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Abstract

We consider auctions of items that can be arranged in rows. Examples of such a
setting appear in allocating pieces of land for real estate development, or seats
in a theater or stadium. The objective is, given bids on subsets of items, to
find a subset of bids that maximizes auction revenue (often referred to as the
winner determination problem). We describe a dynamic programming algorithm
which, for a k-row problem with connected and gap-free bids, solves the winner
determination problem in polynomial time. We study the complexity for bids
in a grid, complementing known results in literature. Additionally, we study
variants of the geometrical winner determination setting. We provide a NP-
hardness proof for the 2-row setting with gap-free bids. Finally, we extend
this dynamic programming algorithm to solve the case where bidders submit
connected, but not necessarily gap-free bids in a 2-row and a 3-row problem.

Keywords: Auctions, dynamic programming, winner determination problem,
complexity, rows

1. Introduction

In combinatorial auctions, bidders can place bids on combinations of items,
called packages or bundles. Clearly, combinatorial auctions allow bidders to
better express their preferences compared to the traditional auction formats,
where bidders place bids on individual items. In particular, it makes sense to
use a combinatorial auction when complementarities or substitution effects exist
between different items.

Research on combinatorial auctions was triggered by applications such as
the FCC spectrum auction (Jackson, 1976) and auctions for airport time slots
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(Rassenti et al., 1982). For an introduction to combinatorial auctions, we refer
to the book edited by Cramton et al. (2006); for a survey of the literature, we
refer to Abrache et al. (2007) and de Vries and Vohra (2003).

One important challenge within this domain is, given the bids, to decide
which items should be allocated to which bidder, i.e., which bids to accept. In
general, this winner determination problem is NP-hard (Van Hoesel and Müller,
2001), and does not allow good approximation results (Sandholm, 2002).

We discuss a combinatorial auction in a restricted topology. In this setting,
an item corresponds to a rectangle, and all items are arranged in (a limited
number of) rows, see Figure 1 for an example. Notice that the individual items

Figure 1: An example of an instance with 3 rows and 5 bids.

(or rectangles) need not have the same size. A bid consists of a set of items
satisfying some restrictions (see Section 2 for a precise problem definition), to-
gether with a value. The objective is to select a set of bids that maximizes the
sum of the expressed values, while making sure that each item is present at most
once in a selected bid.

There are several situations in practice that motivate this specific geometric
setting. We mention the following:

• Real estate. Goossens et al. (2014) describe how space in a newly erected
building, to be used for housing and commercial purposes, is allocated us-
ing a combinatorial auction. The geometric structure of each of the levels
of the building features the properties described here. Quan (1994) re-
ports on empirical studies in real estate auctions. Several of these studies
have focused on verifying and quantifying the afternoon effect. This af-
ternoon effect describes similar items consistently selling for significantly
less in later rounds in multi-object sequential auctions. Quan (1994) even
reports on finding this effect in a large real estate auction (122 lots) of
vacant lots that are geographically similar. The lots were formed in 23
groups based on their geographical proximity. In 20 out of the 23 groups of
properties, the afternoon effect was present with the last bidder paying on
average one-third less than the first bidder for geographically similar lots.
A combinatorial auction, by selling all items simultaneously, can mitigate
this effect.

• Mineral rights. Imagine a region that is partitioned into lots, with the
lots organized in rows. For sale is the right to extract minerals, oil or gas
found on or below the surface of the lot. Clearly, having adjacent lots
allows for exploration and production efficiencies, a complementarity. For
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more about this particular setting, we refer to Cramton (2007). Figure 2
shows an example of oil and gas leases neatly arranged in rows.

Figure 2: Oil and Gas Leases managed by the Texas General Land Office. Taken from:
http://www.glo.texas.gov/GLO/agency-administration/gis/gis-data.html.

• Seats in a grandstand, theater or stadium. In some of these cases, one can
even assume that a grid, consisting of rows and columns, is given where
each cell represents a seat. Typically, demand exists for sets of adjacent
seats - think of a family of four going to a ball game, or a group of friends
visiting a concert. The complementarities that people perceive from adja-
cent seats offer possibilities for combinatorial auctions. Although tickets
are usually sold at a fixed price, there are occasions where sports teams
have auctioned off (part of) their seat licenses1. Another, not unrealistic,
example is the selling of airline tickets2.

• Laboratory experiments. Scheffel et al. (2011) provide results of labora-
tory experiments testing different auction formats in five different value
models. Their third value model has six pieces of land arranged in two
rows on a shoreline. Bidders are interested in bundles that contain at
least one lot at the shore. Their fourth value model has nine pieces of
land arranged in three rows. In Scheffel et al. (2012) a local synergy value
model is used in which 18 items are arranged rectangularly in three rows
with bidders interested in adjacent items. Kazumori (2010) ran exper-
iments using 16 items arranged rectangularly in four rows. Each agent
has a base value for each item and a varying level of additional interest
for adjacent items. These laboratory experiments required solving very
small instances of the winner determination problem. In case one were to
increase the number of pieces of land, or one wants to run a continuous

1For instance, the New York Jets (NFL) have earned over $16 million in an online auction
for seat licenses. See http://www.nfl.com/news/story/09000d5d80c071a4/article/jets-earn-
more-than-16-million-in-online-psl-auction.

2For instance, the article found at the following URL describes how some car-
riers require persons whose weight exceeds a given number to buy two (adjacent)
tickets: http://www.cheapair.com/blog/travel-tips/airline-policies-for-overweight-passengers-
traveling-this-summer/.
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auction, or one wants to give bidders all sorts of feedback, an efficient
algorithm for the winner determination becomes a necessity.

In all these cases, it is clear that complementarities between adjacent items
exist; a combinatorial auction is best-placed to take these effects into account.

The main goal of this paper is to show how the specific geometric setting de-
scribed above can be used to efficiently solve the winner determination problem
(which is hard in general), using dynamic programming procedures. Addition-
ally, we settle the complexity of the winner determination problem for bidding
in a grid. This paper does not address mechanism design or bidding strategy
issues.

Goossens et al. (2014) show that when a constraint is imposed stating that
a bidder can have at most one winning bid, the winner determination problem
is NP-hard even if all items are arranged on a single row. Hence, to have any
prospect of coming up with a positive result, we allow bidders to win multiple
bids. Notice however that, under some conditions on the bids, an optimal
solution where each bidder has at most one winning bid is guaranteed to exist.
This is the case, for instance, if the bids placed by each bidder satisfy at least
one of the following conditions:

• every pair of bids of a bidder has a non-empty intersection

• all bids from the same bidder are super-additive, i.e. for any two disjoint
sets S and T it should hold that the bid expressed on S ∪ T is at least as
large as the sum of the expressed bids on S and T .

