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List of abbreviations 

ACT Adoptive T cell therapy 

AGO2 Argonaute 2 
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FBS Fetal bovine serum 

FD FITC-dextran 

FDA Food and Drug Administration 
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FSC Forward scatter 

fSPT Fluorescence single particle tracking 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid 
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IFNγ Interferon gamma 

IL Interleukin 

IP Intraperitoneal 

IRAE Immune-related adverse event 

IT Intratumoral 

IV Intravenous 

LAG-3 Lymphocyte activation gene-3 

LPS Lipopolysaccharide 

MAL Maleimide 

MDSC Myeloid-derived suppressor cell 

MFI Mean fluorescence intensity 

MHC I Major histocompatibility complex class I 

MMP Matrix metalloproteinase 

MPLA Monophosphoryl lipid A 

mRNA messenger RNA 

MSC Mesenchymal stem cell 

NG Nanogel 

NGS Next-generation sequencing 

NK Natural killer  

NP Nanoparticle 

NSC Neural stem cell 

OVA Ovalbumin 

PAMP Pathogen-associated molecular pattern 

PAP Prostatic acid phosphatase 

PBS Phosphate buffered saline 

PD-1 Programmed cell death 1 

PD-L1 Programmed cell death ligand 1 

PDP Pyridyldithiopropionate 

PE Phycoerythrin 

PEG Polyethylene glycol 

PE-MAL 18:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

[4-(p-maleimidophenyl)butyramide] 

PE-PDP 18:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-

[3-(2-pyridyldithio)propionate] 

PG Phosphatidyl glycerol 

PRR Pattern recognition receptor 

RBC Red blood cell 

RISC RNA induced silencing complex 
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RNAi RNA interference 

SD Standard deviation 

siCD45 siRNA targeted against CD45 

siCTRL Negative control siRNA 

siNG siRNA-loaded nanogel 

siRNA small interfering RNA 

STAT3 Signal transducer and activator of transcription 3 

STING Stimulator of interferon genes 

TAA Tumor-associated antigen 

TAM Tumor-associated macrophage 

TCR T cell receptor 

TGFβ Transforming growth factor β 

TIL Tumor-infiltrating lymphocyte 

TIM-3 T cell immunoglobulin mucin domain-containing-3 

TLR Toll-like receptor 

TMAEMA [2-(methacryloyloxy)-ethyl]trimethylammonium chloride 

TNFα Tumor necrosis factor alpha 

Treg Regulatory T cell 
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Aim and outline of the thesis 

As cancer is one of the leading causes of morbidity and death in the world with every 

year 14 million new cases with 8 million cancer-related deaths, scientific effort and financial 

support is of outstanding importance to fight cancer in the coming years. In general, cancer 

therapy struggles with finding an acceptable balance between potential therapeutic benefit 

and toxicity of the treatment. Formulating anti-cancer therapeutics such as 

chemotherapeutics into nanoparticles (nanomedicines) can improve their therapeutic index, 

enables a tunable drug release, and improves their biodistribution. However, to take full 

advantage of these benefits, one of the most prominent hurdles remains in vivo targeting 

of the nanoparticles (NPs) to the site of action. Several targeting strategies based on the 

enhanced permeation and retention (EPR) phenomenon and active targeting by the 

incorporation of targeting ligands have been clinically investigated. However, the 

widespread use of these strategies is hampered by several factors such as the heterogeneity 

in tumor vasculature between patients and tumor types.  

An interesting alternative that might overcome targeting limitations is cell-mediated 

delivery. Certain cell types such as cytotoxic T lymphocytes (CTLs) have the intrinsic ability 

to migrate to and infiltrate in the tumor tissue, where they can induce specific cytolysis of 

tumor cells upon tumor antigen recognition. During the last decade, the administration of 

CTLs has emerged as a highly promising cancer immunotherapy. Although T cell 

immunotherapy has demonstrated impressive results in metastatic melanoma and 

hematological malignancies, many patients remain refractory to the therapy. Limitations 

are related to the immunosuppressive role of the tumor microenvironment, the intratumoral 

heterogeneity, and loss of antigens to which the T cell immunotherapy was engineered. In 

recent years, research groups have therefore been investigating in combinatorial strategies 

to merge the benefits of distinct anti-cancer therapies.  

In light of the abovementioned limitations, the first aim of this thesis is to combine 

nanomedicines with cancer immunotherapy by exploiting the tumor-infiltrating properties 

of CTLs to guide anti-cancer nanomedicines to the tumor tissue. Moreover, as in many 

cancers the tumor infiltration and anti-tumor activity of CTLs is blunted by the 

immunosuppressive tumor microenvironment, it is of interest to evaluate the 

downregulation of immune-inhibitory pathways in T cells during their ex vivo manipulations 

prior to adoptive transfer. As the standard procedures to transfect primary T cells encounter 

safety issues and high cell toxicity problems, a second aim of this thesis is to develop an 

alternative approach based on gold NP-mediated photoporation to deliver small interfering 

RNA (siRNA) molecules to the cytosol of the cells.  
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Chapter 1 provides a general introduction to the main topics that were addressed in 

the thesis. First, an overview of the current problems of targeting nanomedicines to the 

tumor are highlighted, followed by the potential of cell-mediated drug delivery to overcome 

these barriers. Secondly, general aspects of cancer immunotherapy are introduced and the 

major hurdles exerted by the immunosuppressive tumor microenvironment are discussed. 

Finally, in vivo and ex vivo transfection methods for T cells are summarized.  

In Chapter 2, we report on the reversible attachment of lipid-based nanoparticles to 

the surface of CTLs via a redox-sensitive coupling. For this purpose, we optimized the NP 

composition and investigated the coupling to both activated and non-activated CD8+ T cells. 

Next, the influence of the NP-load on the proliferation and cytolytic capacity of T cells was 

evaluated via in vitro assays. As we aim to obtain triggered release of NPs in the tumor, 

the detachment was evaluated by incubating the NP-loaded cells with the reducing agent 

glutathione. It has been shown in the literature that glutathione is present in elevated levels 

in the tumor extracellular fluid. Finally, as a proof-of-concept, we investigated the coupling 

of siRNA-loaded lipid-based NP to the surface of CTLs.  

As the final aim is to exploit the CTL’s tumor-migratory capacity to deliver drug-loaded 

NPs to the tumor, Chapter 3 provides more information on the in vivo evaluation of this T-

cell mediated transport. The reversible coupling strategy as described in Chapter 2 was 

extended by the coupling via a stable thioether bond. We first investigated the tumor 

infiltration of liposome-loaded CTLs in a mouse melanoma model. Next, the influence of 

coupling via both strategies on T cell proliferation, viability, and cytokine secretion was 

investigated. Ultimately, the liposomes were loaded with the immune adjuvant 

monophosphoryl lipid A (MPLA) to boost the immune responses against the tumor. A 

preliminary in vitro and in vivo screening was performed to evaluate the therapeutic 

potential of T cell-mediated targeting of MPLA to the tumor tissue.  

Although a substantial amount of NPs could be released from the cell surface by 

incubation in glutathione, as shown in Chapter 2, still a considerable amount of NPs 

remained stably anchored. Therefore, in Chapter 4, a coupling system based on an 

enzyme-sensitive linker was investigated as an alternative to improve the triggered release 

properties. We developed a peptide linker, containing a cleavable peptide sequence that 

allows the attachment of liposomes on one side and the binding to the surface of CD8+ T 

cells on the other side. First, it was assessed whether this peptide construct could be 

efficiently attached to the cells, followed by the evaluation of the cleavability of this system 

by the selected proteases matriptase and urokinase-type plasminogen activator.  

Besides their ability to migrate to the tumor, CTLs can also directly kill tumor cells. 

However, a variety of immunosuppressive pathways can inhibit the T cell immune 

responses. It was anticipated that the knockdown of these immunosuppressive pathways 
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via siRNA may yield more potent T cells for adoptive transfer. As T cells are known to be 

hard-to-transfect cells and conventional non-viral transfection methods encounter several 

limitations, we report in Chapter 5 on an alternative approach based on vapor nanobubble-

mediated photoporation to efficiently deliver siRNA molecules to CD8+ T cells. 

In Chapter 6, we provide an overview of the recent progress in the field of cancer 

immunotherapy. We discuss the current challenges and how the combination with 

nanomedicines, as was evaluated in this work, can improve the efficacy of the treatment.  
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ABSTRACT 

The successful translation of anti-cancer nanomedicines from preclinical research to 

treatment in patients is still challenged by the low targeting of the nanomedicines to the 

tumor. As cell-mediated delivery of nanomedicines can tackle this limitation, a brief 

overview is given about the different cell types and coupling strategies that can be used for 

this purpose. T lymphocytes, in particular cytotoxic T cells, were suggested as ideal carriers, 

based on both their tumor migration capacity and their cytolytic effect on tumor cells, the 

latter one also being the key to the successes of cancer immunotherapy. Therefore, in a 

second part of this chapter, we provide a general overview of the different cancer 

immunotherapies and the current challenges they encounter. A final part summarizes the 

in vivo and in particular the ex vivo techniques to transfect T lymphocytes, aiming to 

enhance the anti-tumor responses.  
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PART I: NANOMEDICINES FOR CANCER 

1 ANTI-CANCER NANOMEDICINES 

The term nanomedicines can be described as the application of engineered materials 

with dimensions in the nanoscale (1-1000 nm) for the diagnosis, prevention, and treatment 

of a disease [1-3]. In the late 19th century, Paul Ehrlich already envisioned the concept of 

a ‘magic bullet’ that would target and eradicate the disease-causing pathogens or 

transformed cells without affecting normal cells [4]. Nowadays, the major advantages of 

encapsulating anti-cancer drugs in nanoparticles (NPs) still include this enhanced targeted 

delivery to improve biodistribution and avoid non-specific toxicity to healthy tissues, but 

can be further extended to (i) the improved bioavailability as nanostructures help to 

overcome stability and solubility problems, (ii) the protection of a therapeutic from 

degradation inside the body, and (iii) the controlled drug release at the target site [5, 6]. A 

widely investigated strategy to improve the circulation time and thus the biodistribution, is 

the decoration of the NP surface with polyethylene glycol (PEG) chains, also referred to as 

PEGylation [7]. 

1.1 Nanocarrier design 

In general, an ideal anti-cancer nanocarrier needs to meet the following criteria: it 

has to be (i) biocompatible and biodegradable, (ii) able to target the drug to the tumor site, 

(iii) designed to have optimal circulation time and high drug loading, and (iv) amenable for 

cost-effective commercialization [8]. Numerous types of NPs have been developed and were 

categorized in the literature in many different ways. Within this dissertation, three main 

groups were defined, including lipid-based NPs, polymer-based NPs, and inorganic NPs.  

From the different types of lipid-based nanocarriers, liposomes and micelles are the 

most studied [9]. Liposomes are vesicles composed of biocompatible phospholipid bilayers 

forming one or multiple concentric lipid bilayers around an aqueous core. Liposomes are 

able to encapsulate both hydrophobic and hydrophilic drugs in their phospholipid shell and 

aqueous core, respectively [10]. After administration, the drug can be released from the 

liposomes via distinct strategies, including passive diffusion and triggered release by 

endogenous and exogenous stimuli, or the nanocarrier can be internalized in the target cells 

for intracellular drug release [11, 12]. Liposomes are attractive materials based on their 

low toxicity and immunogenicity, good safety in clinical use, ease of preparation and proven 

manufacturability at commercial scales [13]. 

