Advanced search
1 file | 474.80 KB Add to list

The wavelet transforms in Gelfand-Shilov spaces

(2016) COLLECTANEA MATHEMATICA. 67(3). p.443-460
Author
Organization
Project
Abstract
We describe local and global behavior of wavelet transforms of ultradifferentiable functions. The results are given in the form of continuity properties of the wavelet transform on Gelfand–Shilov type spaces and their dual spaces. In particular, we introduce a new family of highly time-scale localized spaces on the upper half-space. We study the wavelet synthesis operator (the left-inverse of the wavelet transform) and obtain the resolution of identity (Calderón reproducing formula) in the context of ultradistributions.
Keywords
Calderón reproducing formula, Gelfand–Shilov spaces, Ultradistributions, Wavelet transform, PSEUDODIFFERENTIAL-OPERATORS, EXPONENTIAL DECAY, EQUATIONS, ULTRADISTRIBUTIONS, EXTENSIONS, THEOREMS

Downloads

  • Wavelet transforms Gelfand-Shilov spaces.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 474.80 KB

Citation

Please use this url to cite or link to this publication:

MLA
Pilipović, Stevan, et al. “The Wavelet Transforms in Gelfand-Shilov Spaces.” COLLECTANEA MATHEMATICA, vol. 67, no. 3, 2016, pp. 443–60, doi:10.1007/s13348-015-0154-y.
APA
Pilipović, S., Rakić, D., Teofano, N., & Vindas Diaz, J. (2016). The wavelet transforms in Gelfand-Shilov spaces. COLLECTANEA MATHEMATICA, 67(3), 443–460. https://doi.org/10.1007/s13348-015-0154-y
Chicago author-date
Pilipović, Stevan, Dušan Rakić, Nenad Teofano, and Jasson Vindas Diaz. 2016. “The Wavelet Transforms in Gelfand-Shilov Spaces.” COLLECTANEA MATHEMATICA 67 (3): 443–60. https://doi.org/10.1007/s13348-015-0154-y.
Chicago author-date (all authors)
Pilipović, Stevan, Dušan Rakić, Nenad Teofano, and Jasson Vindas Diaz. 2016. “The Wavelet Transforms in Gelfand-Shilov Spaces.” COLLECTANEA MATHEMATICA 67 (3): 443–460. doi:10.1007/s13348-015-0154-y.
Vancouver
1.
Pilipović S, Rakić D, Teofano N, Vindas Diaz J. The wavelet transforms in Gelfand-Shilov spaces. COLLECTANEA MATHEMATICA. 2016;67(3):443–60.
IEEE
[1]
S. Pilipović, D. Rakić, N. Teofano, and J. Vindas Diaz, “The wavelet transforms in Gelfand-Shilov spaces,” COLLECTANEA MATHEMATICA, vol. 67, no. 3, pp. 443–460, 2016.
@article{8049866,
  abstract     = {{We describe local and global behavior of wavelet transforms of ultradifferentiable functions. The results are given in the form of continuity properties of the wavelet transform on Gelfand–Shilov type spaces and their dual spaces. In particular, we introduce a new family of highly time-scale localized spaces on the upper half-space. We study the wavelet synthesis operator (the left-inverse of the wavelet transform) and obtain the resolution of identity (Calderón reproducing formula) in the context of ultradistributions.}},
  author       = {{Pilipović, Stevan and Rakić, Dušan and Teofano, Nenad and Vindas Diaz, Jasson}},
  issn         = {{0010-0757}},
  journal      = {{COLLECTANEA MATHEMATICA}},
  keywords     = {{Calderón reproducing formula,Gelfand–Shilov spaces,Ultradistributions,Wavelet transform,PSEUDODIFFERENTIAL-OPERATORS,EXPONENTIAL DECAY,EQUATIONS,ULTRADISTRIBUTIONS,EXTENSIONS,THEOREMS}},
  language     = {{eng}},
  number       = {{3}},
  pages        = {{443--460}},
  title        = {{The wavelet transforms in Gelfand-Shilov spaces}},
  url          = {{http://doi.org/10.1007/s13348-015-0154-y}},
  volume       = {{67}},
  year         = {{2016}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: