651711 , 5687324 ],[ 651601 , 5687285.5 ],[ 651526 , 56
87481.5 ],[ 651634.0 , 5687522.0 ]]  
hull_path = Path ( Hull )  
Storage_All =[]  
Stress_All =[]  
StressArea_All =[]  
Yield_All =[]  
SampleData_All =[]  
ProcessingTime_All =[]  
Irrigation_All =[]  
for  iR in  range ( nR):  
#for iR in [20,]:  
    Storage_Sample =[]  
    Stress_Sample =[]  
    StressArea_Sample =[]  
    Yield_Sample =[]  
    SampleData_Sample =[]  
    ProcessingTime_Sample =[]  
    Irrigation_Sample =[]  
#    nS=nS_L[iR]  
    if  'triggered'  in  RefProjectPath :  
        Savez =numpy. load ( InputFilename_Irrigation )  
        SampleData_Sample =Savez [ 'SampleData_Sample' ]  
        IrrigationData_Full =Savez [ 'Irrigation' ]  
        nS =IrrigationData_Full . shape [ 0]  
    else :  
        nS =1 
    for  iS in  range ( nS):  
        print ( '%s/%s - %s/%s' %(iR , nR, iS , nS))  
        print ( 'Subsample Grid : Resolution = %s m' %(Resolution_All [ iR ]))  
         
        nI =0 
        while  nI <1:  
FL_RandomSample=SubSampleGrid_random ( FL_Source , Resolution_All [ iR ], Hull_Coordinates
=Hull )  
            nI =numpy. size ( FL_RandomSample )  
        X_RandomSample =FL_RandomSample [:, 0]  
        Y_RandomSample =FL_RandomSample [:, 1]  
        FL_RandomSample =FL_RandomSample [:, 2]  
        KS_RandomSample = griddata (( X_KS, Y_KS),  KS ,  ( X_RandomSample,  
Y_RandomSample),  method ='nearest' )  
        GWT_RandomSample = griddata (( X_GWT, Y_GWT),  GWT,  ( X_RandomSample,  
Y_RandomSample),  method ='nearest' )  
        if  'triggered'  in  RefProjectPath :  
            X_Irrigation =SampleData_Sample [ iS ][:, 0]  
            Y_Irrigation =SampleData_Sample [ iS ][:, 1]  
            IrrigationID =numpy. arange ( X_Irrigation . size ). astype ( int )  
            IrrigationData =IrrigationData_Full [ iS ]  
            TotalIrrigationVolume =[]  
            nIrr =Y_Irrigation . size 
            for  iIrr in  range ( nIrr ):  
                IrrrigationData_iIrr =numpy. array ( IrrigationData [ iIrr ])  
                if  IrrrigationData_iIrr . size >0:  
TotalIrrigationVolume . append ( IrrrigationData_iIrr [:, 4]. sum())  
                else :  
                    TotalIrrigationVolume . append ( 0.0 )  
            TotalIrrigationVolume =numpy. array ( TotalIrrigationVolume )  
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            IrrigationID_RandomSample = griddata (( X_Irrigation , Y_Irrigation ),  
IrrigationID ,  ( X_RandomSample,  Y_RandomSample ),  method ='nearest' )  
            ## Irrigation map  
            IrrMapRes =2.0  
IrrigationPlotX =numpy. arange ( numpy. array ( Hull )[:, 0]. min (), numpy. array ( Hull )[:, 0]. m
ax ()+ IrrMapRes , IrrMapRes )  
            
IrrigationPlotY =numpy. arange ( numpy. array ( Hull )[:, 1]. min (), numpy. array ( Hull )[:, 1]. m
ax ()+ IrrMapRes , IrrMapRes )  
            IrrigationPlotGrid =numpy. meshgrid ( IrrigationPlotX , IrrigationPlotY )  
            IrrigationPlotGrid_Volume = griddata (( X_Irrigation , Y_Irrigation ),  
TotalIrrigationVolume ,  ( IrrigationPlotGrid [ 0],  IrrigationPlotGrid [ 1]),  
method ='nearest' )  
            hull_path = Path ( Hull )  
            
Hull_check =hull_path . contains_points ( numpy. array ([ IrrigationPlotGrid [ 0]. flatten (),
IrrigationPlotGrid [ 1]. flatten ()]). transpose ())  
            IrrigationPlotGrid_Volume =IrrigationPlotGrid_Volume . flatten ()  
            IrrigationPlotGrid_Volume [~ Hull_check ]= numpy. nan 
            
IrrigationPlotGrid_Volume =numpy. reshape ( IrrigationPlotGrid_Volume , IrrigationPlotGr
id [ 0]. shape )  
            fig =pylab . figure ( figsize =figsize )  
            ax =fig . add_subplot ( 111 )  
            extent =[ IrrigationPlotX [ 0], IrrigationPlotX [- 1], IrrigationPlotY [-
1], IrrigationPlotY [ 0]]  
im =ax . imshow ( IrrigationPlotGrid_Volume , interpolation ='nearest' , cmap='viridis_r' , vm
in =0, vmax=50 , extent =extent )  
            ax . plot ( X_Irrigation , Y_Irrigation , 'wo' )  
            ax . set_aspect ( 'equal' )  
            ax . invert_yaxis ()  
            fig . colorbar ( im )  
            pylab . show()  
        nI =X_RandomSample. size 
        print ( 'Walk The Grid' )  
        Storage_Temp =[]  
        Stress_Temp =[]  
        Yield_Temp =[]  
        Irrig_Temp =[]  
        tic = time . clock ()  
        for  iI in  range ( nI ):  
            print ( '\t%s/%s' %(iI , nI ))  
            RunCorrect =0 
            while  RunCorrect ==0:  
                print ( '\tReplace' )  
                # Copy Original project  
                Postfix ='_Temp'  
                ReplaceProjectPath =RefProjectPath +Postfix 
                time . sleep ( 0.1 )  
#                shutil.rmtree(ReplaceProjectPath)  
                dir_util . copy_tree ( RefProjectPath , ReplaceProjectPath )  
                shutil . copy ( RefProjectPath +'.h1d' , ReplaceProjectPath +'.h1d' )  
                time . sleep ( 0.1 )  
                 