The group of polymeric nanocarriers includes in particular polymeric micelles, 

dendrimers and polymeric matrix systems [14]. Micelles consist of amphiphilic block 

copolymers, forming a hydrophilic shell and hydrophobic core, which can encapsulate water-
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insoluble drug molecules. Highly branched synthetic polymers, which offers precise control 

over their architecture, pharmacokinetics and biodistribution can be defined as dendrimers 

[10]. Polymeric NPs are colloidal systems in which the drugs can be loaded via different 

strategies, including encapsulation in the polymer matrix, entrapment in the polymeric 

membrane or covalent attachment to the surface of the NP [14]. In general, polymeric NPs 

show improved loading capacity compared to liposomes, however, caution is required as 

several polymeric materials have low biocompatibility. Therefore, research groups have 

developed hybrid lipid-polymer nanocomposites in which the advantages of both lipid and 

polymeric NPs were combined [15]. 

Besides the organic NPs as described above, also inorganic nanomaterials have been 

investigated for the purpose of cancer therapy, including gold nanoparticles (AuNPs), silica 

nanotubes, quantum dots, carbon nanotubes, and supra-paramagnetic iron oxide NPs. The 

inorganic NPs are mainly investigated for imaging and diagnostic purposes. As a 

therapeutic, the irradiation of AuNPs has been investigated for the induction of 

hyperthermia-mediated tumor ablation [16, 17]. 

1.2 Enhancing therapeutic potential of anti-cancer drugs by encapsulation in 

nanocarriers 

The majority of nanomedicines currently on the market encapsulates a 

chemotherapeutic agent. The first nanomedicine that was approved by the FDA in 1995 is 

Doxil® (or Caelyx® in Europe), a liposomal formulation containing the anthracycline 

doxorubicin [18, 19]. Importantly, the liposomal formulation has reduced side effects 

compared to the free drug, especially with a drastic decrease in cardiotoxicity [20]. 

Moreover, the encapsulation has demonstrated a substantially higher efficacy compared to 

the administration of free doxorubicin, due to the longer circulation time of the PEGylated 

liposomes and passive targeting to the tumor [21]. Another example of a chemotherapeutic 

with improved performance when encapsulated in NPs is paclitaxel, which is on the market 

as Abraxane®. Paclitaxel is a hydrophobic drug, which necessitates encapsulation in NPs for 

systemic delivery. The nanocarrier in this case is albumin which forms a nano-conjugate 

upon mixing with paclitaxel [22]. An overview of the current nanocarriers on the market 

that encapsulate chemotherapeutics is illustrated in Table 1. 
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Table 1. Nanomedicines encapsulating chemotherapeutics on the market  

Based on Ref. [1, 3, 6, 23]. 

Besides chemotherapeutics, also small interfering RNA (siRNA) molecules are clinically 

investigated as anti-cancer therapeutics [8]. siRNA molecules trigger the endogenous RNA 

interference (RNAi) pathway, active in the cytoplasm of cells, through which the expression 

of virtually any gene can be silenced [24]. Synthetic siRNA, used for therapeutic application, 

typically consists of 21-23 base pairs, with 2 nucleotide overhangs at the 3’ end of both 

strands. After entering the cytosol of the target cells, siRNA is incorporated in a protein 

complex called RNA induced silencing complex (RISC), in which the endonuclease 

Argonaute 2 (AGO2) unwinds the double stranded RNA and cleaves the sense (or 

‘passenger’) strand [25] (Figure 1).  

 

Product name 

 

Nanoparticle Active compound Indications 

Abraxane® 

 

Albumin-conjugate  

 

Paclitaxel Breast cancer 

DaunoXome® Liposome 

 

Daunorubicin Advanced HIV-associated 

Kaposi's sarcoma 

 

DepoCyt® Liposome Cytosine Arabinoside 

(cytarabine) 

 

Neoplastic meningitis 

 

Doxil®/Caelyx® PEGylated liposome Doxorubicin  Refractory Kaposi's sarcoma, 

recurrent breast cancer, 

ovarian cancer 

 

Genexol-PM® Polymeric micelle Paclitaxel Breast cancer, non-small cell 

lung cancer, ovarian cancer 

 

Marqibo® Liposome Vincristine Philadelphia chromosome-

negative acute lymphoblastic 

leukemia 

 

Myocet® Liposome Doxorubicin Metastatic breast cancer 

Ovarian cancer 

Kaposi’s sarcoma 

 

Onivyde® Liposome Irinotecan Metastatic pancreatic cancer 
    

Oncaspar® Polymeric conjugate Asparaginase Acute lymphoblastic leukaemia 
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Figure 1. Schematic representation of the RNA interference mechanism induced by small 
interfering RNA (siRNA) in the cell cytoplasm. RNA induced silencing complex (RISC), Argonaute 
2 (AGO2), messenger RNA (mRNA). 

Subsequently, the antisense (or ‘guide’) strand, which is still incorporated in the RISC, 

directs this RISC to the complementary messenger RNA (mRNA) sequence, followed by the 

cleavage of the latter one by AGO2. The RISC complex can move to other mRNA strands to 

further cleave the target mRNAs, inducing potent gene silencing on the post-transcriptional 

level. Despite the high potential of RNAi to modulate gene expression in a sequence-specific 

manner, the non-drug like properties of siRNA molecules hinder their effective delivery to 

the target cell cytoplasm. First, the negative charges on the siRNA molecules impede their 

spontaneous internalization in target cells. Secondly, siRNA molecules are prone to 

degradation by nucleases and can be rapidly cleared from the blood via glomerular filtration 

and renal excretion [26]. As systemic administration of siRNA in cancer is mainly required 

for targeting both primary and metastatic cancer, also these anti-cancer therapeutics may 

benefit from the encapsulation in NPs. Although siRNA formulations for cancer are not yet 

on the market, clinical trials have been initiated, in which genes involved in cell cycle arrest, 

cell apoptosis, proliferation and tumor angiogenesis were selected as targets for silencing 

[27]. 

1.3 Overcoming in vivo barriers for targeting to the tumor 

Despite the high amount of studies investigating the use of nanomedicines in cancer, 

the number of clinical products that are on the market is still very low [5]. One of the major 

hurdles that contributes to this discrepancy is the low accumulation of nanomedicines in 

the tumor. A critical barrier remains the vascular endothelium, which controls the 

extravasation of NPs from the bloodstream into the target tissue [28, 29]. Because NP 

extravasation is dependent on the size of fenestrae, tumor tissue may favor this delivery 

route by its leaky blood vasculature, allowing NP extravasation in the size range of 100-

780 nm [30]. This increased extravasation in combination with the poor lymphatic drainage 

found in tumors results in the accumulation of NPs in the tumor tissue and is also known as 

the enhanced permeation and retention (EPR) phenomenon (Figure 2) [31]. Unfortunately, 

the widespread application of the EPR-based passive targeting to tumors is hampered by 

the heterogeneity in tumor vasculature both within a single tumor and between different 

tumor types [32, 33]. Moreover, passive targeting does not avoid the accumulation of NPs 
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in off-target organs that also have a fenestrated endothelium, such as the liver and spleen 

[34, 35]. 

To tackle these limitations, nanomedicines are frequently modified with a targeting 

ligand that specifically recognizes a receptor that is present on or overexpressed by tumor 

cells. A wide range of ligands have been investigated for this targeted delivery, including 

folate, transferrin, aptamers, and antibodies [14]. Several studies have shown that this 

active targeting strategy enhances the internalization in the target cells, albeit without 

increasing the accumulation in the tumor tissue after systemic delivery [36-38]. 

Furthermore, it was observed that active targeting can hinder the diffusion of NPs into the 

tumor tissue due to the binding-site barrier phenomenon in which particles mainly 

preferentially bind to perivascular cells, thus impeding deep tumor penetration of the 

particle and the drug [39]. 

 

 
Figure 2. Schematic representation of passive and active targeting of nanoparticles (NPs) 

to the tumor. Passive targeting by the enhanced permeation and retention (EPR) phenomenon is 
achieved through a leaky vasculature in combination with an impaired lymphatic drainage. Active 
targeting (inset) by decorating the surface of NPs with targeting ligands assists the specific binding 
of NPs to the target cells. NPs can be designed to (i) release their cargo in close contact with the cells, 
(ii) bind to the cell membrane and function as a sustained-release drug depot or (iii) become 
internalized in the target cells and deliver their cargo to the cytosol. This figure was adapted with 

permission from Ref. [40], Nature Nanotechnology, Copyright 2007.  
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2 HITCHHIKING NANOPARTICLES: CELL-MEDIATED DELIVERY TO THE TUMOR 

Despite many efforts to design NPs for efficient passive or active targeting, the tumor 

infiltration of NPs remains unsatisfactory. Cell-mediated NP delivery can be an interesting 

alternative to overcome this targeting limitation. The exploitation of cells as drug carriers 

was inspired by the observation that certain types of pathogens can attach themselves to 

red blood cells (RBCs) and in this way evade the clearance by the immune system. This 

discovery paved the way to use this cellular hitchhiking mechanism for the delivery of drugs 

and drug-loaded NPs. Owing to their long residence time and high abundance in the blood, 

RBCs have been widely investigated as drug delivery carriers and recently also for 

nanomedicine hitchhiking approaches. Unfortunately, RBCs do not have the intrinsic 

capacity to migrate to specific tissues in the body, thus limiting their use to enhancing the 

circulation time of drug-loaded NPs, which enables sustained drug release in the circulation. 

To promote the delivery of NPs across biological barriers and stimulate NP accumulation 

and penetration in diseases tissues (e.g. tumors and inflamed tissues), other migratory 

cells should be selected [41, 42]. Tumors are generally known to continuously produce 

cytokines and chemokines, which recruits several types of immune cells to the tumor [43]. 

The general advantages of these cells for NP hitchhiking includes (i) their natural migration 

to the tumor, (ii) their ability to prevent the NPs from rapid clearance from the blood stream, 

and (iii) their capacity to cross NP-impermeable barriers and penetrate specific tissues. For 

example, tumors contain hypoxic and necrotic regions that are generally not easily 

accessible for NPs, which can lead to incomplete tumor regression [44]. Certain immune 

cell types may help to overcome these barriers for NPs on their way to the tumor. 

Mesenchymal stem cells, monocytes, macrophages, and T lymphocytes are the most 

extensively studied cell types serving this purpose [41]. Of note, important for the cell-

mediated drug delivery is that the viability and key functionalities of the tumoritropic cells 

are not impaired by loading them with NPs.  

2.1 Strategies to load tumor-migratory cells with nanoparticles 

The loading of tumoritropic cells with NPs can be achieved by either anchoring them 

to the cell surface or incorporating them inside the cell. The cell surface contains a variety 

of functional groups (belonging to proteins, lipids or polysaccharides) to which NPs can be 

covalently or non-covalently coupled. Different coupling strategies have been assessed 

including passive adsorption, ligand-receptor interactions, or covalent binding (Figure 3). 

The most straightforward coupling strategy is passive adsorption, in which positively 

charged NPs interact with the negatively charged cell membrane or in which hydrophobic 

regions of the NPs can insert into the cell membrane [45, 46]. Despite the advantage that 

cells do not require modification for passive adsorption, an important limitation is that 

premature drug release after systemic injection may occur due to the uncontrollable 

strength of this interaction. A strategy that offers higher stability is a ligand-receptor 
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interaction. Similar to the adsorption strategy, cell surface modifications are not required 

prior to coupling. Of note, for this approach the NPs have to be modified with a specific 

ligand at their surface, which requires the inclusion of additional steps in the NP design. 