The first condition is satisfied if bidders place only one bid. Bids coming from
(truthful) single-minded bidders, who are only interested in a specific set of
items or a superset of these items, also satisfy the first condition. Indeed, more
formally, single-minded bidders have a set of items S∗ and a value v∗ such that
their valuation v(S) = v∗ for all S ⊇ S∗, and v(S) = 0 for all other S (see
Nisan et al. (2007)). The second condition corresponds to the bids that can be
expressed using a bidding language consisting of OR-bids (see Nisan (2000)).
Summarizing, in these cases, our dynamic program will result in an optimal
solution where each bidder has at most one winning bid.

1.1. Literature

Our problem is a special case of finding a maximum-weight independent set
in a geometric intersection graph. In such a graph, there is a node for each bid
(in our case: a (connected) set of rectangles), and two nodes are connected if and
only if the corresponding bids overlap. Finding a maximum-weight independent
set in a geometric intersection graph is a well-studied problem for several types
of intersection graphs. For instance, in the work of Rothkopf et al. (1998), it is
shown that if all items are arranged in a single row, and bids are only allowed
for subsets of consecutive items, the resulting winner determination problem is
polynomially solvable. These results follow from the equivalence of this prob-
lem to finding a maximum-weight independent set in an interval graph. For
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an overview on results for more general intersection graphs we refer to Chan
and Har-Peled (2012). Depending upon particular properties of the geomet-
ric figures, different complexity results are known. We restrict ourselves here to
mentioning that for fat objects (like squares and disks) polynomial time approx-
imation schemes are known (see Erlebach et al. (2001), Hochbaum and Maass
(1985)). The important special case of finding a maximum-weight independent
set in a rectangle intersection graph is considered in Chalermsook and Chuzhoy
(2009).

In the context of auctions, Babaioff and Blumrosen (2008) and Christodoulou
et al. (2010) study mechanism designs for the setting where geometric figures
in the plane are the objects for sale. They sketch applications in advertising,
renting land for exhibitions and licenses for location-based services. They show
how to guarantee a certain fraction of the optimal welfare for certain shapes
of geometric objects (e.g. convex figures). The geometric setting considered
here is different; also we do not devise payment schemes for the bidders. This
paper addresses the question of how to solve the winner determination problem,
assuming bidders have placed bids for subsets of items.

Our problem is also somewhat related to rectangle packing. Given a set
of rectangles, the rectangle packing problem is to find a bounding box (i.e.
an enclosing rectangle) of minimum area that will contain the given rectangles
without overlap. The optimization problem is NP-hard, while the problem of
deciding whether a set of rectangles can be packed in a given bounding box is
NP-complete (Leung et al., 1990). This resembles a setting where bidders want
to acquire a set of seats in a theater, of given number and shape (e.g. four seats
next to each other, a 3 × 2 block of seats, etc.), anywhere in the theater. This
can be casted in our framework by having a bid for each possible set of seats.
In general however, this problem is fundamentally different from our problem:
in rectangle packing, given rectangles can be placed anywhere in the bounding
box, whereas in our problem the position of the items are fixed and the decision
to be made is whether or not to select a particular bid.

If we allow bidders to express multiple bids, the problem is NP-hard even
in a setting where all items are arranged in a single row. Indeed, this follows
immediately from the fact that the Job Interval Selection Problem (JISP) is
MAX SNP-hard (Spieksma, 1999). In the JISP n pairs of intervals on the real
line are given, and the objective is to select as many intervals as possible such
that no two selected intervals intersect and at most one interval is selected from
each pair.

1.2. Our Results

For the setting where items are arranged in rows, we show the following:

• For connected and gap-free bids (see Section 2 for precise definitions),
the winner determination problem is easy when the number of rows is
fixed (see Section 3.1). We provide a general polynomial time dynamic
programming algorithm.
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• For the setting where the bid space is a grid and both the number of rows
and columns are a part of the input, we show that even when bids are con-
strained to be row bids or column bids, the resulting winner determination
problem is NP-hard (see Section 3.2),

• For gap-free bids, the winner determination problem is NP-hard, even on
two rows (see Section 4.1).

• For connected bids, the winner determination problem is easy on three
rows or fewer (see Sections 4.2 and 4.3). We show this by adapting and
expanding upon the general dynamic programming algorithm discussed in
Section 3.1.

We point out that the complexity of the winner determination problem with
connected bids on a fixed number of rows k, with k ≥ 4, is still an open problem.
If the number of rows is part of the input, a result in Rothkopf et al. (1998)
implies the problem is NP-hard. An overview can be found in Table 1.

Rows
Connected and
gap-free bids

Connected bids Gap-free bids

1 O(m + n)
2 O(m2 + nm)

NP-hard
(Vialette, 2004)

3 O(m3 + nm2) O(n2m3)
k : k ≥ 3 O(mk + nmk−1) Open problem

Table 1: Overview of results if the number of rows k is not part of the input, m is the number
of items and n is the number of bids.

2. Preliminaries

The geometric setting that we consider can be described as follows. Given
are k rows. Each row contains an (ordered) set of items (or rectangles). If, on
some row, an item a lies to the left of item b, then we write a ≺ b. We use
Xj = {0, 1, . . . ,mj} to denote the set of items in row j, j = 1, . . . , k. The set of

items that can be bid on is
⋃k

j=1 Xj \{0}; item 0 cannot be part of any bid, and
is only present for notational convenience. We assume that item ` lies directly
to the left of item ` + 1, for each ` ∈ Xj \ {mj}, j = 1, . . . , k.

Definition 1. We say that a pair of items are adjacent if and only if they share
a border with non-zero length.

Clearly, items ` and `+1 are adjacent. However, items on different (but consec-
utive) rows can be adjacent as well. We use m to denote the number of items

in the instance, i.e., m =
∑k

j=1 mj . Figure 3 visualizes this.
We investigate the following problem, called the winner determination prob-

lem (WDP). Given is a set of bids B on subsets of items, with v(b) denoting the
value of bid b, for each b ∈ B. We set n = |B|, i.e. there are n bids; specifying a
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Row 1
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Row 3

Figure 3: An example of an instance with k = 3 (i.e. 3 rows) and m1 = 6, m2 = 8, m3 = 7.

bid implies specifying a set of items, as well as a value v(b) > 0. The problem is
to find an allocation that maximizes the sum of the values of the accepted bids,
ensuring that each item is allocated at most once.

Given a bid b, consider the item graph, H(b), which has a node for each item
in bid b, and there is an edge between a pair of nodes in H(b) if and only if the
corresponding items are adjacent. There are two main restrictions on the bids
that we consider. We define the concept of a connected bid.