                Ks_replacement =KS_RandomSample[ iI ]  
                GWT_replacement =GWT_RandomSample[ iI ]  
                FL_replacement =FL_RandomSample [ iI ]  
                # Modify Selector.in  
                SelectorPath =os . path . join ( RefProjectPath , 'SELECTOR.IN' )  
                fID =open ( SelectorPath , 'r' )  
                SelectorOriginal =fID . read ()  
                fID . close ()  
                OriginalLine ="   thr     ths    Alfa      n         Ks       l\n   
0.082   0.385   0.017    2.05      1.199     0.5 \n    0.05    0.32    0.02    2.52       
2.27     0.5 \n"  
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                ReplaceLine ="   thr     ths    Alfa      n         Ks       l\n   
0.082   0.385   0.017    2.05      %s     0.5 \n   0.05    0.32    0.02    2.52       
2.27     0.5 \n" %Ks_replacement 
                SelectorReplace =SelectorOriginal . replace ( OriginalLine , ReplaceLine )  
                if  ReplaceLine not  in  SelectorReplace :  
                    print ( 'WARNING: KS REPLACEMENT UNSUCCESSFUL')  
ReplaceSelectorPath =os . path . join ( ReplaceProjectPath , 'SELECTOR.IN' )  
                fID =open ( ReplaceSelectorPath , 'r+' )  
                fID . seek ( 0)  
                fID . write ( SelectorReplace )  
                fID . truncate ()  
                fID . close ()  
                # Modify Profile.dat  
                ProfilePath =os . path . join ( RefProjectPath , 'PROFILE.DAT' )  
                
ProfileData =numpy. genfromtxt ( ProfilePath , skip_header =5, skip_footer =2)  
                nZ =ProfileData . shape [ 0]  
                    # Replace GWT  
                ProfileData [:, 2]=- ProfileData [:, 1]- GWT_replacement 
                    # Change layer depth  
                ProfileData [ ProfileData [:, 1]  >= - FL_replacement , 3]= 1 
                ProfileData [ ProfileData [:, 1]  < - FL_replacement , 3]= 2 
                formatline =' %3.0d %7.7e %7.7e %3.0d %3.0d %7.7e %7.7e %7.7e 
%7.7e\n'  
                ReplaceProfilePath =os . path . join ( ReplaceProjectPath , 'PROFILE.DAT' )  
                fID =open ( ProfilePath , 'r' )  
                fIDreplace =open ( ReplaceProfilePath , 'w' )  
                nH =5 
                nF =2 
                for  iH in  range ( nH):  
                    fIDreplace . write ( fID . readline ())  
                fID . close ()  
                for  iZ in  range ( nZ):  
                    fIDreplace . write ( formatline %tuple ( ProfileData [ iZ ,:]))  
                for  iF in  range ( 1+nH+nZ, 1+nH+nZ+nF):  
                    fIDreplace . write ( linecache . getline ( ProfilePath , iF ))  
                fIDreplace . close ()  
                # Irrigation  
                if  'triggered'  in  RefProjectPath :  
                    Irrigation_ReplacementID =IrrigationID_RandomSample [ iI ]  
IrrigationData_Replacement =IrrigationData [ Irrigation_ReplacementID ]  
                    if  len ( IrrigationData_Replacement )> 0:  
IrrigationData_Replacement =numpy. array ( IrrigationData_Replacement )  
IrrigationData_Replacement_TSTART =IrrigationData_Replacement [:, 2]  
IrrigationData_Replacement_TEND =IrrigationData_Replacement [:, 3]  
IrrigationData_Replacement_FLUX =IrrigationData_Replacement [:, 4]/( IrrigationData_Re
placement_TEND - IrrigationData_Replacement_TSTART )  
 AtmosphPath =os . path . join ( RefProjectPath , 'ATMOSPH.IN' )  
ReplaceAtmosphPath =os . path . join ( ReplaceProjectPath , 'ATMOSPH.IN' )  
AtmosphData =numpy. genfromtxt ( AtmosphPath , skip_header =11 , skip_footer =1)  
                        nT =AtmosphData . shape [ 0]                      
                        AtmosphData_T =AtmosphData [:, 0]            
                        AtmosphData_P =AtmosphData [:, 1]  
                        fID =open ( AtmosphPath , 'r' )  
                        fIDreplace =open ( ReplaceAtmosphPath , 'w' )  
                        nH =11 
                        nF =5 
                        formatline ='          %s           %s %s        %s      %s           
%s           %s           %s \n'  
                        for  iH in  range ( nH):  
                            fIDreplace . write ( fID . readline ())  
                        iIrr =0 
                        if  IrrigationData_Replacement_TSTART [ 0]< AtmosphData_T [ 0]:  
                            DoIrrigation =1 
                        else :  
                            DoIrrigation =0 
                        for  iT in  range ( nT):  
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                            T =AtmosphData_T [ iT ]  
                            if  DoIrrigation == 1:  
                                skipstring =fID . readline ()  
fIDreplace . write ( formatline %(AtmosphData [ iT , 0],  
AtmosphData [ iT , 1]+ IrrigationData_Replacement_FLUX [ iIrr ],  
AtmosphData [ iT , 2],  
AtmosphData [ iT , 3],  
AtmosphData [ iT , 4],  
AtmosphData [ iT , 5],  
AtmosphData [ iT , 6],  
AtmosphData [ iT , 7]))  ## LET ME THINK  
                            else :  
                                fIDreplace . write ( fID . readline ())  
                            if  T >=IrrigationData_Replacement_TSTART [ iIrr ]:  
                                DoIrrigation =1 
                            if  T >=IrrigationData_Replacement_TEND [ iIrr ]:  
                                DoIrrigation =0 
                                if  iIrr <IrrigationData_Replacement_TEND . size - 1:  
                                    iIrr +=1 
                        for  iF in  range ( nF):  
                            fIDreplace . write ( fID . readline ())  
                        fIDreplace . close ()  
                print ( '\tRun' )  
                runHydrus ( ReplaceProjectPath , HydrusPath ,  guessed_runtime =- 1)  
NodInfOutName =os . path . join ( ReplaceProjectPath , 'Nod_Inf.out' )  
NodInf_T , NodInf_Data , NodInf_Header =ReadNodInfOut ( NodInfOutName )  
                 