Importantly, the ligand-receptor interaction needs to be very specific to avoid undesired 

interaction of the NPs with other cell types. A ligand-receptor coupling has already been 

investigated for the coupling of microparticulate patches to the surface of macrophages, T 

cells, and B cells via their CD44 receptor. For this purpose, the patches were decorated with 

hyaluronic acid to allow the coupling [47-49]. The most optimal coupling strategy in terms 

of stability is the covalent binding. Cells contain numerous functional groups at their 

surface, e.g. amine and thiol groups, which can be employed for the covalent attachment 

of NPs. A first example of this coupling strategy is the incorporation of a maleimide (MAL) 

or pyridyldithiopropionate (PDP) group on the NP surface that is able to interact with 

exposed thiol groups at the cell surface and forms a stable thioether and reversible disulfide 

bond, respectively [50]. Another example is the conjugation of biotin groups to the cell 

surface via amine groups, which allows the covalent coupling via the interaction with 

streptavidin/neutravidin-functionalized NPs [51]. Finally, utilizing the phagocytic capacity 

of cells such as monocytes and macrophages, a fourth strategy is based on the 

internalization of NPs in carrier cells, acting as a ‘Trojan Horse’ to deliver the NPs inside the 

tumor [52]. Although the nanoparticles are thus shielded from off-target interactions with 

other cells and tissues, this strategy might lead to degradation of the ingested particles 

and/or the drug and offers limited control over drug release. In addition, dependent on the 

nature of the drug, such premature drug release can also induce unwanted carrier cell 

apoptosis. 
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Figure 3. Strategies to load tumoritropic cells with nanomedicines. Nanoparticles (NPs) can 
be loaded onto the cell surface via passive adsorption, ligand-receptor coupling or covalent coupling. 
Passive adsorption is achieved via either an electrostatic interaction or hydrophobic insertion of NPs 
into the cell membrane. NPs can be functionalized with ligands from which the receptors are known 
to be expressed at the cell surface. Several functional groups present at the cell surface such as thiol 
groups (SH) and amine groups (NH2) are used to obtain a covalent coupling. For example, maleimide- 

(MAL) and pyridyldithiopropionate- (PDP) functionalized NPs can be anchored to the cell surface via a 
thioether and disulfide bond, respectively. Another covalent binding is mediated by the incorporation 
of a streptavidin or neutravidin functional group in the NP composition which can bind to biotinylated 
cells. The carrier cells can be decorated with biotin groups via the interaction of biotin N-
hydroxysuccinimide esters with amine groups present at the cell surface. Cells can also be loaded 
with nanomaterials via the internalization of the NPs.  

 

2.2 Selecting migratory cells for cell-mediated delivery to the tumor 

Both mesenchymal (MSCs) and neural stem cells (NSCs) have been exploited for the 

delivery of NPs to brain tumors such as gliomas. The loading of MSCs and NSCs with NPs 

has been achieved via either biotin-streptavidin coupling at the cell surface or the 

internalization of NPs for the delivery of therapeutics or imaging agents [53-57]. An 

attractive advantage of MSCs and NSCs is that they are able to penetrate hypoxic tumor 

regions [53, 58]. However, a major limitation of NSCs compared to MSCs is the lower yield 

of NSCs from a patient. On the other hand, a potential limitation of MSCs for clinical 

applications is their ability to promote metastasis [59, 60].  
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Similar to MSCs and NSCs, monocytes and macrophages are well-known to cross the 

blood brain barrier and migrate to hypoxic areas [61, 62]. In most cases, NPs are loaded 

into monocytes and macrophages by their phagocytic capability. Due to the internalization 

of cytotoxic agents such as gold nanoshells and NPs containing chemotherapeutics, the 

monocytes and macrophages act as ‘Trojan Horses’, capable of infiltrating the malignant 

tissue with tumor destructive NPs [63]. Also a few studies reported on the ligand-receptor 

attachment of microparticles to the cell surface, referred to as cellular backpacks, hence 

avoiding the phagocytic ingestion of the particles and gaining control over the drug delivery 

process [64, 65]. On the other hand, the possible negative impact of a surface-bound rigid 

micron-sized structure on the cell’s migratory capacity, should be considered. 

T cells play a key role in the immune response against cancer as they are able to 

induce targeted tumor cell killing. Therefore, they exhibit natural homing to the tumor tissue 

which makes them attractive carriers for cell-mediated delivery. In contrast to monocytes 

and macrophages, the internalization of NPs in T cells is limited, which favors the loading 

of the NPs via plasma membrane anchoring. Several studies have already demonstrated 

the potential of T cells to deliver NPs to tumor tissues. Irvine and colleagues attached NPs 

via a thioether bond and demonstrated the successful tumor infiltration of NPs loaded onto 

T cells, while the injection of free NPs resulted in the rapid clearance via the liver and spleen. 

This research group investigated the covalent coupling of three different types of 

therapeutics; (i) cytokines for the autocrine stimulation of T cells, (ii) small molecules that 

stimulate T cell activity and proliferation, and (iii) chemotherapeutics that kill tumor cells 

[66-68]. Besides the delivery of NPs, T-cell mediated tumor transport has also been 

exploited for the successful delivery of oncolytic viruses to the tumor [69, 70]. 

2.3 T cell-mediated drug delivery: combining migration and effector functions 

The cell-mediated delivery of NPs to the tumor via T cells does not only take advantage 

of their tumor migration capacity, but also of their cytolytic effect on tumor cells. The role 

of T cells in the fight against cancer is initiated upon the endogenous activation of naive T 

cells by recognizing antigens present on the major histocompatibility complex I (MHC I) of 

antigen-presenting cells (APCs) such as dendritic cells (DCs). Both DCs and T cells meet 

each other in the secondary lymphoid tissues. Upon recognition of the antigen in 

combination with co-stimulatory signals of the APCs, T cells become activated, which 

initiates proliferation and homing of the T cells to the inflamed tissue. Activated CD8+ T 

cells are referred to as cytotoxic T lymphocytes (CTLs). T cell homing is a highly dynamic 

process, which involves a number of consecutive steps. First, activated T cells lose the 

expression of CD62L and CCR7, which reduces their capacity to enter the lymph nodes and 

promotes their circulation in the blood [71]. Secondly, to leave the blood stream at the 

tumor tissue, T cells express adhesion molecules such as ligands for E- and P-selectin, 

allowing the T cells to attach to the endothelium of the inflamed tissue (Figure 4). However, 
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the selectin binding is not able to completely arrest the T cells, which results in so-called 

rolling of the cells over the endothelium. When T cells bind via their chemokine receptors 

(e.g. CXCR3) to chemokines (e.g. CXCL9 and CXCL10) that are presented on the endothelial 

surface or secreted by the inflamed tissues, integrins become activated on the T cell surface. 

Subsequently, due to binding of these integrins such as lymphocyte function-associated 

antigen 1 (LFA-1) and very late antigen 4 (VLA-4) to the endothelium via intracellular 

adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), 

respectively, T cells are arrested, which makes them amenable for extravasation [72]. 

Arrested T cells scan the endothelial surface and lumen for chemotactic exit cues, followed 

by endothelial transmigration. This highlights the importance of the production of 

chemokines in the tumor tissue to recruit CTLs [73]. Once arrived in the tumor, T cells 

search their specific tumor antigen presented by MHC I molecules onto the surface of tumor 

cells. Upon binding of tumor antigen to the T-cell receptor (TCR), they release granules 

containing the cytotoxic proteins perforin and granzyme, which induces apoptosis of the 

tumor cell. Most T cell effector cells die when the antigen is cleared, but a few memory T 

cells remain for long-term immune responses against the tumor antigen [74]. 

 

 

Figure 4: Trafficking of T cells into inflamed tissue. This figure was adapted with 
permission from Ref. [75], Brain, Copyright 2004. 
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PART II: CANCER IMMUNOTHERAPY 

1 THE PROMISE OF CANCER IMMUNOTHERAPY 

Early attempts to detect components or functions unique to cancer cells were made 

over a century ago, leading to the conviction in the 1950s that ‘tumor-specific materials’ 

probably did not exist, since over 50 years of work delivered little to no evidence [76]. 

However, studies performed by Gross, Foley and Prehn as early as the 1940s and 1950s 

showed that mice previously cured from a specific tumor, were immune to a rechallenge 

with the same tumor [77, 78]. These studies together with many others in the 1960s, 

showing the rejection of transplanted tumors in syngeneic mice, reinstated the idea of 

‘tumor-specific materials’, at that time referred to as ‘tumor-specific transplantation 

antigens’ [79, 80]. In this regard, it is important to mention that the first evidence for the 

existence of such antigens was delivered by Gold and colleagues who demonstrated 

humoral responses to an antigen specific for colon cancer, in particular for the 

carcinoembryonic antigen (CEA) [81, 82]. The existence of antigens which can elicit specific 

humoral immune responses and are expressed by tumor cells, was confirmed in the late 

1970s by Steven Rosenberg and colleagues [83]. A decade later, it was shown by Thierry 

Boon and colleagues that these antigens could also elicit potent T cell responses [84]. These 

antigens are today known as tumor antigens, i.e. antigens that are uniquely, preferentially 

or in excess expressed by tumor cells. Importantly, the description of immune responses 

against these tumor antigens has rationalized the so-called tumor surveillance concept that 

was formally introduced in the early 1970s by Burnet and Thomas, which confirmed 

previous observations by Ehrlich [85]. Thus, a model was proposed in which tumor cells are 

recognized as foreign and subsequently specifically eliminated without damaging healthy 

cells, much in the same way as for virally-infected cells.  

Several immunotherapy strategies have been devised so far, for example strategies 

aimed at increasing tumor antigen-specific T cells in vivo through cancer vaccination or 

adoptive T cell therapy (ACT). Cancer vaccination aims to activate anti-tumor T cells by 

stimulating DCs to present tumor-associated antigens (TAA) while in ACT the tumor-specific 

T cells are directly injected into the patients. Other therapeutic strategies are developed to 

support tumor antigen-specific T cell responses, including cytokine-based therapy (e.g. IL-

2) and antibody therapy blocking critical immune checkpoints (e.g. cytotoxic T lymphocyte-

associated antigen 4 (CTLA-4) and programmed cell death 1 (PD-1)) [86-89]. These 

strategies interfere with both the innate and adaptive immune system (Figure 5). Although 

immunotherapy in general and its subdomains in particular are complex and challenging 

fields, there have been major advances in basic and translational research in each of the 

approaches resulting in clinical trials that are now beginning to deliver on their promise. 

First, we will give an overview of the different identified tumor antigens, which are of utmost 
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importance in cancer vaccination and ACT. Next, the immunosuppressive role of the tumor 

microenvironment will be highlighted and to finally conclude, an in-depth description of the 

different immunotherapeutics will be provided. 

 

 

Figure 5. Overview of cancer immunotherapies. (Adapted from [90]). 

1.1 Tumor antigens are the key to effective immunotherapy 

Generally, tumor antigens are divided into five classes, including tissue-differentiation 

antigens (e.g. Melan-A/MART-1, TRP-2, etc.), antigens that are overexpressed (e.g. 

survivin, telomerase, etc.), antigens derived from epigenetic changes or the so-called 

cancer-testis antigens (e.g. MAGE-A3, NY-ESO-1, etc.), antigens derived from mutated 

genes (e.g. p53, RAS, etc.), and viral antigens (e.g. derived from human papillomaviruses, 

Ebstein-Barr viruses, etc.). Alternatively, these tumor antigens can be subdivided in two 

main classes: self-antigens and tumor-specific antigens (Figure 6).  

Self-antigens are present on both tumor cells and normal tissues in contrast to the 

tumor-specific antigens, of which the expression is restricted to tumor cells. Tumor-specific 

antigens, also referred to as neoantigens, arise from somatic mutations. In 1991, van der 

Bruggen and colleagues cloned the first human tumor antigen that is recognized by T cells 

[91]. This melanoma-associated antigen MAGE-A1 was identified by a genetic approach, 

which paved the way for the discovery of multiple antigens on a broad range of tumor types 

[92]. Most of these antigens can be classified in the group of self-antigens. A characteristic 

of these self-antigens is that they are usually expressed on a wide variety of tumors of 

different histological origins. Therefore, these antigens can also be classified as so-called 

shared antigens. Of note, some tumor-specific antigens can also be shared between 

patients, for example virus-derived antigens and mutRas, mutP53, and mutEGFR [93]. 
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Figure 6. Tumor antigens as targets for cancer immunotherapy. Tumor antigens can be 
subdivided in two main classes: self-antigens and tumor-specific antigens. The class of self-antigens 

encompasses differentiation, overexpressed, and cancer-testis antigens. Self-antigens are expressed 
on both tumor cells and normal tissues. Consequently, cancer immunotherapies that target these 
antigens can encounter problems due to immune tolerance and ‘on-target, off-tumor’ side effects. 
The class of tumor-specific antigens includes mutation-derived and virus-derived antigens. Cancer 
immunotherapies targeting these antigens have advantages in terms of high avidity levels and low 
risk for toxic side effects. Generally, self-antigens are shared between patients while the majority of 
tumor-specific antigens are unique, although virus-derived antigens and some mutation-derived 

antigens can also be shared between patients. Examples of tumor antigens are illustrated in the figure 

(adapted from Ref.[94]). 

 

In the past, researchers have focused on the identification of shared antigens for the 

production of off-the-shelf immunotherapeutics that could be used in a broad range of 

patients [95]. However, tumor-specific antigens, which are patient-specific, were shown to 

be the most ideal targets for immunotherapy because of their expression restricted to tumor 

cells, which limits toxicity towards normal cells. Moreover, as these arise from mutations, 

there is no tolerance to the presented epitope. In the past, the development of 

immunotherapies against tumor-specific antigens was hindered by the uniqueness of 

neoantigens in a patient’s tumor together with a lack of techniques able to systematically 

test T cell responses against neoantigens. The development of the next-generation 

sequencing (NGS) technology enables the systematic sequencing of whole cancer genomes, 

providing insights into the mutational landscape of various human cancers [96, 97]. Whole-

genome sequencing was already employed to characterize the genome of cancers such as 

acute myelogenous leukemia, breast cancer and melanoma [98-100]. By comparing the 

genome of cancer cells with the one of the original healthy cells, cancer-specific mutations 

can be identified [101].  
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Table 2. Overview of tumor antigens as potential targets for immunotherapy 

 

  

Antigen 

 

Characteristics Examples Advantages and limitations as 

target for immunotherapy 

References 

Tissue-

differentiation  

Expression on both 

tumor cells and 

normal cells of the 

same tissue 

 

Cancers: especially 

tested for melanoma 

Melan-A 

MART-1 

gp100 

TRP-2 

+ 

 

 

- 

 

 

- 

Broad expression range: off-the-

shelf immunotherapy  

 

Toxicity towards healthy cells of 

the same tissue 

 

Immune tolerance 

 

[102, 103] 

Overexpressed  Overexpression on 

tumor cells with low 

expression on healthy 

cells 

 

Cancers: broad range 

of epithelial cancers 

CEA 

CAIX 

Survivin 

telomerase 

+ 

 

 

- 

 

- 

 

 

Broad expression range: off-the-

shelf immunotherapy  

 

Toxicity towards healthy cells 

 

Immune tolerance 

[104-106] 

Cancer-testis Expression on normal 

cells is restricted to 

germline cells in the 

(immunopriviledged) 

testis 

 

Cancers: melanoma, 

hematological 

malignancies, breast, 

lung, prostate, 

ovarian, bladder, 

colorectal, 

hepatocellular 

carcinoma 

 

NY-ESO-1 

MAGE-A3 

+ 

 

 

- 

 

 

 

 

+ 

Broad expression range: off-the-

shelf immunotherapy  

 

Several studies reported on 

toxicity due to low expression on 

healthy cells, not part of the 

immunoprivileged site  

 

Considered as foreign-like 

antigens to which immune 

tolerance is limited 

 

 

[91, 107-

115] 

Virus-derived  Expression arises as a 

consequence of 

infection with an 

oncovirus 

 

 

Cancers: Cervical, 

penile, anal, head and 

neck  

 

Human 

papillomavirus

-derived 

E6/E7 

+ 

 

 

 

 

 

+ 

 

 

+ 

Expression only on virus-derived 

cancers but off-the-shelf 

possible due to shared antigens 

between patients infected with 

the same virus 

 

Expression restricted to tumor 

cells 

 

No tolerance issues 

 

[116-119] 

Mutation-

derived  

= neoantigens 

Expression arises from 

genetic mutations 

 

 

 

Cancers with high 

mutation load: e.g. 

melanoma, lung, 

colorectal 

 

 

- 

 

 

 

+ 

 

 

+ 

Highly patient-specific 

expression: personalized 

immunotherapy 

 

Expression restricted to tumor 

cells 

 

No tolerance issues 

[93, 94, 

120] 
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Decreasing costs of NGS should facilitate the detection of patient-specific tumor 

mutations and identification of neoantigens for personalized immune-based cancer therapy. 

Exceptionally, some neoantigens recognized by autologous T cells are known to be shared 

between patients such as mutRas, mutP53, and mutEGFR [93]. In addition, a recent study 

reported on shared frame shift-derived neoantigens that were recognized by antigen-

specific T cells in different microsatellite-instable leukemia and lymphoma cell lines [121]. 

The different types of antigens with their advantages and limitations when used as a target 

for cancer immunotherapy are summarized in Table 2.  

1.2 The tumor microenvironment as a major hurdle in cancer immunotherapy 

Despite the potential of cancer vaccination and ACT to induce powerful immune 

responses against cancer, clinical trials have demonstrated that responses were only seen 

in a subset of patients. This can partially be subscribed to the low infiltration of antigen-

specific T cells into the tumor as well as to the dual role of the immune system in cancer. 

It has been shown that growing tumors can hijack the immune system, causing it to 

promote tumor progression, rather than suppress tumor outgrowth. The function of the 

immune system in preventing, controlling and even promoting cancer can be referred to as 

the process of cancer immunoediting [122, 123]. 

Patients differ in the immune responses they develop against cancer based on 

differences that can be related to mutations or polymorphisms in immune regulatory genes 

or various environmental influences [124]. This can result in tumor heterogeneity between 

patients with the same type of cancers and can further explain why some tumors show low 

infiltration by immune cells, while others are highly infiltrated by lymphocytes. In general, 

immunological classification of cancer types consists of three distinct subtypes, including (i) 

immunogenic, (ii) inflammatory, and (iii) immune-escaping tumors [125]. Immunogenic 

tumors are characterized by a high infiltration of CTLs and the secretion of 

immunostimulatory cytokines such as interferon gamma (IFNγ), resulting in a good 

prognosis. Although inflammatory tumors show good infiltration by lymphocytes, the 

microenvironment contains a multitude of angiogenic and immunosuppressive molecules 

such as transforming growth factor β (TGFβ) and programmed cell death ligand 1 (PD-L1), 

which results in low immune responses against the cancer and a poor prognosis for the 

patient. On the other hand, several tumors, referred to as immune-escaping tumors, lack 

the infiltration of immune cells and do not secrete cytokines, which make them 

unresponsive to cancer immunotherapy. In this case, therapeutic strategies are required to 

induce an inflamed tumor microenvironment, for example via innate immune activators 

such as stimulator of interferon genes (STING) agonists [126]. 
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1.2.1 Trafficking of T cells into the tumor can be blunted 

The success of cancer vaccination and ACT largely depends on the capacity to increase 

the number of effector T cells in the tumor. As several studies demonstrated improved 

clinical benefit of immunotherapies in patients with a highly T cell-inflamed tumor, it is 

important to develop strategies to promote T cell infiltration in the tumor site [127-129]. 

Factors contributing to this low tumor infiltration are the presence of a dense stroma that 

can sterically impede the infiltration of immune cells as well as low levels of inflammatory 

chemokines to recruit anti-tumor T cells (Figure 7). Indeed, metastatic tumors expressing 

the chemokines CXCL9 and CXCL10 were shown to be more infiltrated with CTLs [130]. 

Importantly, T cell migration is not solely regulated by tumor-mediated chemokine 

secretion; T cells should also exhibit upregulated chemokine receptors to be responsive to 

the chemotactic recruitment by the chemokines secreted by the tumor.  

1.2.2 Immunosuppressive pathways exerted by the tumor and its environment 

Tumor-promoting immune cells. The tumor microenvironment consists of a variety 

of different cell types such as tumor cells and stroma cells, including endothelial cells, 

fibroblasts, pericytes, and distinct immune cell types [71]. Cancer cells and several immune 

cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), tumor-

polarized or regulatory DCs, and tumor-associated macrophages (TAMs) were shown to 

induce immunosuppressive pathways (Figure 7). MDSCs represent a heterogeneous 

population of immature myeloid cells that suppresses both innate and adaptive immune 

responses. They favor tumor progression by a variety of mechanisms including the 

production of immunosuppressive cytokines which blocks effector T cells, the inhibition of 

antigen-presenting cells to activate T cells, and the induction of the expansion of Tregs [131-

133]. Thus, therapeutic strategies to neutralize MDSCs are of interest as adjunct strategy 

to other immunotherapies [134, 135]. Tregs are known to inhibit T cell anti-tumor functions 

and are therefore eradicated by lymphodepleting regimens prior to adoptive T cell transfer 

[136]. The clinical benefit of lymphodepletion was demonstrated by various preclinical and 

clinical trials [137-140]. Mostly, these treatments comprise the lymphoablative 

chemotherapeutics cyclophosphamide and fludarabine, often in combination with total body 

irradiation [141].  
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Figure 7. Successful cancer immunotherapy requires infiltration of anti-tumor T cells, 
tumor antigen recognition, and T cell activation, effector actions and persistence. All of 
these different steps can be stimulated or inhibited by different molecules or pathways. T cell 

infiltration can be stimulated by the presence of chemokines in the tumor site or inhibited by a dense 
stroma. Tumor antigen recognition can encounter problems due to antigen loss or off-target side 

effects can occur upon interaction of the anti-tumor T cells with healthy cells. T cell activation, 
effector actions and persistence can be stimulated by cytokines such as interleukins or inhibited by 
immunosuppressive pathways (immune checkpoints), and cells such as myeloid-derived suppressor 
cells (MDSCs) and regulatory T cells (Tregs). Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), 
programmed cell death 1 (PD-1). 
 

In addition to Treg depletion, the destructive effects of total body irradiation and 

lymphoablative chemotherapy on tumor cells initiate a release of tumor antigens that can 

be taken up by APCs, resulting in the enhanced activation of T cells [142, 143]. However, 

the toxicity associated with lymphodepleting preconditioning precludes a number of patients 

from ACT and warrants the investigation of other strategies that are better tolerated.  

Immune checkpoints. One of the best-studied mechanisms of immunosuppressive 

immune cells to inhibit T cell effector functions is via binding to the so-called immune 

checkpoints on T cells, e.g. CTLA-4 and PD-1. Immune checkpoints are important for the 

maintenance of self-tolerance and regulate the amplitude and duration of immune 

responses [144]. However, besides immune cells, tumor cells may also interact with some 

of these inhibitory pathways to escape immunity. For example, the expression of a PD-L1 

ligand on tumor cells indicates an escape strategy of certain tumors by the induction of the 

PD-1 pathway. Another example is CTLA-4, a CD28 homologue, that is expressed on 
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activated T cells and downregulates T cell activation upon ligation with CD80 or CD86 on 

APCs [145].  