Definition 2. We say that bid b is connected if the subgraph H(b) induced by
the items of bid b is connected. If bid b is not connected, we say that it is
disconnected.

Further, let us define the concept of a bid that is gap-free. A formal definition
of a bid having no gaps (i.e. being gap-free) is formulated as follows.

Definition 3. We say that bid b is gap-free if no three items u ≺ v ≺ w on a
single row exist for which u ∈ b, v /∈ b, w ∈ b.

A bid that is not gap-free has at least one gap. Notice that it is easy to
exhibit examples of connected bids that are not gap-free (see Figure 4a), and
gap-free bids that are not connected (see Figure 4b). It is also easy to see that
in the case of a single row, i.e. k = 1, connectedness of a bid is equivalent to a
bid being gap-free.

(a) A bid that is connected and not
gap-free.

(b) A bid that is disconnected and
gap-free.

Figure 4: Examples illustrating the concepts of a connectedness and gap-freeness.

Finally, it is important to see that bids on identical sets of items but with
different values need not all be considered. Indeed, one need only consider the
bid with the highest value. If more than one bid has the highest value, one
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could use the bid entry time as a tie-breaker. Thus, all but the highest value
bid on a specific set of items can be eliminated and bids will be unique in the
sense that they are all for different sets of items.

3. Connected and gap-free bids

In this section we assume that bids are connected and gap-free. In Section 3.1
we describe a dynamic programming algorithm for the winner determination
problem, tailored to our geometric setting described in Section 2, for the general
case of k rows. This algorithm has a polynomial running time if we assume that
k is not part of the input, or in other words, if we focus on problem instances
with a specific number of rows. Notice that this assumption is reasonable for
practical applications, as the auctioneer will typically be interested in a setting
with one particular number of rows, namely that number resulting from the
specific geometric structure underlying the items for sale.

In Section 3.2, we abandon this assumption, and study a setting where prob-
lem instances can have any number of rows (i.e. the number of rows is part of
the input). We discuss a setting where items are arranged in a grid, and show
that this problem is difficult, even when bids can cover only items in one row
or one column.

3.1. A dynamic program for winner determination for case of k rows

This section is divided as follows: first we describe the dynamic programming
algorithm for the case of k rows, then we proceed to a numerical example, after
which we will discuss the proof of correctness.

The dynamic program for k rows.
Here we describe a dynamic programming approach for the case of k rows and
bids that are both connected and gap-free. We show how the winner deter-
mination problem for this setting can be solved as a shortest path problem
on a graph G = (V,A), which is constructed as follows. There is a node
in V for each element in the Cartesian product of the sets X1,X2, . . . , Xk.
We write V =

∏k
i=1 Xi. Nodes in V are k-tuples. We consider the k-tuple

x = 〈x1, x2, . . . , xk〉, where x1 ∈ X1, x2 ∈ X2, . . . and xk ∈ Xk. This k-tuple
represents a state, i.e. a collection of assigned items. More specifically, the
k-tuple x represents a state where irrevocable decisions concerning the items
{0, . . . , x1} ∪ {0, . . . , x2} ∪ · · · ∪ {0, . . . , xk} have been made, i.e. for each row i
all items from left to right up to and including xi. As there is a node in V for
every k-tuple, this leads to O(mk) nodes.

The arc set A includes two types of arcs: the zero arcs and bid arcs. The zero
arcs have a weight of 0, and are used to handle items not included in the set of
winning bids. Consider some node x = 〈x1, x2, . . . , xi, . . . , xk〉 ∈ V , with 1 ≤ i ≤
k and xi 6= mi. A zero arc goes from node x to node 〈x1, . . . , xi+1, . . . , xk〉 ∈ V ,
for each 1 ≤ i ≤ k. Thus, up to k zero arcs emanate node x ∈ V , giving rise to
O(mk) zero arcs in the graph G.
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The bid arcs correspond to actual bids and have a weight equal to the value
of the bid v(b). We represent a bid by listing k pairs of elements; each pair
represents the first element, and the last element present in a bid on a particular
row. For a bid b that contains elements from each of the k rows, we write:
b = {(xb

1, y
b
1), (xb

2, y
b
2), . . . , (xb

k, y
b
k)}, where the element xb

j ∈ Xj (1 ≤ j ≤ k)

refers to the leftmost element of Xj present in bid b, and the element ybj ∈ Xj

(1 ≤ j ≤ k) refers to the rightmost element of Xj present in bid b. We use
the symbol (∅,∅) to denote that a bid does not include items from that row.
Thus, as an example, when we write b = {(∅,∅), (xb

2, y
b
2), (xb

3, y
b
3), (∅,∅)} this

means that the bid b does not include any items on the first row, it includes
items x2 up to and including y2 on the second row, it includes items x3 up to
and including y3 on the third row, and it does not include any items on the
fourth row.

The bid arcs can be described as follows. Let us, for convenience, first
assume that bid b contains elements from each of the k rows. To represent bid
b in the graph G, we draw an arc from node 〈xb

1− 1, xb
2− 1, . . . , xb

k − 1〉 to node
〈yb1, yb2, . . . , ybk〉 with weight v(b). Consider now a bid b such that there are rows
with no elements in b. Observe that, due to connectedness of b, these rows can
only have indices 1, 2, . . . , s(b) and f(b), f(b) + 1, . . . , k with 0 ≤ s(b) < f(b) ≤
k + 1. Note that if a bid b is present on the row 1 then s(b) = 0. Similarly,
if a bid b is present on row k then f(b) = k + 1. Now, to represent bid b, for
each x1 ∈ X1, x2 ∈ X2, . . . , xs(b) ∈ Xs(b), xf(b) ∈ Xf(b), xf(b)+1 ∈ Xf(b)+1, . . . ,

xk ∈ Xk there is an arc from node 〈x1, x2, . . . , xs(b), x
b
s(b)+1 − 1, . . . , xb

f(b)−1 −
1, xf(b), . . . , xk〉 to node 〈x1, x2, . . . , xs(b), y

b
s(b)+1, . . . , y

b
f(b)−1, xf(b), . . . , xk〉 with

weight v(b). Notice that there are O(nmk−1) bid arcs (of course it is conceivable
that the number of bid arcs will be far less).