                nNT =NodInf_T . size 
#                if nNT == 39:  
                if  nNT == 101 :  
#                if nNT == 79:  
                    RunCorrect = 1 
                else  :  
                    print ( 'Hydrus Malfunction: Retry' )  
                    time . sleep ( 2)  
            Storage_zTop =0 # cm  
            Storage_zBottom =- 20 # cm  
             
            NodInfOutName =os . path . join ( ReplaceProjectPath , 'Nod_Inf.out' )  
            NodInf_T , NodInf_Data , NodInf_Header =ReadNodInfOut ( NodInfOutName )  
             
            nNT =NodInf_T . size 
            Storage_SubTemp =numpy. zeros ( nNT)  
            for  iNT in  range ( nNT):  
                NodInf_StorageLayer_NodeDepth =NodInf_Data [ iNT ][:, 1]  
                
NodInf_StorageLayer_NodeDepth =NodInf_StorageLayer_NodeDepth [( NodInf_StorageLayer_N
odeDepth >=Storage_zBottom )  & ( NodInf_StorageLayer_NodeDepth <=Storage_zTop )]  
                
NodInf_StorageLayer_NodeDepthHalfway =numpy. concatenate (([ NodInf_StorageLayer_NodeD
epth [ 0],],( NodInf_StorageLayer_NodeDepth [:-
1]+ NodInf_StorageLayer_NodeDepth [ 1:])/ 2,[ NodInf_StorageLayer_NodeDepth [- 1],]))  
                
NodInf_StorageLayer_NodeWidth =NodInf_StorageLayer_NodeDepthHalfway [:- 1]-
NodInf_StorageLayer_NodeDepthHalfway [ 1:]  
                NodInf_StorageLayer_VWC =NodInf_Data [ iNT ][:, 3]  
                
NodInf_StorageLayer_VWC =NodInf_StorageLayer_VWC [( NodInf_Data [ iNT ][:, 1]>= Storage_zB
ottom )  & ( NodInf_Data [ iNT ][:, 1]<= Storage_zTop )]  
                 
                
Storage_SubTemp [ iNT ]= numpy. sum( NodInf_StorageLayer_VWC * NodInf_StorageLayer_NodeWid
th )  
                 
            Storage_Temp . append ( Storage_SubTemp )              
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            # Stress  
             
            TLevelOutName =os . path . join ( ReplaceProjectPath , 'T_Level.out' )  
            TlevelData , TLevel_Header =ReadTLevelOut ( TLevelOutName )  
            Stress =TlevelData [:, 4]/ TlevelData [:, 2]  
            Stress_Temp . append ( Stress )  
             
            # Yield  
            Yield =( 12160 *(( TlevelData [:, 9])+( TlevelData [:, 18 ]))/ 52.4 )  
            Yield_Temp . append ( Yield )  
             
            # Irrigation  
            IrrigOutName =os . path . join ( ReplaceProjectPath , 'Irrig.out' )  
            IrrigationHappened =os . path . isfile ( IrrigOutName )   
            if  IrrigationHappened :  
IrrigMeta , IrrigMeta_Header , IrrigData , IrrigData_Header =ReadIrrigOut ( IrrigOutName )  
                Irrig_Temp . append ( IrrigData )  
        toc = time . clock ()  
        print ( 'Collect Output' )  
        ProcessingTime =toc -  tic         
        fig =pylab . figure ( figsize =figsize )  
        ax =fig . add_subplot ( 111 )  
        patch = patches . PathPatch ( hull_path ,  facecolor ='w' ,  lw =2)  
        ax . add_patch ( patch )  
ax . plot ( X_RandomSample, Y_RandomSample, 'o' , mec='r' , mew=2, mfc ='None' , label ='Sample' )  
        ax . set_aspect ( 'equal' )  
        ax . set_xlabel ( 'X (m)' )  
        ax . set_ylabel ( 'Y (m)' )  
        ax . set_title ( 'Sample Locations' )  
        figlist . append ( fig )  
        Storage_Sample . append ( numpy. array ( Storage_Temp ). mean( axis =0))  
        Stress_Sample . append ( numpy. array ( Stress_Temp ). mean( axis =0))  
        StressLevel =0.95  
StressArea_Sample . append (( numpy. array ( Stress_Temp )< StressLevel ). mean( axis =0))  
        Yield_Sample . append ( numpy. array ( Yield_Temp ). mean( axis =0))  
SampleData_Sample . append ( numpy. array ([ X_RandomSample, Y_RandomSample, FL_RandomSampl
e, KS_RandomSample, GWT_RandomSample]). transpose ())  
        ProcessingTime_Sample . append ( ProcessingTime )  
        Irrigation_Sample . append ( Irrig_Temp )  
    Storage_All . append ( Storage_Sample )  
    Stress_All . append ( Stress_Sample )  
    StressArea_All . append ( StressArea_Sample )  
    Yield_All . append ( Yield_Sample )  
    SampleData_All . append ( SampleData_Sample )  
    ProcessingTime_All . append ( ProcessingTime_Sample )  
    Irrigation_All . append ( Irrigation_Sample )  
    basename =os . path . basename ( sys . argv [ 0])[:- 3]  
    postfix =os . path . basename ( RefProjectPath )  
    savename ='%s_%s_%s' %(basename , postfix , iR )  
    savename =os . path . join ( FinalOutputPath , savename )  
numpy. savez ( savename , Storage_Sample =Storage_Sample , Stress_Sample =Stress_Sample , Str
essArea_Sample =StressArea_Sample , Yield_Sample =Yield_Sample , SampleData_Sample =Sampl
eData_Sample , ProcessingTime_Sample =ProcessingTime_Sample , Resolution =Resolution_All
[ iR ], NodInf_T =NodInf_T , Tlevel_T =TlevelData [:, 0], Irrigation =Irrigation_Sample )  
    ## PDF  
    pdfname =savename +'.pdf'  
    pp = PdfPages ( pdfname )  
    for  fig in  figlist :  
        pp . savefig ( fig )  
     