Tumor heterogeneity. Besides a multitude of immunosuppressive pathways, the 

clinical success of cancer immunotherapy can also be hindered by tumor heterogeneity, 

which can be described as the presence of genetically distinct subpopulations within a 

tumor. Several studies demonstrated different genotypes and phenotypes within separated 

regions of hematological and solid cancers due to diverse somatic mutational events and 

DNA copy number aberrations [146]. Consequently, the identification of target neoantigens 

by a single tumor biopsy sample might often not be representative for the total tumor mass, 

leading to recurrent disease. Besides somatic mutations and DNA copy number aberrations 

in neoantigens leading to a decrease in antigen recognition, several studies demonstrated 

antigen loss or a decrease in antigen expression in tumors as a consequence of the pressure 

of antigen-specific T cells [140, 147-149].  

Based on the issues raised in the previous paragraphs, therapeutic strategies to 

improve the number of patients that respond to the cancer immunotherapy consist of (i) 

increasing the number of infiltrated T cells in the tumor, (ii) enhancing the effector function 

and importantly the persistence of T cells by the delivery of stimulatory cytokines or 

antibodies and (iii) the inhibition of suppressive immune pathways by checkpoint inhibitors. 

Some of these strategies are currently used in the clinic as monotherapies. However, it is 

important to consider that for example stimulatory cytokines and checkpoint inhibitors are 

only effective when endogenous anti-tumor T cells are initiated. Some tumors, such as 

melanoma and also small cell lung carcinomas are known to induce endogenous immune 

responses as they have the highest mutation rates, due to the exposure to respectively 

ultraviolet radiation and tobacco smoke [150, 151].  

1.3 An in-depth overview of the different cancer immunotherapies 

1.3.1 Adoptive T cell therapy 

The discovery of antigen-specific and tumor-reactive T lymphocytes in the tumors of 

patients paved the way for ACT, which can be described as the treatment of patients with 

ex vivo selected and expanded tumor-reactive T cells. Both immediate anti-tumor responses 

by effector T cells and long-term effects by memory T cells can induce complete remission 

in patients that are incurable by other anti-cancer treatments. Two major sources of T 

lymphocytes for ACT are the tumor itself and the patient’s peripheral blood (Figure 8). In 

case the tumor is infiltrated by anti-tumor T cells, these cells can be isolated from the 

resected tumor mass. Rosenberg and colleagues reported on a study with 93 metastatic 

melanoma patients from whom tumor-infiltrating lymphocytes (TILs) were isolated. In 

these patients, chemotherapy and other immunotherapies such as IL-2 and anti-CTLA-4 

treatments had failed. The T cells isolated from the resected tumor were first selected for 
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anti-tumor reactivity and expanded ex vivo. Twenty patients (22%) achieved a complete 

regression with ongoing complete responses in 19 patients after 3 years [152].  

In spite of the successful outcomes in metastatic melanoma patients, a major 

limitation of TIL therapy is the absence of sufficient numbers of TILs in other types of cancer 

than melanoma. To extend the treatment of cancers with autologous T cells to a wide variety 

of cancer types, an alternative approach is the transfer of antigen-specific T cell receptor 

(TCR) genes into lymphocytes isolated from the patient’s peripheral blood [153, 154]. Via 

transduction of T cells with retroviruses or lentiviruses, T cells can be engineered to 

recognize tumor antigens and eradicate tumor cells that express these antigens in large 

numbers of patients [151]. A study by Robbins and colleagues demonstrated objective 

clinical responses in patients with metastatic synovial cell sarcoma and melanoma treated 

with TCRs towards NY-ESO-1 antigens. Two melanoma patients out of 11 exhibited 

complete regression that persisted for more than 1 year [155]. Although most clinical trials 

show objective responses in melanoma patients, the challenge is now to expand this TCR 

engineering approach to a broader range of cancers. A recent study by June and coworkers 

reported on the treatment of multiple myeloma patients with T cells engineered to express 

a TCR against NY-ESO-1 and LAGE-1. Infusion of the T cells was well-tolerated without 

inducing the life threatening cytokine-release syndrome. Sixteen out of 20 patients showed 

a clinical response with a median progression-free survival of 19.1 months [156].  

In addition to TCR-engineered T cells, chimeric antigen receptor (CAR)-modified T 

cells represent a second class of engineered T lymphocytes. In contrast to TCRs that are 

specific for a certain HLA-peptide complex, CARs can recognize antigens in a non-HLA-

dependent way. This can be advantageous for the broad application of CARs in patients with 

different HLA haplotypes [157]. 
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Figure 8. General overview of adoptive T cell therapy (ACT). Two major sources of T 
lymphocytes for ACT are the tumor itself and the peripheral blood. In case the tumor is infiltrated by 
anti-tumor T lymphocytes, tumor-infiltrating lymphocytes (TILs) can be isolated and selected for 

tumor reactivity followed by ex vivo expansion. Alternatively, peripheral blood lymphocytes can be 
isolated from the cancer patient followed by transduction with retroviral or lentiviral vectors encoding 
for a T cell receptor (TCR) or chimeric antigen receptor (CAR) and ex vivo expansion. During the 
engineering and expansion process of the anti-tumor T lymphocytes, the patient is treated with 
lymphodepleting chemotherapy, often in combination with total body irradiation. Subsequently, the 
expanded anti-tumor T cells are re-infused into the patient in combination with interleukins such as 
IL-2. 

 

Furthermore, CARs increase the number of potential targets due to their recognition 

of not only proteins but also carbohydrates and glycolipids [158]. Although one of the first 

successful CAR therapies with complete remissions was reported on a solid neuroblastoma 

tumor, the most investigated tumors with CARs are hematological malignancies [159]. To 

date, the most investigated CAR target is CD19, which is expressed on normal B cells as 

well as on the majority of B cell leukemia’s and lymphomas. Several clinical studies on 

patients with B cell malignancies such as chronic lymphocytic leukemia resulted in partial 

and complete responses in a subset of patients [160-162]. The clinical success of CAR 

therapies targeting CD19 was recently shown by complete response rates of almost 90% in 

both pediatric and adult patients with relapsed or refractory acute lymphoblastic leukemia 

[163]. However, a specific report on the CD19-targeted CAR treatment of 2 children with 

relapsed and refractory acute lymphoblastic leukemia clearly indicated one of the important 
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reasons why patients relapse [164]. The study described the complete regression in both 

children. One child was reported with an ongoing complete regression while the other child 

relapsed due to the growth of blast cells that no longer expressed CD19. These observations 

demonstrated that CD19 CARs are able to kill aggressive leukemia’s. Nevertheless, the 

development of T cells with CARs against other molecules in combination with CD19 CARs 

is recommended in case the tumor can escape immune responses by downregulation of the 

CD19 CAR target. Based on the success of CAR therapies in hematological malignancies, 

the expansion of this therapy to numerous solid tumors is one of the major future goals of 

ACT. Of note however, the eradication of solid tumors appears to be more challenging by 

virtue of an immunosuppressive tumor microenvironment that may hinder cell-based 

immunotherapy. Therefore, combinatorial strategies of ACT with therapeutics that inhibit 

the immunosuppressive role and stimulate T cells to infiltrate the tumor are gaining much 

interest in recent years.  

1.3.2 Cancer vaccination 

Whereas most frequently administered vaccines against microbial infections are aimed 

at prophylaxis, cancer vaccines are mostly used as a treatment strategy. The immune 

system can fight against cancer via the presentation of tumor antigens by APCs, notably 

DCs, to activate tumor-specific CD4+ and CD8+ T lymphocytes. Many different cancer 

vaccination strategies have been proposed including the immunization with whole tumor 

cells, tumor lysates, peptides, proteins, recombinant viruses, and nucleic acids, such as 

DNA and mRNA encoding tumor antigens [165-171]. In the past, the inclusion of immune 

adjuvants in the vaccines has appeared to be crucial for the induction of an efficacious 

immune response [172]. Another approach in active immunization is the use of antigen-

modified DCs as therapeutic vaccines, for which DCs are loaded ex vivo with tumor-derived 

peptides, proteins, and tumor cell lysates [173]. In 2010, the first cell-based cancer 

therapy, sipuleucel-T (marketed as Provenge®), was approved by the FDA. Sipuleucel-T is 

a patient-specific treatment for men with metastatic castration-resistant prostate cancer. 

In this therapy, peripheral blood mononuclear cells are isolated from the patient and ex 

vivo activated with a recombinant fusion protein consisting of a prostate antigen prostatic 

acid phosphatase (PAP) that is fused to granulocyte-macrophage colony-stimulating factor 

(GM-CSF), which is an immune-stimulating growth factor. Subsequently, the cells are re-

infused into the patient to activate PAP-specific T cells [174]. In a randomized placebo-

controlled clinical trial in 512 patients, an improved survival of 4.1 months was observed 

[175].  

Furthermore, DCs can also be loaded ex vivo with tumor-associated antigens (TAAs) 

by genetic engineering using viral vectors, such as lentiviruses and adenoviruses, or with 

mRNA encoding TAAs and immune adjuvants [176-178]. The transfer of ex vivo mRNA-

modified DCs has proven to be an elegant method for cancer vaccination. In 1997, the FDA 
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approved the first clinical trials with ex vivo mRNA-transfected DCs [179, 180]. Over the 

past decades, clinical trials have shown that vaccines consisting of autologous DCs loaded 

with tumor antigen mRNA are safe, well-tolerated and capable of inducing T cell-mediated 

immune responses in a significant number of cancer patients, including patients with 

colorectal, lung, breast and prostate cancer, as well as melanoma [181-184].  

1.3.3 Immunostimulatory cytokines  

Interleukins that are currently used in therapy or investigated for the stimulation of 

anti-tumor T cells are IL-2, IL-7, IL-15, and IL-21. IL-2 is a T cell growth factor that 

promotes activation, proliferation, survival, and effector functions of anti-tumor T cells. IL-

2 (marketed as Proleukin®) is FDA-approved due to its demonstrated complete cancer 

regression in 8% of the patients with metastatic renal cancer or melanoma [185]. The 

combination of IL-2 infusion and adoptive T cell transfer after lymphodepletion improved 

the clinical outcome in melanoma patients [152]. Furthermore, IL-2 is also used to expand 

anti-tumor T cells ex vivo. However, two major disadvantages of this interleukin on the 

anti-tumor immune responses are the concurrent stimulation of Tregs and the strong 

differentiation of T cells. This differentiation may reduce the generation of an anti-tumor 

immunological memory [186]. In ACT, not only the direct cytotoxic killing effect by effector 

CD8+ T cells is important, but also the persistence of T cells which provides an anti-tumor 

memory. The combination of the homeostatic interleukins IL-7 and IL-15 were suggested 

to support the survival and proliferation of adoptively transferred T cells while also 

enhancing their persistence in vivo to obtain durable cancer regression [187]. Recent clinical 

data demonstrated that, compared to IL-2, IL-21 promotes the expansion and function of 

effector CD8+ T cells with a less-differentiated phenotype and without co-expansion of Tregs 

[188]. These currently investigated T cell-stimulating cytokines can be used to both expand 

anti-tumor T cells ex vivo as well as to provide the transferred T cells with co-stimulatory 

agents after infusion into the patient [189]. However, the systemic delivery of cytokines, 

such as the interleukins, is often hampered by toxic side effects. One strategy to overcome 

this toxicity is the genetic engineering of isolated anti-tumor T cells to produce their own 

pro-inflammatory or pro-proliferative cytokines [190, 191]. Alternatively, it is possible to 

chemically conjugate interleukin-loaded NPs onto the cell membrane of adoptively 

transferred T cells. The sustained release of the interleukins from the stably attached 

particles provides the cells directly with immunostimulatory agents in vivo. A preclinical 

study by Stephan and coworkers demonstrated the complete tumor regression in mice 

treated with anti-tumor T cells decorated with cytokine-loaded NPs on their surface, in 

contrast to only a modest survival improvement in mice treated with anti-tumor T cells with 

or without systemic infusion of the same doses of cytokines [66]. Another important 

example of an immune-stimulating cytokine is IL-12, which mediates both innate and 

adoptive immune responses against tumors. It has been shown to induce the stimulation 



33 | C h a p t e r  1  

and homeostatic expansion of T cells [192]. The local delivery of IL-12 into the tumor was 

shown to reprogram MDSCs to decrease their immunosuppressive function. 