We now compute a longest path from node 0 = 〈0, . . . , 0〉 to node m =
〈m1, . . . ,mk〉. The length of this path corresponds to the optimal revenue of
the auction, and the winning bids can be derived from the arcs in the path.
Notice that G = (V,A) is acyclic by construction and consists of O(mk) nodes
and O(mk−1(n + m)) arcs. Hence, a longest path can be found efficiently by
solving a shortest path problem in G = (V,A) with edge weights multiplied
by -1. Since Ahuja et al. (1993) show that shortest path problems in directed
acyclic graphs with p nodes and q arcs can be solved in O(p + q) time, our
dynamic program requires O(mk + nmk−1) time.

Once a longest path is found, it is easy to see which bids are accepted. Every
arc that is not a zero arc in G = (V,A) corresponds to exactly one bid. To find
the set of winning bids, for every non-zero arc in the longest path simply accept
the bid corresponding to that arc.

Note that when the shortest path problem in G = (V,A) is solved, it is
easy to get reduced costs (i.e. shadow prices) for all arcs. The minimum of the
reduced costs of all arcs corresponding to a single bid, is the amount by which
the bid needs to be improved (i.e. increased) to be winning, if all other bids
remain the same. This amount by which a bid needs to be increased, ceteris
paribus, to become a winning bid has been termed the winning level of a bid
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(Adomavicius and Gupta, 2005). Thus, in other words, the winning levels of
currently non-winning bids are easy to compute by using our approach. This
fact can be useful for providing feedback to bidders, helping bidders to better
evaluate whether they should revise previous bids (Adomavicius et al., 2012).

A numerical example.
In this section we will use the layout found in Figure 5a to illustrate how the
graph G = (V,A) is created. As can be seen in Figure 5a, the example has two
rows. In the first row there are three items and in the second row there are four
items. Five bids are submitted, see Figures 5b-5f. Bid 1, b1 with v(b1) = 12,
is on the first item in row 1 and on the first item in row 2. Bid 2, b2 with
v(b2) = 14, is on item 2 in row 1 and items 2 and 3 in row 2. Bid 3, b3 with
v(b3) = 13, is on the first item in row 1 and the first two items in row 2. Bid 4,
b4 with v(b4) = 9, is on the last two items in row 1. Bid 5, b5 with v(b5) = 4,
is on the last item in row 2. Given these bids, now the winner determination
problem needs to be solved.

Now let us construct the graph G = (V,A). First we construct the nodes.
There is a node in V for each element in X1 × X2. In our example: X1 =
{0, 1, 2, 3} and X2 = {0, 1, 2, 3, 4}. The resulting nodes are 2-tuples or pairs,
each of which represent a state: the first component denotes which items have
already been handled on the first row, the second component denotes which
items have already been assigned on the second row. For example, in the pair
〈1, 3〉 we have already made decision regarding item 1 in row 1 and items 1, 2
and 3 in row 2. The appropriate nodes for the numerical example can be found
in Figure 5g.

Bid 1 can be represented as b1 = {(1, 1), (1, 1)}. That means that there is a
single arc corresponding to bid 1 from 〈0, 0〉 to 〈1, 1〉. Bid 2 can be represented
as b2 = {(2, 2), (2, 3)}. That means that there is an arc corresponding to bid
2 from 〈1, 1〉 to 〈2, 3〉. Bid 3 can be represented as b3 = {(1, 1), (1, 2)}. That
means that there is an arc corresponding to bid 3 from 〈0, 0〉 to 〈1, 2〉. Bid 4
can be represented as b4 = {(2, 3), (∅,∅)}. This leads to multiple arcs: from
〈1, 0〉 to 〈3, 0〉, from 〈1, 1〉 to 〈3, 1〉, from 〈1, 2〉 to 〈3, 2〉, from 〈1, 3〉 to 〈3, 3〉, and
from 〈1, 4〉 to 〈3, 4〉. Bid 5 can be represented as b5 = {(∅,∅), (4, 4)}. This also
leads to multiple arcs: from 〈0, 3〉 to 〈0, 4〉, from 〈1, 3〉 to 〈1, 4〉, from 〈2, 3〉 to
〈2, 4〉 and from 〈3, 3〉 to 〈3, 4〉.

The longest path in the resulting graph from node 〈0, 0〉 to 〈3, 4〉 has a value
of 30 and goes along the following arcs. First it goes from 〈0, 0〉 to 〈1, 1〉, which
means bid 1 is selected. Next it goes from 〈1, 1〉 to 〈2, 3〉, meaning bid 2 is
selected. Then there are two alternative but equally good paths. The first
alternative is to go from 〈2, 3〉 to 〈2, 4〉, thus accepting bid 5 and then go from
〈2, 4〉 to 〈3, 4〉 by using the zero arc. The other alternative is to go from 〈2, 3〉 to
〈3, 3〉 by using the zero arc and then going from 〈3, 3〉 to 〈3, 4〉, thus accepting
bid 5. The optimal solution of the winner determination problem in this instance
is thus to accept bids 1, 2 and 5. The corresponding value is 30.

Proof of correctness.
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1 2 3
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(a) Numerical example layout.

1 2 3

1 2 3 4

(b) Bid 1, b1, with v(b1) = 12.

1 2 3

1 2 3 4

(c) Bid 2, b2, with v(b2) = 14.

1 2 3

1 2 3 4

(d) Bid 3, b3, with v(b3) = 13.

1 2 3

1 2 3 4

(e) Bid 4, b4, with v(b4) = 9.

1 2 3

1 2 3 4

(f) Bid 5, b5, with v(b5) = 4.

〈0, 0〉 〈1, 0〉 〈3, 0〉〈2, 0〉

〈0, 1〉 〈1, 1〉 〈3, 1〉〈2, 1〉

〈0, 2〉 〈1, 2〉 〈3, 2〉〈2, 2〉

〈0, 3〉 〈1, 3〉 〈3, 3〉〈2, 3〉

〈0, 4〉 〈1, 4〉 〈3, 4〉〈2, 4〉

12

14

13

9

9

9

9

4 4 4 4
9

(g) The resulting graph. The dashed arcs represent the zero-
bids and as such have a value of zero. The other arcs are bid
arcs and have a weight corresponding to the value of the bid.

Figure 5: The layout of the items, five bids, and the resulting graph.
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Theorem 1. The WDP with n connected and gap-free bids on m items that
are arranged in k rows, can be solved by solving a shortest path problem in an
acyclic graph G = (V,A) with O(mk) nodes and O(mk−1(n + m)) arcs for each
k ≥ 1.

Proof. We show that the dynamic program for k rows, as described in 3.1,
solves the winner determination problem to optimality, i.e. a longest path in G
corresponds to a solution to the winner determination problem with the same
value, and vice versa. We prove this by establishing a one-to-one correspondence
between a feasible set of bids and a path in the graph G from 0 = 〈0, . . . , 0〉 to
m = 〈m1, . . . ,mk〉.