    pp . close ()  
    figlist = []  
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Output of run Hydrus in batch 

#================================================== =======================  
# Read Hydrus output files  
#================================================== ======================  
import  os 
import  sys 
import  numpy 
import  pylab 
import  shutil 
import  distutils . dir_util as  dir_util 
import  linecache 
import  glob 
import  StringIO 
from  Hydrus_Funky import  *  
from  matplotlib . backends . backend_pdf import  PdfPages 
figlist =[]  
figsize =[ 10 , 8]  
#figsize=[20,10]  
dpi =None 
pylab . ioff ()  
font = { 'family'  :  'monospace' ,  
        'size'    :  11}  
pylab . rc ( 'font' ,  ** font )  
HydrusPath ="D:\\quasirun"   # INSTALLATION FOLDER HYDRUS 
RefProjectPath ="D:\\quasitest"  # PROJECT FOLDER 
OutputPath ="D:\\batchrun\\Output2"  # OUTPUT FOLDER (CREATE NEW IF NESCESSARY) 
#================================================== =======================  
# Input  
#================================================== ======================  
InputFilename ="D:Quasi3D_FL_280.txt"  # PATH TO KS & GWT INPUT DATA  
InputData =numpy. genfromtxt ( InputFilename , delimiter ='\t' , skip_header =1)  
nI =InputData . shape [ 0]  
X_In =InputData [:, 0]  
Y_In =InputData [:, 1]  
GWT_In=InputData [:, 2]* 100  # cm  
Ks_In =InputData [:, 3]  # cm/h  
FL_In =InputData [:, 4]  # cm  
ID_In =numpy. arange ( nI )  
#================================================== ======================  
# Find files  
#================================================== ======================  
print ( 'Find' )  
OutputList =glob . glob ( OutputPath +'\\*Obs_Node.out' )  
OutputList . sort ()  
nF=len ( OutputList )  
ObsNode_All =[]  
for  iF in  range ( nF):  
    filename =OutputList [ iF ]      
    ObsNode_ID =int ( os . path . basename ( filename ). split ( '_' )[ 0])  
    ObsNode_Nodes , ObsNode_t , ObsNode_L=ReadObsNodeOut ( filename )  
    ObsNode_All . append ([ ObsNode_ID , ObsNode_Nodes , ObsNode_t , ObsNode_L])  
OutputList =glob . glob ( OutputPath +'\\*Nod_Inf.out' )  
OutputList . sort ()  
nF=len ( OutputList )  
NodInf_All =[]  
for  iF in  range ( nF):  
    filename =OutputList [ iF ]  
    NodInf_ID =int ( os . path . basename ( filename ). split ( '_' )[ 0])  
    NodInf_T , NodInf_Data = ReadNodInfOut ( filename )  
    NodInf_All . append ([ NodInf_ID , NodInf_T , NodInf_Data ])  
OutputList =glob . glob ( OutputPath +'\\*A_Level.out' )  
OutputList . sort ()  
nF=len ( OutputList )  
ALevel_All =[]  
for  iF in  range ( nF):  
    filename =OutputList [ iF ]  



Appendices 

222 

    ALevel_ID =int ( os . path . basename ( filename ). split ( '_' )[ 0])  
    ALevel_Data =ReadALevelOut ( filename )  
    ALevel_All . append ([ ALevel_ID , ALevel_Data ])  
## T_Level.out  
OutputList =glob . glob ( OutputPath +'\\*T_Level.out' )  
OutputList . sort ()  
nF=len ( OutputList )  
TLevel_All =[]  
for  iF in  range ( nF):  
    filename =OutputList [ iF ]  
    TLevel_ID =int ( os . path . basename ( filename ). split ( '_' )[ 0])  
    TLevel_Data =numpy. genfromtxt ( filename , skip_header =9, skip_footer =1)  
    TLevel_All . append ([ TLevel_ID , TLevel_Data ])  
#================================================== =======================  
# Extract specific data for analysis  
#================================================== ======================  
ID =numpy. zeros ( nF)  
X=numpy. zeros ( nF)  
Y=numpy. zeros ( nF)  
TLevel_T_All =[]  
TLevel_RootStress_All =[]  
Storage_zTop =0 
Storage_zBottom =- 20 
NodInf_StorageLayer =[]  
for  iF in  range ( nF):  
    ID [ iF ]= ID_In [ iF ]  
    X [ iF ]= X_In [ ID_In ==ID [ iF ]]  
    Y [ iF ]= Y_In [ ID_In ==ID [ iF ]]  
    TLevel_ID =numpy. array ( map( lambda  x :  x [ 0],  TLevel_All ))  
    iTLevel =numpy. where ( TLevel_ID ==ID_In [ iF ])[ 0]  
    TLevel_T_All . append ( TLevel_All [ iTLevel ][ 1][:, 0])  
TLevel_RootStress_All . append ( TLevel_All [ iTLevel ][ 1][:, 4]/ TLevel_All [ iTLevel ][ 1][:,
2])  
    NodInf_ID =numpy. array ( map( lambda  x :  x [ 0],  NodInf_All ))  
    iNodInf =numpy. where ( NodInf_ID ==ID_In [ iF ])[ 0]  
    NodInf_StorageLayer_T =NodInf_All [ iNodInf ][ 1]  
    nNT =NodInf_StorageLayer_T . size 
    NodInf_StorageLayer_Temp =numpy. zeros ( nNT)  
    for  iNT in  range ( nNT):  
        NodInf_StorageLayer_NodeDepth =NodInf_All [ iNodInf ][ 2][ iNT ][:, 1]  
NodInf_StorageLayer_NodeDepth =NodInf_StorageLayer_NodeDepth [( NodInf_StorageLayer_N
odeDepth >=Storage_zBottom )  & ( NodInf_StorageLayer_NodeDepth <=Storage_zTop )]  
        