1.3.4 Checkpoint inhibitors and immunostimulatory antibodies 

Monoclonal antibodies against the immunosuppressive molecules CTLA-4 and PD-1 

block immunoinhibitory pathways, which may enhance endogenous anti-tumor immune 

responses. Ipilimumab (marketed as Yervoy®) is a human monoclonal antibody that blocks 

CTLA-4, which results in the enhanced proliferation and effector activity of T cells. The FDA 

approved this antibody in 2011 for the treatment of patients with metastatic melanoma 

[193]. Two other important targets for antibody therapy are PD-1 and its ligand PD-L1 [194, 

195]. Binding of PD-L1 to its PD-1 receptor on T cells inhibits T cell activation and can 

induce apoptosis of T cells. PD-L1 expression has been identified on APCs and several solid 

tumors such as renal cell, colon, breast, ovarian, and hematological cancers [196, 197]. 

Monoclonal antibodies blocking the PD-1 pathway, pembrolizumab (Keytruda®) and 

nivolumab (Opdivo®), were approved by the FDA and EMA in 2014 and 2015 while PD-L1 

antibodies are currently investigated in clinical trials [90]. In addition, the FDA has also 

recently approved the combination of ipilimumab and nivolumab for metastatic melanoma 

[135].  

 
 
Figure 9. Schematic overview of immune co-stimulatory and co-inhibitory receptor ligand 
interactions of anti-tumor T cells with antigen-presenting cells and tumor cells. Interfering 
with these interactions by monoclonal antibodies that either promote immune stimulating pathways 
or block immunosuppressive pathways enhances the anti-tumor responses and persistence of T cells. 
Adapted from Ref. [198]. 
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In addition to the well-studied CTLA-4 and PD-1 targets, other co-inhibitory pathways 

in activated T cells such as T cell immunoglobulin mucin domain-containing-3 (Tim-3) and 

lymphocyte activation gene-3 (LAG-3) have been identified (Figure 9). Studies about 

monoclonal antibodies against these two pathways reported on the improved expansion 

and function of antigen-specific CD8+ T cells. Moreover, the combination of antibodies 

against either Tim-3 or LAG-3 with anti-PD-1 antibodies resulted in synergistic clinical 

outcomes [199, 200].  

Besides antibody treatment against co-inhibitory receptors and ligands, a number of 

new antibodies against co-stimulatory receptors has been developed such as anti-CD137 

(4-1BB), anti-OX-40 (CD134), anti-CD40, and anti-GITR [198, 201]. These agonist 

antibodies enhance the persistence and anti-tumor activity of the T cells (Figure 9). 

Besides effects on T cells, more recently also monoclonal antibodies stimulating natural 

killer (NK) cells gained interest. NK cells are part of the innate immune system and are also 

able to kill tumor cells. However, their killing functions are tightly controlled by a variety of 

cell surface receptors. In contrast to T cells, they do not require recognition of tumor 

antigens but act upon cells that lack MHC class I. MHC I is expressed on almost all nucleated 

cells in the body. Thus, antibodies blocking the receptor that recognizes MHC I, called killer 

immunoglobulin-like receptor, to activate NK cells against tumor cells are currently in 

clinical trials [202]. Although safety issues are expected through killing of normal tissues, 

until now these antibody therapies have shown good safety. The reason behind the specific 

killing of tumor cells is by their concomitant expression of stress ligands, which bind to NK 

activating receptors and further induce activation [203]. 

1.3.5 Immune adjuvants: exploring the role of Toll-like receptor agonists in cancer 

immunotherapy 

Stimulating the innate immune system is the key mechanism in cancer vaccination, 

as previously described. For this purpose, immune adjuvants were shown to play a very 

important role [172]. The interaction of immune adjuvants, acting as pathogen-associated 

molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs), with pattern 

recognition receptors (PRRs) on DCs has been shown to induce the upregulation of co-

stimulatory molecules (e.g. CD40, CD80, CD86), the production of immunostimulatory 

cytokines (e.g. IL-12), and an increase in antigen presentation [204]. The most studied 

immune adjuvants are agonists of Toll-like receptors (TLRs), which are members of the 

PRRs [205]. TLRs can be expressed on the cell surface (TLR1, TLR2, TLR4, TLR5, TLR6) as 

well as within the endosomes (TLR3, TLR4, TLR7, TLR8, TLR9) [204]. Although TLR agonists 

as monotherapy have disappointed in clinical trials, they still have potential when combined 

with other anti-cancer therapies. For example, combined with ACT, the T cell-mediated 

tumor cell death causes the release of tumor antigens that can, together with the 

stimulation of TLRs, reactivate the innate immune system to induce CTL responses [206]. 
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The best-studied TLR agonists in the context of cancer immunotherapy are poly(I:C), 

monophosphoryl lipid A (MPLA), imiquimod, and CpG oligodeoxynucleotides for binding to 

TLR3, TLR4, TLR7/8, and TLR9, respectively [205]. From this set of TLR agonists, only 

imiquimod is approved for cancer therapy and MPLA is included in Cervarix®, a cancer 

vaccine against human papillomavirus-16 and -18 [207, 208]. MPLA is a chemically 

modified derivative of Salmonella minnesota endotoxin and is a less toxic version of 

lipopolysaccharide (LPS), a potent TLR4 agonist. Several preclinical studies have already 

demonstrated the additional antitumor effects of MPLA when combined with other 

immunomodulators, such as CD40 agonists and IL-12 [209, 210]. Of note, Bacillus 

Calmette-Guérin (BCG) which is not a pure TLR agonist, but mainly mediates its 

immunostimulatory effects via TLR2 and TLR4, is also FDA approved for the treatment of 

bladder cancer [205]. In addition to the TLR agonists, also STING activators and α-

galactosylceramide are under investigation as immune adjuvants [204, 211].  

1.4 Non-immune therapies with the power to induce immune responses 

1.4.1 Chemotherapy 

In addition to their direct killing effect, specific chemotherapeutics have shown to 

induce immunogenic cell death (ICD), a type of cell death in which dying cells stimulate 

immune responses against dead-cell antigens [212]. Although the complete underlying 

mechanisms have not yet been elucidated, four hallmarks for the occurrence of ICD have 

been identified; (i) the exposure of calreticulin on the outer leaflet of the cell membrane 

and the release of (ii) ATP, (iii) high mobility group box-1 (HMGB-1), and (iv) type I 

interferon (IFN) from the dying cells [213]. Besides tumor irradiation and hyperthermia, a 

few chemotherapeutics such as doxorubicin and cyclophosphamide have been recognized 

to induce ICD, and are of interest to combine with cancer immunotherapy [213].  

1.4.2 Small interfering RNA 

Several myeloid-derived immune cells were shown to be key contributors to the 

suppressive tumor microenvironment such as TAMs, MDSCs, and tumor-polarized DCs. 

Besides the use of RNAi to directly kill tumor cells, the downregulation of intracellular 

pathways that regulate the immunosuppressive functions in these immune cells, could be 

used to re-educate them [214]. In this context, tumor-polarized DCs were already 

investigated for the downregulation of immunosuppressive modulators such as signal 

transducer and activator of transcription 3 (STAT3) and PD-L1, a strategy that can also be 

further extended to the TAMs and MDSCs [215-217]. Due to their endocytic potential, the 

cells are able to easily internalize siRNA-loaded NPs. In addition, not only an inhibitory effect 

by the siRNA delivery can be envisioned, but also the siRNA-mediated induction of 

immunostimulatory signals by the activation of TLRs [218].   
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2 IN VIVO AND EX VIVO TRANSFECTION TECHNIQUES FOR TUMOR-SPECIFIC T 

CELLS 

The genetic engineering of T cells has been principally investigated for the introduction 

of TCR and CAR genes in ACT. The most frequently investigated transfection method for 

this purpose is through the use of viral vectors, particularly retroviruses and lentiviruses 

[219]. However, due to the high cost and complexity of clinical-grade production, safety 

issues, and limited number of genes that can be incorporated, alternative non-viral vectors 

are gaining interest. For example, DNA plasmid vectors, composed of transposons that 

contain the gene of interest, and a transposase which helps to integrate the gene in the 

genome are becoming more popular. The DNA plasmids are delivered to the T cells via 

physical methods such as electroporation and nucleofection. The electroporation approach 

uses high-voltage pulses by applying an external electric field that transiently creates small 

pores in the cell membrane, which allow the delivery of small molecules and nucleic acids 

through diffusion and electrophoretically-driven transport [220, 221]. Nucleofection is an 

electroporation-based method that was commercialized by Amaxa® (Lonza) to increase the 

transfection efficiency of plasmids and siRNA, with particular benefits for hard-to-transfect 

cells such as primary T lymphocytes [222]. The transfection via DNA plasmid vectors is 

known to overcome all of the abovementioned issues, since plasmids can incorporate a 

larger amount of genetic info, are safe and easy to produce, which reduces costs. Currently, 

clinical trials are investigating the efficiency of CAR T cell therapy after genetically modifying 

the cells via a transposon/transposase system as an alternative for viral vector gene 

transfer [223].  

Besides engineering T cells to express specific tumor antigen receptors, genetic 

modifications have also been investigated to enhance migration and infiltration of T cells in 

the tumor, to enhance their survival and proliferation, and to make them more resistant to 

immunosuppressive signals from the tumor microenvironment. Indeed, several studies 

have shown improved anti-tumor responses when the tumor exhibited increased levels of 

infiltrated CTLs [224, 225]. To enhance infiltration of T cells in the tumor, cells can be 

engineered to express chemokine receptors that bind chemokines which are secreted in 

elevated levels in the tumor [226-228]. Improved survival and proliferation of T cells has 

been demonstrated by the insertion of genes expressing anti-apoptotic molecules or 

encoding short hairpin RNA to silence apoptosis pathways (e.g. FAS) and anti-proliferation 

regulators (e.g. E3 ubiquitin ligase CBLB) [229, 230]. T cells modified to express IL-12 were 

shown to change myeloid cells in the tumor microenvironment to promote immune-

mediated destruction of the tumor [231].  

Unfortunately, genetic engineering of T cells has potential safety concerns due to the 

risk of insertional mutagenesis, resulting in malignant T cells. A non-gene therapy that was 

described previously and was shown to enhance T cell functionalities is the administration 
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of monoclonal antibodies for both checkpoint blockade and stimulation of immune-

promoting T cell receptors. However, recently several intracellular immunosuppressive 

pathways have been identified as interesting therapeutic targets [232, 233]. As these 

targets are not amenable to antibodies, other inhibiting mechanisms such as RNAi, via the 

delivery of siRNAs, have gained interest. Delivering siRNA to the cytosol of T cells can be 

mediated by NPs, aptamers, proteins such as penetrating peptides, and physical methods 

such as electroporation [234].  