First, we show how a given set of non-overlapping bids corresponds to a
path in G. We order the given bids in a sequence such that a bid containing
item x ∈ Xj comes before a bid containing item y ∈ Xj when x ≺ y (for
each j ∈ {1, . . . , k}). Notice that the bids being gap-free and connected implies
that at least one such a sequence exists. The path in G corresponding to this
sequence of bids consists of a single bid arc for each bid in the sequence, and
zero arcs in between the bid arcs. Let us assume a partial path in G starting at
0 going to node y = 〈y1, . . . , yk〉 has been found that corresponds to the first
u bids in the sequence. Thus, the first u bids have allocated items up to y1 in
row 1, . . . , and up to yk in row k. We show how to extend this partial path to
incorporate the (u + 1)-th bid.

Let b be the (u+1)-th bid. By definition xb
s(b)+1, . . . , x

b
f(b)−1 are the leftmost

items in the rows s(b) + 1, . . . , f(b)− 1 where bid b is present. By construction
of the sequence we have that yi ≺ xb

i for i = s(b)+1, . . . , f(b)−1. Thus, we can
use zero arcs starting in y to bring us to node y′ = 〈y1, y2, . . . , ys(b), xb

s(b)+1 −
1, . . . , xb

f(b)−1− 1, yf(b), . . . , yk〉. Now we select the bid arc corresponding to bid

b that leaves node y′.
Second, given a path in G from 0 to m, it is obvious how a feasible set of bids

is chosen: simply take the bids corresponding to the bid arcs in the path. There
can be no overlap between any pair of these bids, since there are no arcs in G
from nodes x to y for which any of the components of x succeeds a component
of y. The value of the set of bids coincides with the length of the path.

Finally, it is not difficult to verify that the graph G is acyclic, and hence a
longest path can be found efficiently by solving a shortest path problem in G
with edge weights multiplied by −1.

3.2. The complexity of winner determination for bids in a grid

In this section we assume that a k×q grid is given, with m = k×q items (for
instance representing seats in a grandstand, or a theater), and that connected
bids are given. Naturally, the dynamic program for k rows, as presented in
Section 3.1, can also be used to solve instances of a grid setting, as this is a
special case of our geometric setting described in Section 2. However, if we
consider instances for the grid setting with any number of rows (i.e. we consider
k as part of the input), the dynamic program of Section 3.1 can no longer
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guarantee a polynomial running time as the graph consists of O(mk) nodes
and O(mk−1(n + m)) arcs. As mentioned in Section 1, Rothkopf et al. (1998)
find that if bids are allowed only on singletons, full rows, and full columns, the
problem is easy to solve.

Probably the simplest bids that use multiple rows and columns are 2×2 bids
(a 2× 2 bid is a bid on cells (i, j), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)) for some row
i and column j. However, when each bid is a 2 × 2 bid, the complexity of the
winner determination problem follows directly from the tile salvage problem. In
this problem, an k×k grid is given, together with a set of unit squares that have
been removed from this grid. The tile salvage problem is to find the maximum
number of non-overlapping x × y tiled rectangles. Berman et al. (1990) show
that the tile salvage problem is NP-complete, even for 2 × 2 tiles. Hence, our
problem is hard even if only bids on 2× 2 rectangles are allowed.

For connected bids in a k×q grid, the only setting whose complexity is open
is a setting where each bid is either a row bid or a column bid. We say that
a bid is a row bid (column bid) when it consists of consecutive items on some
single row (column). Note that in this setting bids need not be on an entire
row/column, but can be on a part of a row or a column as well. Obviously,
if, in a grid of size k × q, all bids are row bids (or all bids are column bids),
the problem decomposes into k (q) independent single row (column) problems;
however, if the instance contains both row bids and column bids, the complexity
follows from the following observation.

Theorem 2. The winner determination problem in a grid where each bid is a
row bid or a column bid, is NP-hard.

Proof. The following question is known to be NP-complete (Rendl and Woegin-
ger, 1993). Given 2n distinct points in the plane, do there exist n axis-aligned,
non-overlapping line segments each connecting a pair of points such that each
point is connected to exactly one other point? A segment is called axis-aligned
when the two points it connects either share an x-coordinate, or share a y-
coordinate. Like Rendl and Woeginger (1993), we will call this problem RDOS
(reconstruction of sets of disjoint orthogonal segments).

Let us now build an instance of the winner determination problem in a grid.
For each distinct y-coordinate in the instance of RDOS there is a row in our
problem, and for each distinct x-coordinate there is a column in our problem.
This specifies the grid. Every cell of the grid corresponds to an item. An
example can be seen in Figure 6a and 6b. For each pair of points sharing a y-
coordinate (x-coordinate), there is a row (column) bid with value 1, containing
all items in between the two points sharing the y-coordinate (x-coordinate).
This completely specifies an instance of the winner determination problem in
the grid. An example can be seen in Figure 6c and 6d. Now, if total revenue
of the corresponding auction has a value of n, then apparently there are n row
and column bids that do not overlap. These n bids correspond to n axis-aligned
segments, and the answer to the question is yes. Finally, if the answer to the
question is yes, there exist n non-overlapping row and column bids.

13



(a) Input of a RDOS instance: 16
points in the plane.

(b) Grid corresponding to the in-
put points.

(c) A solution connecting all 16
points with 8 non-overlapping line
segments.

(d) Black rectangles correspond to
bids in an optimal solution, grey
rectangles are other bids.

Figure 6: Transformation of a RDOS instance to an instance of the winner determination
problem in a grid with row and column bids.

Notice that there is an easy 2-approximation algorithm for this setting. The
approximation goes as follows. First, consider only row bids and solve the
corresponding winner determination problem by solving the problem for each
row. Next, perform a similar procedure for the sets of column bids. Finally, we
take the best result of these two feasible solutions. It is easy to see that this is in
fact a 2-approximation. Recall that solving the winner determination problem
for connected bids on a single row is polynomially solvable.