NodInf_StorageLayer_NodeDepthHalfway =numpy. concatenate (([ NodInf_StorageLayer_NodeD
epth [ 0],],( NodInf_StorageLayer_NodeDepth [:-
1]+ NodInf_StorageLayer_NodeDepth [ 1:])/ 2,[ NodInf_StorageLayer_NodeDepth [- 1],]))  
NodInf_StorageLayer_NodeWidth =NodInf_StorageLayer_NodeDepthHalfway [:- 1]-
NodInf_StorageLayer_NodeDepthHalfway [ 1:]  
        NodInf_StorageLayer_VWC =NodInf_All [ iNodInf ][ 2][ iNT ][:, 3]  
NodInf_StorageLayer_VWC =NodInf_StorageLayer_VWC [( NodInf_StorageLayer_NodeDepth >=St
orage_zBottom )  & ( NodInf_StorageLayer_NodeDepth <=Storage_zTop )]  
NodInf_StorageLayer_Temp [ iNT ]= numpy. sum( NodInf_StorageLayer_VWC * NodInf_StorageLaye
r_NodeWidth )  
    NodInf_StorageLayer . append ( NodInf_StorageLayer_Temp )  
NodInf_StorageLayer =numpy. array ( NodInf_StorageLayer )  
printT_Tlevel =numpy. arange ( 0, 6480 , 7* 24)  
printT_Tlevel =numpy. append ( printT_Tlevel , 6480 )  
nPT_Tlevel =printT_Tlevel . size 
TLevel_RootStress =numpy. zeros (( nF, nPT_Tlevel ))  
for  iF in  range ( nF):  
    for  iPT in  range ( nPT_Tlevel ):  
        iPT_T =numpy. argmin (( TLevel_T_All - printT_Tlevel [ iPT ])** 2)  
        TLevel_RootStress [ iF , iPT ]= TLevel_RootStress_All [ iF ][ iPT_T ]  
#================================================== =======================  
# Plot  
#================================================== =======================  
print ( 'Plot' )  
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cm=pylab . get_cmap ( 'Paired' )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
sc =ax . scatter ( X_In , Y_In , 40 , GWT_In, lw =0)  
ax . set_title ( 'GWT' )  
ax . axis ( 'equal' )  
fig . colorbar ( sc )  
figlist . append ( fig )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
sc =ax . scatter ( X_In , Y_In , 40 , Ks_In , lw =0)  
ax . set_title ( 'Ks' )  
ax . axis ( 'equal' )  
fig . colorbar ( sc )  
figlist . append ( fig )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
sc =ax . scatter ( X_In , Y_In , 40 , FL_In , lw =0)  
ax . set_title ( 'Top Layer Thickness' )  
ax . axis ( 'equal' )  
fig . colorbar ( sc )  
figlist . append ( fig )  
vmn=0.9  
vmx=1 
cmap='gist_heat'  
for  iPT in  range ( nPT_Tlevel ):  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
sc =ax . scatter ( X, Y, 50 , TLevel_RootStress [:, iPT ], vmin =vmn, vmax=vmx, cmap=cmap, edgecolo
rs ='0.2' )  
    ax . set_title ( 'Soil Water Stress | T = %s d' %(printT_Tlevel [ iPT ]/ 24))  
    ax . axis ( 'equal' )  
    fig . colorbar ( sc )  
    figlist . append ( fig )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
for  iF in  range ( nF):  
    ID =TLevel_All [ iF ][ 0]  
    color =cm( 1. * ID / nF)  
    Tp =TLevel_T_All [ iF ]  
    Yp =TLevel_RootStress_All [ iF ]  
    ax . plot ( Tp, Yp, color =color , label =ID )  
ax . set_title ( 'Soil Water Stress' )  
ax . set_ylabel ( 'Soil Water Stress ' )  
ax . set_xlabel ( 'Time (h)' )  
ax . legend ()  
figlist . append ( fig )  
vmn=2 
vmx=6 
cmap='coolwarm_r'  
for  iNT in  range ( nNT):  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
sc =ax . scatter ( X, Y, 50 , NodInf_StorageLayer [:, iNT ], vmin =vmn, vmax=vmx, cmap=cmap, edgeco
lors ='0.2' )  
    ax . set_title ( 'Storage between %s cm and %s cm | T = %5.0d 
d' %(Storage_zTop , Storage_zBottom , NodInf_StorageLayer_T [ iNT ]/ 24))  
    ax . axis ( 'equal' )  
    fig . colorbar ( sc )  
    figlist . append ( fig )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
for  iF in  range ( nF):  
    ID =TLevel_All [ iF ][ 0]  
    color =cm( 1. * ID / nF)  
    Tp =NodInf_StorageLayer_T 
    Yp =NodInf_StorageLayer [ iF ]  
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    ax . plot ( Tp, Yp, color =color , label =ID )  
ax . set_title ( 'Storage between %s cm and %s cm' %(Storage_zTop , Storage_zBottom ))  
ax . set_ylim ( 0, 10)  
ax . set_ylabel ( 'Storage' )  
ax . set_xlabel ( 'Time (h)' )  
ax . legend ()  
figlist . append ( fig )  
#================================================== =======================  
# Save  
#================================================== =======================  
print ( 'Save' )  
import  sys 
basename=os . path . basename ( sys . argv [ 0])[:- 3]  
## PDF  
directory ='D:\\batchrun\\Output2'  
pdfname =os . path . join ( directory ,  basename +'.pdf' )  
pp = PdfPages ( pdfname )  
for  fig in  figlist :  
    pp . savefig ( fig )  
pp . close ()  
pylab . show()  