The non-physical methods have the advantage that they can be used both in vitro and 

in vivo. However, in vivo, an optimal targeting to the T cells is highly recommended. A 

recent study by Peer and coworkers demonstrated the targeted delivery of lipid-based siRNA 

NPs to CD4+ T cells in mice [235]. Although they showed specific silencing in the CD4+ 

population, the knockdown efficiency was rather low and restricted to a subset of CD4+ T 

cells. Although the use of physical methods such as electroporation and nucleofection is 

restricted to ex vivo applications, they have the advantage to achieve higher transfection 

efficiencies. Unfortunately, the major limitation of electroporation-based methods is their 

high cell toxicity, which stimulated researchers to investigate alternative approaches [234]. 

For example, a recent study reported on the use of the microfluidic CellSqueeze delivery 

system, in which suspension cells flow through microfluidic channels and are subjected to 

a rapid mechanical deformation at a constriction point in the channel, to induce the 

formation of small pores in the cell membrane and allow the passive diffusion of membrane-

impermeable compounds [236].  
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CONCLUSION 

Although many different cancer nanomedicines have been developed over the years, 

the majority has failed clinical translation due to limited targeting to the tumor. Despite 

many efforts based on passive and active targeting, the search for novel strategies to 

increase the number of NPs in the tumor is highly recommended. Cell-mediated NP delivery 

by using a cell’s tumor-migration capacity was suggested as potent alternative. One of the 

suggested tumoritropic cells are cytotoxic T cells, which have in addition to their capacity 

to migrate to the tumor also a cytolytic function against tumor cells. This cytolytic effect of 

T cells has been widely exploited in ACT. Cancer immunotherapy, including ACT, has gained 

popularity in the last couple of years due to its impressive clinical results for patients 

refractory to the conventional anti-cancer therapies. However, the immunosuppressive role 

of the tumor microenvironment remains one of the major hurdles for clinical success in a 

broad range of cancer patients. Therefore, the search for combinatorial strategies to 

overcome these challenges is flourishing. 
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ABSTRACT 

Following intravenous injection of anti-cancer nanomedicines, many barriers need to 

be overcome en route to the tumor. Cell-mediated delivery of nanoparticles (NPs) is 

promising in terms of overcoming several of these barriers based on the tumoritropic 

migratory properties of particular cell types. This guided transport aims to enhance the NP 

accumulation in the tumor and moreover enhance the infiltration of regions that are typically 

inaccessible for free NPs. Within this study, cytotoxic CD8+ T cells were selected as carriers 

based on both their ability to migrate to the tumor and their intrinsic cytolytic activity 

against tumor cells. Many anti-cancer nanomedicines require tumor cell internalization to 

mediate cytosolic drug delivery and enhance the anti-cancer effect. This proof-of-concept 

therefore reports on the reversible attachment of liposomes to the surface of cytotoxic T 

lymphocytes (CTLs) via a reduction-sensitive coupling. The activation status of the T cells 

and the liposome composition are shown to strongly influence the loading efficiency. 

Loading the cells with liposomes does not compromise T cell functionalities like proliferation 

and cytolytic function. Additionally, the triggered liposome release is demonstrated upon 

the addition of glutathione. Based on this optimization using liposomes as model NP, a small 

interfering RNA (siRNA)-loaded NP was developed that can be coupled to the surface of 

CTLs. 
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1 INTRODUCTION 

In Chapter 1, it was introduced that nanoparticles (NPs) have been widely 

investigated for the delivery of anti-cancer drugs to tumor tissues [1-3]. Although a lot of 

research has been performed, to date, only few nanomedicines are in clinical use for the 

treatment of cancer [4, 5]. One of the key challenges is inadequate targeted delivery of 

drug-loaded NPs to the tumor tissue following systemic administration.  

One alternative strategy that might overcome these targeting limitations is cell-

mediated delivery [6, 7]. Certain cell types have the intrinsic ability to cross the endothelial 

barrier and infiltrate the tumor tissue, which makes them attractive carriers for NP delivery 

[8]. For example, T cells have the capacity to migrate to the tumor tissue. Moreover, 

cytotoxic CD8+ T lymphocytes (CTLs) have the added advantage of exerting a cytotoxic 

effect on tumor cells upon their recognition and binding of tumor-associated antigens. By 

virtue of these specific traits, the adoptive transfer of T cells is a widely investigated cancer 

immunotherapy. Although adoptive T cell therapy (ACT) already showed impressive clinical 

outcomes, complete tumor regression was only observed in a restricted number of patients 

mainly due to the immunosuppressive tumor microenvironment and also the loss of tumor 

antigens to which the therapy was targeted [9, 10]. Therefore, strategies combining 

conventional chemotherapies with cancer immunotherapy have gained interest in recent 

years [11]. 

The use of T cells as NP carrier cells has been assessed previously by Irvine and 

colleagues, who irreversibly attached drug-loaded NPs to their surface and also by Vile and 

coworkers, who exploited T cells for the intratumoral delivery of therapeutic viral vectors 

[12-14]. Here, we propose a synergistic strategy based on CTLs that serve a dual purpose, 

i.e. induce a direct killing effect on tumor cells and enhance the delivery of drug-loaded NPs 

into tumor tissue, which may kill T cell-refractory tumor cells. To this end, we investigated 

the covalent attachment of NPs to the surface of CTLs. Moreover, we envisioned the 

triggered release of the cell surface-conjugated NPs in the tumor microenvironment which 

could allow their subsequent internalization by target tumor cells and hence a more efficient 

delivery of anti-cancer drugs. This concept is of particular interest for charged 

macromolecular therapeutics that are membrane-impermeable such as small interfering 

RNA (siRNA), which require NP-mediated cytosolic delivery in target cells. To date, a 

reversible coupling strategy of NPs to the surface of CTLs has not yet been investigated.  

Given their outstanding promise and versatility as drug delivery systems, we used 

liposomes as model nanomedicines within this proof-of-concept [15]. First, it was assessed 

whether liposomes can be attached to the surface of CTLs based on disulfide bond formation 

between exofacial thiols present on the CTL plasma membrane and thiol-reactive liposomes. 

Next, we showed the triggered release of liposomes in the presence of glutathione as a 
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reducing agent. Importantly, in vitro data indicated that the NP-load did not affect the T 

cell functionalities such as proliferation and cytotoxic effector functions.  

It has been demonstrated that the adoptive transfer of less-differentiated T cells is 

associated with superior persistence and anti-tumor responses compared to the more-

differentiated effector T cells [16, 17]. On the other hand, the differentiation of naive T cells 

into CD8+ effector T cells is required for their migratory and cytotoxic function. Since both 

activated and naive T lymphocytes are investigated for ACT, we therefore evaluated the 

reversible coupling of liposomes as a function of their activation status [18]. It has also 

been shown that combining CD8+ and CD4+ T cells can lead to improved anti-cancer effects 

[19-21]. Therefore, we subsequently investigated the attachment of PDP-functionalized 

liposomes to other immune cell types, especially CD4+ T cells.  

Finally, building further on this optimized reversible coupling strategy, we 

demonstrated the coupling of lipid-enveloped nanogels, loaded with siRNA, to the surface 

of activated CTLs. RNA interference has been shown to downregulate distinct pathways in 

both tumor cells and immune cells [22]. The T cell-mediated delivery of siRNA may help to 

target tumor cells escaping the ACT and surrounding immune cells that have an 

immunosuppressive effect onto the cancer immunotherapy, all together enhancing the 

outcome of the therapy.  
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2 MATERIALS AND METHODS 

2.1 Preparation of liposomes and characterization 

The liposomes were composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

egg phosphatidyl glycerol (egg PG) or 18:1 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[3-(2-pyridyldithio)propionate] (PE-PDP), and the fluorescent 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). DOPC and PE-PDP lipids 

were purchased from Avanti Polar Lipids (Alabaster, USA), PG lipids from Lipoid 

(Ludwigshafen, Germany), and DiD from Molecular probes (Invitrogen, Merelbeke, 

Belgium). The typical liposome composition comprised 50 wt% PE-PDP or PG, 3 wt% DiD, 

and 47 wt% DOPC. When varying the PE-PDP or PG content, the fraction of DOPC lipids was 

adjusted accordingly. To form the liposomes, a lipid mixture in chloroform was prepared 

and pipetted in a round-bottom glass flask, followed by evaporation of the chloroform 

solvent to form a thin lipid film. The dried lipids were rehydrated in phosphate buffered 

saline (PBS; Gibco-Invitrogen, Merelbeke, Belgium) at ambient temperature followed by an 

extrusion of the resultant multilamellar liposomes through a 200 nm polycarbonate filter 

(Whatman, Diegem, Belgium). Liposome size and surface charge were measured in HEPES 

buffer (20 mM, pH 7.4) at 25 °C by dynamic light scattering and zeta potential 

measurements, respectively, using a Zetasizer Nano ZS (Malvern, UK) equipped with 

Dispersion Technology Software (DTS).  

2.2 Cell culture 

CD8+ T cells were isolated from the spleen of OT-I mice using a negative isolation 

CD8+ kit (Stem Cell Technologies, Grenoble, France). Cells were activated with anti-

CD3/CD28 Dynabeads® (Gibco-Invitrogen) at a density of 2 x 106 cells/well and a bead-to-

cell ratio of 1:1 in a 24-well plate. The cells were cultured in complete T cell culture medium 

containing advanced RPMI medium (Gibco-Invitrogen) supplemented with 10% fetal bovine 

serum (FBS; Hyclone, Thermo Scientific, MA, USA), 2 mM L-glutamine (Gibco-Invitrogen, 

Merelbeke, Belgium), 1% penicillin/streptomycin (Gibco-Invitrogen). According to the 

manufacturer’s protocol 30 U ml-1 rIL-2 (Miltenyi Biotec, Leiden, The Netherlands) was 

added to the culture medium and restimulation was performed by adding new beads every 

7 days.  

The mouse thymoma cell lines EL4 and E.G7-OVA were purchased from the American 

Type Culture Collection (ATCC). The E.G7-OVA cell line is an EL4 cell line that was stably 

transfected with the plasmid pAc-neo-OVA, which carries a complete copy of chicken 

ovalbumine (OVA) mRNA. Both cell lines were cultivated in RPMI 1640 (Gibco-Invitrogen) 

supplemented with 10% FBS, 2 mM L-glutamine, and 1% penicillin/streptomycin. 
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2.3 Visualization of exofacial thiol groups 

CD8+ T cells were incubated for 15 min with 100 µg ml-1 Cy5-labeled maleimide (GE 

Healthcare Life Sciences, Diegem, Belgium) at room temperature. After washing the cells 

with PBS, the cells were fixed with 4% paraformaldehyde (Sigma-Aldrich, Bornem, 

Belgium). Confocal microscopy images were acquired using a Nikon C1si confocal laser 

scanning microscope (Nikon Benelux, Brussels, Belgium) equipped with a Plan Apo VC 60x 

1.4 NA oil immersion objective lens (Nikon). The Cy5 dye was excited with a 636 nm diode 

laser (CVI Melles Griot, NM, USA). 

2.4 Reversible coupling of liposomes to the surface of CD8+ T cells 

CD8+ T cells (3 x 105 cells per sample) were incubated in serum-free advanced RPMI 

with the liposomes during 1h at 37 °C with gentle mixing after 30 min. A liposome 

concentration of 2 mg ml-1 lipids was used, if not indicated differently. Subsequently, the 

cells were washed with PBS (supplemented with 5% FBS) and to discriminate the CD8+ 

population the cells were stained with a CD8-Alexa Fluor® 488 antibody (BD Pharmingen, 

Erembodegem, Belgium) for 30 min at room temperature in PBS (supplemented with 5% 

FBS). The amount of liposomes attached to the CD8+ T cells was quantified via flow 

cytometry by measuring the DiD (red) fluorescence intensity per cell. In addition, a dead 

cell stain was performed by incubating the (liposome-loaded) cells with 60 nM SYTOX® 

green nucleic acid stain (Molecular Probes/Invitrogen, Merelbeke, Belgium) for 15 min at 

room temperature in PBS (supplemented with 5% FBS). The viable population was identified 

and selected based on the SYTOX® green stain. The activation status of the T cells was 

evaluated with a phycoerythrin (PE)-labeled CD25 antibody (BD Pharmingen). In addition, 

the coupling was also evaluated on the total splenocyte population. To this end, red blood 

cells were removed by a freeze and thaw cycle and the residual splenocytes were incubated 

with 5 mg ml-1 liposomes, followed by antibody staining with CD3-PE, CD8-Alexa Fluor® 

488, and CD19-FITC (all BD Pharmingen). 