4. Variants

In this section, we take a more detailed look at the case of two rows, showing
the impact of each of the two assumptions (connected and gap-free) on the com-
putational complexity of the WDP. Finally, we show how the dynamic program
can be generalized to treat the case of three rows and connected bids.
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4.1. The case of two rows and gap-free bids

We relax here the condition of connectedness; we only assume that bids are
gap-free (we have two rows however). We claim that, in this case, the WDP
becomes a special case of the problem of finding a maximum-weight independent
set in a graph that is the edge-union of two interval graphs. Indeed, observe that
since a bid is gap-free we can see each bid as the union of a set of consecutive
items in row 1 and a set of consecutive items in row 2. By concatenating row
1 and row 2 into a single row, one can view each each bid as consisting of two
intervals, a left and a right interval. The resulting intersection graph has a node
for each bid, and two nodes are connected if either their left intervals, or their
right intervals (or both) overlap; in other words, the resulting intersection graph
is a 2-union graph. It is shown in Bar-Yehuda et al. (2006), that the maximum-
weight independent set problem is NP-hard on 2-union graphs, see also van
Bevern et al. (2015). Note however that the intersection graph resulting from
the 2-row problem we investigate is a special case of 2-union graphs. Indeed, in
our special case all left intervals are to the left of all right intervals, which is not
necessarily the case in a 2-union graph. However in the context of computational
biology this precise special case has been studied by Vialette (2004).

Lemma 1. The WDP with n gap-free bids on m items that are arranged in two
rows, is NP-hard.

Proof. See the proof of Proposition 7 in Vialette (2004).

4.2. The case of two rows and connected bids

Consider the case where bids are still connected, but not necessarily gap-
free. Figure 7 shows an example of a bid that has 2 gaps. Given a bid b, the

Figure 7: A bid with 2 gaps in a 2-row problem.

set of items that are in gap(s) of this bid b is given by G(b) = {x /∈ b : ∃u, v ∈
b with u ≺ x ≺ v}. In case G(b) is empty, b is gap-free; otherwise G(b) consists
of, say p(b) (p(b) < m), connected itemsets, each representing a single gap.
More precisely, let H(G(b)) be the item graph corresponding to the items in
G(b); each of the p(b) connected components of H(G(b)) corresponds to items

making up a single gap. We write G(b) =
⋃p(b)

`=1 G
`(b), where G`(b) represents

the items present in the `-th gap of bid b where 1 ≤ ` ≤ p(b).

Theorem 3. The WDP with n connected bids on m items that are arranged in
two rows, can be solved in polynomial time.
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Proof. Observe that, for each ` = 1, . . . , p(b) and b ∈ B, the itemset G`(b)
consists of items on a single row (otherwise b would be disconnected). Let us
now consider an instance defined by itemset G`(b), and by all bids b′ ∈ B that
are contained in this itemset. Since each b′ is connected (by assumption) and
since G`(b) consists of items on a single row (see above), we can easily compute
the value of this instance (denoted by v(G`(b))) by using Theorem 1 with k = 1.
Given a bid b, we do this for each ` = 1, . . . , p(b) finding the values v(G`(b)) by
applying Theorem 1 for k = 1 O(m) times.

Finally, given an instance, we build a new instance where we replace each
bid b that is not gap-free by a combined bid on the itemset b∪G(b), with a value
v(b) +

∑p
`=1 v(G`(b)). The resulting instance is created in polynomial time, is

gap-free, and thus we can use Theorem 1 to solve it.

4.3. The case of three rows and connected bids

Here, we show how the winner determination problem for the setting with
3 rows and connected bids can be solved as a shortest path problem, using a
generalization of the approach described in Section 3.1 that can handle bids
with open gaps. The main challenge in this case is how to deal with gaps that
may be present in a bid.

Let us first define the concept of an instance graph H. The instance graph
H has a node for each item x ∈ (X1 \ {0})∪ (X2 \ {0})∪ (X3 \ {0}). Two nodes
corresponding to items that are adjacent are connected; moreover, there is a
node s in the graph which is connected to the first item in each of the three
rows, and there is a node t connected to the last item in each of the three rows
(see Figure 8 for an example).

s t

Figure 8: The instance graph H.

4.3.1. Types of gaps and bids

We distinguish two kind of gaps. To that end, consider the instance graph
H, and a connected bid b, and suppose that bid b is not gap-free. Thus, each
of the p gaps in bid b is represented by itemset G`(b), ` = 1, . . . , p.

Definition 4. We call a gap G`(b) an open gap if, in the graph H \H(b), there
is a path from each x ∈ G`(b) to either node s or node t. Each gap that is not
an open gap is called a closed gap.
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Because there are only 3 rows, a closed gap contains items in at most 2 rows
(since a closed gap on 3 rows corresponds to a bid that is not connected). Also
notice that an open gap only has items in the second row.

In Figure 9 there are 3 examples. In the top example, there is one gap with
items on the first and second row. However, since there is no path in H \H(b)
from any of the x ∈ G1(b) to either s or t, it is a closed gap. In the middle
example, there is a gap with items on the second row. There exists a path in
H \ H(b) from each x ∈ G1(b) to s. Therefore, the gap in this bid is an open
gap. In the bottom example of Figure 9 there are 4 gaps. The first gap, G1(b)
on the left has one item on the first row; the second gap, G2(b), has one item on
the third row; the third gap, G3(b), has one item on the first row and one item
on the second row. There is no path in H \H(b) from any of the x ∈ G`(b) to
either s or t for ` = 1, 2, 3. This means that these three gaps are closed gaps.
Finally, the fourth gap G4(b), is on the right and has one item on the second
row. There is a path in H \H(b) from the item in G4(b) to t, making this gap
an open gap.

s t

s t

s t

Figure 9: Examples of graphs H \H(b). Black nodes correspond to items in a gap.

We now partition the class of connected bids in two disjoint subclasses ac-
cording to the following definition.
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Definition 5. If a bid b has at least one open gap, it belongs to the subclass
called open bids. The set of open bids is Bopen. If b has no open gaps, it belongs
to the subclass of closed bids. The set of closed bids is Bclosed.

Consider a bid and its closed gaps. For each such closed gap, we solve the
corresponding instance, yielding a value v. We then replace the bid with a
combined bid that has the closed gaps filled and its original value increased by
v. From Theorem 3 it follows that this operation can be done in polynomial
time (recall that a closed gap contains items on at most two rows).

After this preprocessing of the bids, all closed gaps in all bids are ‘filled’
optimally. See for example Figures 10a, 10b and 10c. In Figure 10a there is a
gap spanning the top and middle row, which is then filled optimally by solving
a subproblem. In this case, the entire gap has been covered by other bids, but
this is not necessarily always true. In Figure 10b, there is a gap only on the
middle row. It is filled optimally by solving a subproblem which in this case only
covers half the space in the gap. In Figure 10c, there is both a closed gap and
an open gap. The closed gap has been filled optimally by solving a subproblem.
After this preprocessing step we can ignore the gaps in closed bids, because

(a) A closed gap spanning two rows.

(b) A closed gap spanning one row.

(c) A closed gap spanning two rows and an open gap.

Figure 10: Filling closed gaps optimally.

they are all filled optimally (replacing the closed bid with a combined bid). In
an open bid, all closed gaps have been filled as well, however, there is always
at least one open gap remaining. Note that of course Bopen ∪ Bclosed = B and
Bopen ∩ Bclosed = ∅ hold.