 

Hydrus -Funky 

#================================================== =======================  
# Hydrus related Functions- RUN HYDRUS  
#================================================== =======================  
def  runHydrus ( path_to_dir , install_dir ="C:\\Program Files (x86)\\PC-
Progress\\Hydrus-1D 4.xx" ,  guessed_runtime =8):  
    Author: Van Hoey Stijn 
    Run the Hydrus model from within Python 
    Parameters 
    guessed_runtime:  runtime of the model, in seco nds (take some seconds more) 
    path_to_dir:      path to the working directory  with input/output of Hydrus 
    install_dir:       path to the installation dir ectory of the Hydrus software        
    import  os 
    import  subprocess 
    import  time 
    cdtorun =os . path . join ( install_dir , 'H1D_CALC.EXE' )+ ' ' +path_to_dir 
    print ( cdtorun )  
    proc = subprocess . Popen ( cdtorun )  
    time . sleep ( guessed_runtime )     proc . terminate ()  
    files_in_dir = os . listdir ( path_to_dir )  
    for  file_in_dir in  files_in_dir :  
        if  file_in_dir [- 4:]== '.out' :  
            f =open ( os . path . join ( path_to_dir , file_in_dir ))  
            f . seek (- 100 ,  os . SEEK_END)             line = f . readlines ()[- 1]  
            if  file_in_dir ==  'Balance.out' :               
                print ( line )  
            elif  file_in_dir ==  'Fit.out' :  
                print ( line )  
            else :  
                if  line <> 'end\n' :  
                    print ( 'The sleep time was not long enough to perform the 
entire simulation. The file' , file_in_dir , 'has not the entire simulation period 
written.' )  
            f . close ()  
    check_for_error ( path_to_dir )  
def  check_for_error ( path_to_model ):  
    Author: Van Hoey Stijn 
    Check in model directory for error messages 
    import  os 
    files_in_dir = os . listdir ( path_to_model )  
    if  'Error.msg'  in  files_in_dir :  
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        raise  Exception ( 'ATTENTION: ERROR in model run!' )  
#================================================== ======================  
# I/O  
#================================================== =======================  
def  ReadObsNodeOut ( ObsOutName):  
    read Obs_Node.out: 
    h, theta, Flux versus time 
    import  numpy 
    import  linecache 
    Sim =numpy. genfromtxt ( ObsOutName, skip_header =11 , skip_footer =1)  
    sh =Sim. shape 
    nNodes_sim =( sh [ 1]- 1)/ 3 
    ObsNode_Nodes =numpy. array ( linecache . getline ( ObsOutName, 9). replace ( ' 
' , '' ). replace ( '\n' , '' ). replace ( 'Node(' , '' ). split ( ')' )[:- 1]). astype ( 'int' )  
    ObsNode_L =[]  
    ObsNode_t =Sim[:, 0]  
    for  iN in  range ( nNodes_sim ):  
        ObsNode_L . append ( Sim[:, iN * 3+1:( iN +1)* 3+1])  
    return  ObsNode_Nodes , ObsNode_t , ObsNode_L 
def  ReadNodInfOut ( NodInfOutName ):  
    read Obs_Node.out: 
    0 Node 
    1 Depth 
    2 Head 
    3 Moisture 
    4 K 
    5 C 
    6 Flux 
    7 Sink 
    8 Kappa 
    9 v/KsTop 
    10 Temp 
    import  numpy 
    import  StringIO 
    fID =open ( NodInfOutName )  
    for  i in  xrange ( 6):  
        skipheader =fID . readline ()  
    NodInf =fID . read ()  
    fID . close ()  
    NodInf =NodInf . replace ( '\nend\n' , '' ). replace ( '\n\n Node      Depth      Head 
Moisture     K      C     Flux    Sink      Kappa   v/KsTop   Temp\n       [L]    
[L]    [-]     [L/T]   [1/L]    [L/T]     [1/T]     [-]   [-]   
[C]\n\n' , '' ). split ( '\n Time:' )[ 1:]  
    nP =len ( NodInf )  
    NodInf_T =[]  
    NodInf_Data =[]  
    for  iP in  range ( nP):          
        Buffer =StringIO . StringIO ( NodInf [ iP ])  
        NodInf_T . append ( Buffer . readline ())  
        NodInf_Data . append ( numpy. genfromtxt ( Buffer ))  
    NodInf_T =numpy. array ( NodInf_T ). astype ( 'float' )  
    return  NodInf_T , NodInf_Data 
def  ReadALevelOut ( ALevelOutName ):  
    read A_Level.out: 
    0 Time 
    1 sum(rTop) 
    2 sum(rRoot) 
    3 sum(vTop) 
    4 sum(vRoot) 
    5 sum(vBot) 
    6 hTop 
    7 hRoot 
    8 hBot 
    9 A-level 
    import  numpy 
ALevel_Data =numpy. genfromtxt ( ALevelOutName , delimiter =[ 12 , 14 , 14 , 14 , 14 , 14 , 11 , 11 , 11 , 8
], skip_header =5, skip_footer =1)  
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    return  ALevel_Data 
def  ReadTLevelOut ( TLevelOutName ):  
    read T_Level.out: 
    0 Time 
    1 rTop 
    2 rRoot 
    3 vTop  
    4 vRoot 
    5 vBot 
    6 sum(rTop) 
    7 sum(rRoot) 
    8 sum(vTop) 
    9 sum(vRoot) 
    10 sum(vBot) 
    11 hTop 
    12 hRoot 
    13 hBot 
    14 RunOff 
    15 sum(RunOff) 
    16 Volume 
    17 sum(Infil) 
    18 sum(Evap) 
    19 TLevel 
    20 Cum(WTrans) 
    21 SnowLayer 
    import  numpy 
TLevel_Data =numpy. genfromtxt ( TLevelOutName , skip_header =9, skip_footer =1)  
    return  TLevel_Data 