4.3.2. A polynomial-time algorithm

We show how the winner determination problem for the setting with 3 rows
and connected bids can be solved as a shortest path problem. We construct the
graph G = (V,A) as follows.
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The nodes. We define 〈x1, x2, x3, b〉 (quadruples), where x1 ∈ X1, x2 ∈ X2,
x3 ∈ X3, b ∈ (Bopen ∪ ∅). Every such quadruple corresponds to a node in V
where items {0, . . . , x1}∪{0, . . . , x2}∪{0, . . . , x3} have been allocated. If b = ∅,
we are in a bid-independent state (which corresponds to the states described in
Section 3.1). If b 6= ∅, then we are in a bid-dependent state where we have to take
into account one or more open gaps and have also assigned items {x′b, . . . , x′′b } in
the middle row with x2 ≺ x′b. Specifically, each open bid b is characterized by x′b
and x′′b , where x′b is the leftmost item of the last contiguous set of items on the
second row included in b and x′′b is the rightmost item of the last contiguous set
of items on the second row included in b. Note that it is possible that x′b = x′′b .

The arcs. There are 2 types of arcs. The first type of arcs are zero arcs, which
are are used to handle items not included in the set of winning bids. These
arcs are not associated with any bid and thus have length 0. We distinguish 3
different types of zero arcs:

• Arcs between two bid-independent nodes:

– from 〈x1, x, y,∅〉 to 〈x1 + 1, x, y,∅〉, ∀x1 ∈ X1 \ {m1}, x ∈ X2,
y ∈ X3,

– from 〈x, x2, y,∅〉 to 〈x, x2 + 1, y,∅〉, ∀x ∈ X1, x2 ∈ X2 \ {m2},
y ∈ X3, and

– from 〈x, y, x3,∅〉 to 〈x, y, x3+1,∅〉, ∀x ∈ X1, y ∈ X2, x3 ∈ X3\{m3}.

• Arcs between two bid-dependent nodes: from 〈x, x2−1, y, b〉 to 〈x, x2, y, b〉,
∀x ∈ X1, x2 ∈ X2 \ {0} : x2 ≺ x′b, y ∈ X3, b ∈ Bopen.

• Arcs between bid-dependent and bid-independent nodes: from 〈x, x′b −
1, y, b〉 to 〈x, x′′b , y,∅〉, ∀x ∈ X1, y ∈ X3, b ∈ Bopen.

The second type of arcs are those which are associated with actual bids. The
lengths of these are equal to the value of the corresponding (combined) bid.
Note that there may be multiple arcs corresponding to the same bid. We now
describe the 4 components of a node 〈x1, x2, x3, b

′〉 that make up a starting node
for an arc that corresponds to a connected bid b 6= b′:

• First tuple component x1: if b ∩ X1 6= ∅, then x1 = x − 1, where x is
the leftmost item in row 1 included in b. Otherwise all elements in X1 are
possible values for x1, i.e. multiple arcs will need to be constructed.

• Second tuple component x2: if b ∩X2 6= ∅, then x2 = x − 1, where x is
the leftmost item in row 2 included in b. Otherwise all elements in X2 are
possible values for x2, i.e. multiple arcs will need to be constructed.

• Third tuple component x3: if b ∩ X3 6= ∅, then x3 = x − 1, where x is
the leftmost item in row 3 included in b. Otherwise all elements in X3 are
possible values for x3, i.e. multiple arcs will need to be constructed.
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• Fourth tuple component b′: b′ = ∅ or b′ ∈ Bopen for which the following
holds:

– b ∩ b′ = ∅ (no overlap) and

– ∃x ∈ b ∩X2,∃x′ and x′′ ∈ b′ ∩X2 : x′ ≺ x ≺ x′′ (b has an item in an
open gap of b′) and

– @x ∈ b∩X2, x
′ ∈ b′ ∩X2 : x ≺ x′ (b does not have an item to the left

of b′ in the second row)

Now that we have determined all possible starting nodes for every connected
bid, we have to determine the end nodes. End nodes for arcs depend on two
things: the starting node and whether the bid b to which the arc corresponds is
a closed or an open bid. We distinguish four cases:

• case 1: bid-independent starting node, closed bid

• case 2: bid-independent starting node, open bid

• case 3: bid-dependent starting node, closed bid

• case 4: bid-dependent starting node, open bid

We will now discuss how the end node is constructed from the starting node in
each case.

• Case 1: for every row for which there is an item x ∈ b, change the corre-
sponding tuple component to the rightmost item included in b in that row,
otherwise keep the value of the starting node. The fourth tuple component
remains the same as the starting node, which is ∅.

• Case 2: for the first and third row for which there is an item x ∈ b,
change the corresponding tuple component to the rightmost item of that
row included in b, otherwise keep the value of the starting node. For the
second row: find the leftmost contiguous interval included in b and change
the second tuple component to the rightmost item in that interval. The
fourth tuple component will change to b.

• Case 3: for every row for which there is an item x ∈ b, change the corre-
sponding tuple component to the rightmost item included in b in that row,
otherwise keep the value of the starting node. The fourth tuple component
remains the same as the starting node.

• Case 4: let b′ be an open bid with its leftmost item in row 2 to the left
of leftmost item of open bid b in row 2. Observe that the itemset b′ ∪ b
may contain a closed gap: indeed there are two basic cases depending on
whether the rightmost item in row 2 in b precedes (Figure 11a) or suc-
ceeds (Figure 11b) the rightmost item in row 2 in b′. In both cases, the
value of the arc will be increased with the optimal value of a subprob-
lem on the second row limited to the shaded area. In other words, we
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construct a combined bid. In the case of Figure 11a, the first three tuple
components are changed according to the rightmost item included in b in
that row, otherwise keeping the value of the starting node. The fourth
tuple component will remain the same. In the example, the arc would go
from 〈x1 − 1, x2 − 1, y3, b

′〉 to 〈x1, x
′
2, y3, b

′〉. In the case of Figure 11b,
the first three tuple components are changed according to the rightmost
item included in b in that row, otherwise keep the value of the starting
node. However, the fourth tuple component will be changed to b. In the
example, the arc would go from 〈x1 − 1, x2 − 1, y3, b

′〉 to 〈x1, y
′
2, y3, b〉.

b

b′

x2 x′2y2 y′2

x1

y3

(a) Two open bids creating an extra gap: option 1.

b′

b

x2 y′2 x′2y2

x1

y3

(b) Two open bids creating an extra gap: option 2.

Figure 11: Case 4 arcs.