 

Irrigation scenarios/maping the quasi 3D-Resolution results 

#================================================== =======================  
# Open Quasi3D Resolution Results  
#================================================== =======================  
import  os 
import  sys 
import  numpy 
import  pylab 
import  fnmatch 
from  matplotlib . backends . backend_pdf import  PdfPages 
figlist =[]  
figsize =[ 10 , 8]  
#figsize=[20,10]  
dpi =None 
pylab . ioff ()  
font = { 'family'  :  'monospace' ,  
        'size'    :  11}  
pylab . rc ( 'font' ,  ** font )  
#================================================== =======================  
# Open  
#================================================== ======================  
print ( 'Open' )  
path ='/home/supersoil/Documents/Jan/Data/Hydrus/Quasi3D_ Resolution'  
FiltString ='Hydrus_Meisam_BatchSampleGridRun'  
filelist = []  
for  root ,  dirnames ,  filenames in  os . walk ( path ):  
  for  filename in  fnmatch . filter ( filenames ,  FiltString +'*.npz' ):  
      if  'FirstRun'  not  in  root :  
          filelist . append ( os . path . join ( root ,  filename ))  
nF=len ( filelist )  
Storage_Mean =[]  
Storage_Std =[]  
Stress_Mean =[]  
Stress_Std =[]  
StressArea_Mean =[]  
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StressArea_Std =[]  
Yield_Mean =[]  
Yield_Std =[]  
ProcessingTime =[]  
Resolution =[]  
for  iF in  range ( nF):  
    filename =filelist [ iF ]  
    Savez =numpy. load ( filename )  
     