Shortest path. We now compute a longest path from node 〈0, 0, 0,∅〉 to node
〈m1,m2,m3,∅〉. The length of this path corresponds to the optimal revenue
of the auction, and the winning bids can be derived from the arcs in the path.
Notice that G = (V,A) is acyclic by construction and consists of O(nm3) nodes
and O(n2m3) arcs. Hence, a longest path can be found efficiently by solving a
shortest path problem in G = (V,A) with edge weights multiplied by -1. In the
next section, we prove the correctness of this algorithm.

4.3.3. Proof of correctness

In order to prove the correctness of the algorithm described in Section 4.3.2,
we show that (1) each path from node 〈0, 0, 0,∅〉 going to node 〈m1,m2,m3,∅〉
corresponds to a feasible allocation for the auction, and (2) vice-versa. Recall
that after the preprocessing step described in Section 4.3.1, all closed gaps have
been filled, resulting in combined bids and corresponding arcs in G. As the
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individual bids corresponding to these arcs can easily be traced, we will ignore
closed gaps in the remainder of this proof.

(1) Intuitively, consider a path starting from node 〈0, 0, 0,∅〉 and going to
node 〈m1,m2,m3,∅〉. This path corresponds to an allocation for the auction
by accepting the bids corresponding to the arcs associated with bids (the zero
arcs can obviously be ignored). In order to show that this allocation is feasible,
we need to argue that no pair of bids has overlap. Notice that for all arcs in
the graph, when comparing the end node with the start node, none of the first
3 tuple components decreases, and at least one increases. This means that each
arc represents moving to the right on at least one row, and that moving (back)
to the left is not possible. For arcs with a bid-independent starting node, the
start node corresponds to the leftmost items on each row included in the bid.
Hence, overlap between the bid corresponding to this arc and any of the bids
corresponding to previous arcs in the path is not possible. For arcs with bid-
dependent starting nodes, more care is needed. Consider an arc whose starting
node has b′ as the fourth tuple component. By construction, for each such arc
corresponding to a bid b, there is no overlap between b′ and b. Furthermore,
as the endpoint of this arc determines to what extent the open gap(s) of b′ has
been filled by b, we also avoid overlap between b and the corresponding bid of
a possible next arc with value b′ in the fourth tuple component of its starting
node. The only way to move from a bid-dependent to a bid-independent node
is through a zero arc, which ensures that the value for the second tuple corre-
sponds with the rightmost item on the second row of the open bid b′, thereby
excluding overlap between this bid and bids corresponding to subsequent arcs.

(2) Consider a feasible solution for the winner determination problem (i.e.
no pair of bids in the allocation overlaps). By construction, for each (combined)
bid in the allocation at least one arc in the graph exists. We show how to
identify a path in G that corresponds with the bids in the allocation. We order
the bids in a sequence such that bid p comes before bid q if p contains an item
x ∈ X2 for which x ≺ y for all y ∈ X2 contained in bid q. In other words, we
order the bids based on their leftmost item on the second row. Since we assume
that bids are connected, bids that do not contain items on the second row have
all items either on the first row or on the third. These bids should be inserted in
the order such that a bid containing item x ∈ Xj comes before a bid containing
item y ∈ Xj when x ≺ y (for each j ∈ {1, 3}). Recall that these bids are not
used to fill closed gaps, as we handled this in the preprocessing step. Hence, at
least one such sequence exists.

The path in G corresponding to this sequence of bids has a single bid arc for
each (combined) bid in the sequence, and zero arcs in between the bid arcs. Let
us assume a partial path in G starting at 〈0, 0, 0,∅〉 going to node 〈u1, v1, w1, b

′〉
has been found that corresponds to the first k bids in the sequence. We show
how to extend this partial path to incorporate the (k + 1)-th bid, say bid b. We
discern 3 situations:
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• b′ = ∅: if b has items on each row, we select the corresponding arc starting
at node 〈u2 − 1, v2 − 1, w2 − 1,∅〉, where u2, v2, and w2 are the leftmost
items in b. If b has no items on one or more rows, we select the arc starting
from the node with tuple value u1, v1 and/or w1 for the respective row(s)
on which b has no items.

• b′ 6= ∅ and b is a closed bid: we select the corresponding arc starting at
node 〈x, y, z, b′〉, where x = u1 (y = v1,z = w1) if b does not include an
item on the first (second, third) row, and x = u2−1 (y = v2−1,z = w2−1)
otherwise (where u2, v2, and w2 are the leftmost items in b).

• b′ 6= ∅ and b is an open bid: we select the same arc as in the previous
case, however, in this case one or more bids on items in row 2 may be
enclosed between bids b and b′ (see Figures 11a and 11b). As the value of
these bids in included in the weight of the arc corresponding to b, we can
remove these bids from the sequence (observe that these bids succeed b).

Notice that from all bid arcs that correspond to this bid b, we select one, and that
we can always reach the selected arc from 〈u1, v1, w1, b

′〉 using zero arcs. Next,
we iteratively select the next bid in the order, and proceed analogously. After
having treated the last bid in the order, if the end node of the corresponding arc
is not 〈m1,m2,m3,∅〉, we connect to this node using zero arcs. The following
result is now apparent.

Theorem 4. The WDP with n connected bids on m items that are arranged
in three rows can be solved by solving a shortest path problem in a graph with
O(nm3) nodes and O(n2m3) arcs.

5. Conclusion

We study the winner determination problem for a combinatorial auction
with a specific geometric structure. We argue that this structure is relevant, as
it occurs in real estate, plots of land, mineral rights, and theaters and stadium
seats. The complementarities present in these situations offer great potential for
combinatorial auctions. We point out that the items need not be rectangular
but can be of any shape. In fact, if the itemset can be partitioned into k
ordered subsets (rows), such that the adjacency relations between pairs of items
on consecutive rows are consistent with the ordering of the items in each row,
our framework applies.

With our dynamic programming algorithm, we present auctioneers a tool
that enables them, under some reasonable assumptions on the bids and with
a fixed number of rows, to efficiently compute the winning bids. Next, we
complement existing results by showing that bidding in a grid is difficult, even
when only row and column bids are allowed, if the number of rows is part of
the input. We further investigate the precise impact of our assumptions.

Solving the winner determination problem efficiently is an essential compo-
nent of mechanism design. As our paper assumes the bids are given, future
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research that focusses on determining accompanying auction rules, and studies
their impact on bidding strategy, efficiency and revenue would be valuable. Fi-
nally, our results may also prove useful for experimental research: our dynamic
program will allow researchers to study bidder behavior in larger settings, in-
volving more items and bidders than considered so far.
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