    Storage_Sample =Savez [ 'Storage_Sample' ]  
    Stress_Sample =Savez [ 'Stress_Sample' ]  
    StressArea_Sample =1- Savez [ 'StressArea_Sample' ]  
    Yield_Sample =Savez [ 'Yield_Sample' ]  
    SampleData_Sample =Savez [ 'SampleData_Sample' ]  
    ProcessingTime_Sample =Savez [ 'ProcessingTime_Sample' ]  
    Resolution_Sample =Savez [ 'Resolution' ]  
    NodInf_T =Savez [ 'NodInf_T' ]  
    Tlevel_T =Savez [ 'Tlevel_T' ]  
    nS = ProcessingTime_Sample . size 
#    fig=pylab.figure(figsize=figsize,dpi=dpi)  
    Storage_Mean . append ( Storage_Sample . mean( axis =0))  
    Storage_Std . append ( Storage_Sample . std ( axis =0))  
    Stress_Mean . append ( numpy. nanmean( Stress_Sample , axis =0))  
    Stress_Std . append ( numpy. nanstd ( Stress_Sample , axis =0))  
    StressArea_Mean . append ( numpy. nanmean( StressArea_Sample , axis =0))  
    StressArea_Std . append ( numpy. nanstd ( StressArea_Sample , axis =0))  
    Yield_Mean . append ( Yield_Sample . mean( axis =0))  
    Yield_Std . append ( Yield_Sample . std ( axis =0))  
    ProcessingTime . append ( ProcessingTime_Sample . mean())  
    Resolution . append ( Resolution_Sample )  
    pylab . close ( 'all' )  
[ Storage_Mean , Storage_Std , Stress_Mean , Stress_Std , StressArea_Mean , StressArea_Std , Yi
eld_Mean , Yield_Std , ProcessingTime , Resolution ]= map( lambda  x :  
numpy. array ( x ),[ Storage_Mean , Storage_Std , Stress_Mean , Stress_Std , StressArea_Mean , St
ressArea_Std , Yield_Mean , Yield_Std , ProcessingTime , Resolution ])  
Res_Sort =numpy. argsort ( Resolution )  
[ Storage_Mean , Storage_Std , Stress_Mean , Stress_Std , StressArea_Mean , StressArea_Std , Yi
eld_Mean , Yield_Std , ProcessingTime , Resolution ]= map( lambda  x :  
x [ Res_Sort ],[ Storage_Mean , Storage_Std , Stress_Mean , Stress_Std , StressArea_Mean , Stres
sArea_Std , Yield_Mean , Yield_Std , ProcessingTime , Resolution ])  
Storage_CVmean =numpy. mean( Storage_Std / Storage_Mean , axis =1)  
Stress_CVmean =numpy. nanmean( Stress_Std / Stress_Mean , axis =1)  
StressArea_CVmean =numpy. nanmean( StressArea_Std / StressArea_Mean , axis =1)  
Yield_CVmean =numpy. mean( Yield_Std / Yield_Mean , axis =1)  
#================================================== =======================  
# Plot  
#================================================== =======================  
print ( 'Plot' )  
cm=pylab . get_cmap ( 'jet' )  
fig =pylab . figure ( figsize =figsize , dpi =dpi )  
ax =fig . add_subplot ( 111 )  
ax . plot ( Resolution , ProcessingTime , 'ko-' , alpha =1)  
ax . set_xlabel ( 'Resolution' )  
ax . set_ylabel ( 'Processing Time (s)' )  
ax . set_title ( 'Processing Time' )  
figlist . append ( fig )  
Filt =[ Resolution >0, Resolution <50 ]  
nFi =len ( Filt )  
for  iFi in  range ( nFi ):  
    nF =numpy. sum( Filt [ iFi ])  
    ## Time Series CV/STD  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
ax . plot ( NodInf_T , Storage_Std [ Filt [ iFi ],:][ iF ,:]/ Storage_Mean [ iF ,:], '-
' , color =color , alpha =1)  
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    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Storage' )  
    ax . set_title ( 'Storage' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
ax . plot ( Tlevel_T , Stress_Std [ Filt [ iFi ],:][ iF ,:]/ Stress_Mean [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Stress' )  
    ax . set_title ( 'Stress' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
ax . plot ( Tlevel_T , StressArea_Std [ Filt [ iFi ],:][ iF ,:]/ StressArea_Mean [ Filt [ iFi ],:][ iF
,:], '-' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'StressArea' )  
    ax . set_title ( 'StressArea' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
ax . plot ( Tlevel_T , Yield_Std [ Filt [ iFi ],:][ iF ,:]/ Yield_Mean [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Yield' )  
    ax . set_title ( 'Yield' )  
    figlist . append ( fig )  
    ## Time Series MEAN +-STD  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
        ax . plot ( NodInf_T , Storage_Mean [ iF ,:], '-' , color ='k' , alpha =0.1 )  
ax . plot ( NodInf_T , Storage_Mean [ iF ,:]+ Storage_Std [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
        ax . plot ( NodInf_T , Storage_Mean [ iF ,:]- Storage_Std [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Storage' )  
    ax . set_title ( 'Storage' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
        ax . plot ( Tlevel_T , Stress_Mean [ iF ,:], '-' , color ='k' , alpha =0.1 )  
ax . plot ( Tlevel_T , Stress_Mean [ Filt [ iFi ],:][ iF ,:]+ Stress_Std [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
        ax . plot ( Tlevel_T , Stress_Mean [ Filt [ iFi ],:][ iF ,:]-
Stress_Std [ Filt [ iFi ],:][ iF ,:], '-' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Stress' )  
    ax . set_title ( 'Stress' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
        ax . plot ( Tlevel_T , StressArea_Mean [ iF ,:], '-' , color ='k' , alpha =0.1 )  
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ax . plot ( Tlevel_T , StressArea_Mean [ Filt [ iFi ],:][ iF ,:]+ StressArea_Std [ Filt [ iFi ],:][ iF
,:], '-' , color =color , alpha =1)  
        ax . plot ( Tlevel_T , StressArea_Mean [ Filt [ iFi ],:][ iF ,:]-
StressArea_Std [ Filt [ iFi ],:][ iF ,:], '-' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'StressArea' )  
    ax . set_title ( 'StressArea' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    for  iF in  range ( nF):  
        color =cm( iF /( nF- 0.999 ))  
        ax . plot ( Tlevel_T , Yield_Mean [ iF ,:], '-' , color ='k' , alpha =0.1 )  
ax . plot ( Tlevel_T , Yield_Mean [ Filt [ iFi ],:][ iF ,:]+ Yield_Std [ Filt [ iFi ],:][ iF ,:], '-
' , color =color , alpha =1)  
        ax . plot ( Tlevel_T , Yield_Mean [ Filt [ iFi ],:][ iF ,:]-
Yield_Std [ Filt [ iFi ],:][ iF ,:], '-' , color =color , alpha =1)  
    ax . set_xlabel ( 'Time' )  
    ax . set_ylabel ( 'Yield' )  
    ax . set_title ( 'Yield' )  
    figlist . append ( fig )  
    ##  RESOLUTION  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    ax . plot ( Resolution [ Filt [ iFi ]], Storage_CVmean [ Filt [ iFi ]], 'b-' , alpha =1)  
    ax . set_xlabel ( 'Resolution' )  
    ax . set_ylabel ( 'Storage' )  
    ax . set_title ( 'Storage' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    ax . plot ( Resolution [ Filt [ iFi ]], Stress_CVmean [ Filt [ iFi ]], 'r-' , alpha =1)  
    ax . set_xlabel ( 'Resolution' )  
    ax . set_ylabel ( 'Stress' )  
    ax . set_title ( 'Stress' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    ax . plot ( Resolution [ Filt [ iFi ]], StressArea_CVmean [ Filt [ iFi ]], 'r-' , alpha =1)  
    ax . set_xlabel ( 'Resolution' )  
    ax . set_ylabel ( 'Stress' )  
    ax . set_title ( 'Stress' )  
    figlist . append ( fig )  
    fig =pylab . figure ( figsize =figsize , dpi =dpi )  
    ax =fig . add_subplot ( 111 )  
    ax . plot ( Resolution [ Filt [ iFi ]], Yield_CVmean [ Filt [ iFi ]], 'g-' , alpha =1)  
    ax . set_xlabel ( 'Resolution' )  
    ax . set_ylabel ( 'Yield' )  
    ax . set_title ( 'Yield' )  
    figlist . append ( fig )  
#================================================== =======================  
# Save  
#================================================== =======================  
print ( 'Save' )  
basename=os . path . basename ( sys . argv [ 0])[:- 3]  
directory =path 
pdfname =os . path . join ( directory ,  basename +'0.pdf' )  
pp = PdfPages ( pdfname )  
for  fig in  figlist :  
    pp . savefig ( fig )  
pp . close ()  
#pylab.show()  
os . startfile ( pdfname )  
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Appendix-Chapter 5-2. An example of sampling location (resolution 30 x 30 m).  
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