To evaluate the detachment of the liposomes from the T cell surface, the liposome-

loaded cells were incubated with mounting concentrations of glutathione (Sigma-Aldrich) 

for 30 min at 37 °C. The glutathione dilutions were prepared in PBS (supplemented with 

5% FBS) and the pH was adjusted to physiological pH. After incubation, the released 

liposomes were removed by washing the cells in PBS (supplemented with 5% FBS) and the 

remaining DiD fluorescence per CD8+ T cell was quantified by flow cytometry. Flow 

cytometry data were acquired by a FACSCalibur™ (BD Pharmingen) and analyzed using BD 

CellQuest™ and FlowJo (Treestar Inc, Ashland, USA) software. 
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2.5 Characterization of detached liposomes by fluorescence single particle 

tracking (fSPT) 

CD8+ T cells were first incubated with PDP-functionalized liposomes that were 

fluorescently labeled with DiD as described in the previous section, followed by two washing 

steps with PBS to remove the unbound particles. Subsequently, the cells were incubated 

with 2 mg ml-1 glutathione during 30 min at 37 °C. After centrifugation of the cells, the 

supernatant was collected and analyzed by fSPT. The latter technique enables the 

measurement of the size of NPs in biological fluids by recording the movement of the 

fluorescently labeled particles. The DiD fluorophores in the liposomes were excited by 

swept-field laser illumination (100 mW Spectra Physics Excelsior 642 nm, CA, USA) on an 

epi-fluorescent microscope (Eclipse T, Nikon BeLux, Brussels, Belgium) equipped with a 

Plan Apo VC 100x 1.4 NA oil immersion objective lens (Nikon). The diffusion of individual 

liposomes was recorded in high-speed movies by a fast and sensitive CCD camera (Ixon 

Ultra 897, Andor Technology, CT, USA). The motion trajectories of single particles were 

obtained by in-house developed software. Subsequently, the diffusion coefficient for each 

trajectory was calculated and transformed in a size distribution using the Stokes-Einstein 

equation. Data were further refined by the maximal entropy deconvolution method, as 

described by our group previously [23]. 

2.6 Visualization of T cell surface-conjugated liposomes by confocal microscopy 

DiD-labeled liposomes were conjugated to the cell surface of CD8+ T cells as previously 

described, followed by a cell nucleus stain with 10 µg ml-1 Hoechst 33342 (Molecular Probes) 

and a CD8-Alexa Fluor® 488 antibody stain (BD Pharmingen). The dyes were respectively 

excited by a 636 nm diode laser, a 408 nm diode laser, and a 488 nm argon-ion laser (all 

purchased from CVI Melles Griot). Images were recorded with a Plan Apo VC 60x 1.4 NA oil 

immersion objective lens (Nikon).  

2.7 T cell proliferation assay 

CD8+ T cells activated during 9 days were first stained with 7.5 µM CFSE (Life 

Technologies, Merelbeke, Belgium) and subsequently conjugated with DiD-labeled 

liposomes as previously described. The proliferation of the T cells was then measured by 

the dilution of the CFSE stain over the daughter cells with flow cytometry at varying time 

points (0h, 24h and 48h) after loading. The distribution of the liposomes over the daughter 

cells was determined by measuring the DiD fluorescence intensity per cell. During the 

experiment, the activated cells were incubated in cell culture medium supplemented with 

30 U ml-1 rIL-2.  
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2.8 In vitro cytotoxic T cell (CTL) assay 

EL4 and E.G7-OVA cells were stained with 5 µM and 15 µM CFSE stain, respectively. 

The OT-I CTLs were activated for 9 days with anti-CD3/CD28 Dynabeads® and incubated 

with PDP-functionalized liposomes at a concentration of 5 mg ml-1 lipids, followed by two 

washing steps to remove unbound particles. Subsequently, the OT-I T cells were co-cultured 

with EL4 and E.G7-OVA cells at two different effector-to-target ratios. To increase cell 

contact between T cells and target cells, the incubation was performed in a U-bottom 96-

well plate (Falcon, BD Biosciences) in complete T cell culture medium. After 4h at 37 °C the 

ratio of EL4 cells compared to E.G7-OVA cells was quantified by flow cytometry, in which 

the viable population was selected based on forward scatter/side scatter and both cell lines 

could be distinguished by their different CFSE fluorescence intensity signal. 

2.9 Coupling of siRNA-loaded NPs to cytotoxic T cells 

Our group has developed biodegradable dextran nanogels via an inverse mini-

emulsion photopolymerization of dextran hydroxyethyl methacrylate (dex-HEMA) in mineral 

oil. To incorporate cationic charges in the nanoscopic hydrogel network, cationic 

methacrylate monomers ([2-(methacryloyloxy)-ethyl]trimethylammonium chloride, 

TMAEMA) were copolymerized with dex-HEMA [24]. Recently, experimental evidence was 

provided that these siRNA-loaded NGs (siNGs) can efficiently be coated with a lipid bilayer 

[25]. Here, the NGs were first loaded with 5 pmol Alexa Fluor® 488-labeled siRNA 

(Eurogentec, Seraing, Belgium) per µg NGs. Next, the siNGs were layered with a lipid 

mixture composed of 50 wt% PE-PDP, 3 wt% DiD, and 47 wt% DOPC. Briefly, the siNGs 

were incubated for 10 min at 4°C with the hydrated lipid mixture, allowing electrostatic 

interaction, applying 10 mg lipid per mg NGs. After incubation, the lipid coat was formed 

by high-energy sonication using a probe sonicator (Branson Digital Sonifier®, amplitude 

10 %). The lipid-coated siNGs were separated from excess lipids by centrifugation through 

a 7.5 wt% OptiPrepTM (Sigma-Aldrich) cushion for 30 min at 30000 g (L8-70M Centrifuge 

with SW55 Ti rotor; Beckman Coulter, Suarlée, Belgium). The supernatant, containing 

empty lipid vesicles, was discarded. The resulting pellet, containing the purified lipid-coated 

siNGs, was resuspended in nuclease-free water. Subsequently, equal volumes of the 

resuspended formulation and double-concentrated PBS were mixed, in order to obtain 

physiological salt concentrations. Using this protocol, lipid-coated siNGs were obtained with 

a hydrodynamic diameter around 400 nm as analyzed using fluorescence single particle 

tracking (fSPT) [26]. 

The lipid-coated siNGs (0.25 mg ml-1 NG) were incubated with 3 x 105 CD8+ T cells (9 

days-activated) for 45 min at 37°C in serum-free advanced RPMI. Cells were washed with 

PBS (supplemented with 5% FBS). The amount of lipid-coated siNGs per cell was quantified 

by flow cytometry and visualized by confocal microscopy, as previously described. Flow 
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cytometry data were acquired by a CytoFLEX (Beckman Coulter) and analyzed using FlowJo 

software. 

2.10 Quantifying siRNA release via fluorescence fluctuation spectroscopy 

Fluorescence fluctuation spectroscopy (FFS) is a microscopy-based technique that 

monitors fluorescence intensity fluctuations in the excitation volume of a confocal 

microscope. Fluorescence fluctuations originate from the diffusion of fluorescent molecules 

in and out the excitation volume. To calculate the percentage free siRNA in the formulation, 

a fluorescence baseline of free siRNA molecules was recorded and compared with the 

baseline of the complexed siRNA. Upon encapsulation in NPs, the fluorescence baseline of 

the siRNA molecules will drop from which the loading efficiency can be calculated as 

described earlier. As was shown by our group, the complexation of siRNA molecules in NPs 

can be determined in different media including full human serum [26]. Within this study, 

the siRNA release from the non-coated versus lipid-coated siNGs was measured in the 

presence of competing polyanions such as dextran sulfate (DEXS; 10kDa; 2.5 mg ml-1; 

Sigma-Aldrich) and human serum (obtained from a healthy donor and stored at -20°C). 

Equal volumes of serum or the competing polyanions in HEPES buffer were mixed with the 

siNGs and incubated for 10 min at room temperature before transferring to a glass-bottom 

96 well-plate for FFS analysis (Greiner Bio-One GmbH, Frickenhausen, Germany). 

Measurements were performed with a Nikon C1si confocal laser scanning microscope (Nikon 

Benelux) equipped with a Plan Apo 60x 1.2 NA water immersion objective lens (Nikon), 

using a 488 nm argon-ion laser (CVI Melles Griot) This setup was combined with the 

detection channels of a fluorescence correlation spectrometer MicroTime 200 (Picoquant 

GmbH, Berlin, Germany) equipped with SymPhoTime software. Fluorescence fluctuations 

were recorded during 1 min. 

2.11 Statistical analysis 

A two-tailed Student's t-test was performed to determine statistical differences 

between datasets. All statistical analyses were performed using GraphPad Prism 6 software 

(La Jolla, CA, USA). p-values <0.05 were regarded significant. Statistical significance is 

indicated as follows: ** p <0.01; *** p < 0.001; **** p < 0.0001. 
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3 RESULTS 

3.1 Nanoparticles for reversible attachment to cytotoxic T lymphocytes 

Within this study liposomes were selected as model nanoparticles (NPs) to optimize 

reversible coupling to cytotoxic T lymphocytes (CTLs). Varying amounts of thiol-reactive 

phospholipids, carrying a pyridyldithiopropionate (PDP) head group, were incorporated in 

the liposome bilayer, next to DOPC lipids. The PDP moiety can form a reducible disulfide 

bond with the thiol groups exposed at the cell surface (exofacial thiols), allowing the 

reversible covalent coupling of the liposomes (Figure 1A) [27]. Importantly, PDP-

functionalized lipids (PE-PDP lipids) contain a negative charge that may interact with 

cationic regions at the plasma membrane, thereby possibly causing nonspecific binding 

[28]. To account for these nonspecific interactions, the cellular attachment of control 

liposomes, in which the PDP-functionalized lipids were replaced by the negatively charged 

phosphatidylglycerol (PG) lipids, was evaluated in parallel. Both PDP and PG liposomes have 

a similar hydrodynamic diameter (~150 nm) and zeta potential, of which the latter depends 

on the liposomal composition. For instance, when 50 wt% PDP or PG lipids were 

incorporated, a mean zeta potential value around -65 mV was measured. Whenever other 

compositions were used, their respective zeta potential values are indicated in a table 

additional to the experimental data.  

 

Figure 1. (A) Schematic representation of the formation of a disulfide bond between PDP-
functionalized lipids that are incorporated into the liposome bilayer and reduced exofacial thiol 
groups, present at the cell surface. (B) Transmission and confocal fluorescence images of non-
activated murine OT-I CD8+ T cells incubated with Cy5-labeled maleimide. 
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3.2 Reversible coupling of liposomes to the surface of non-activated CD8+ T cells 

Murine OT-I CD8+ T cells, which are genetically engineered to express a T cell receptor 

(TCR) against ovalbumine (OVA), were selected as carriers for the cell-mediated delivery 

of the liposomes. To allow the formation of a disulfide bond between free thiol groups at 

the CTL plasma membrane and PDP liposomes, we first assessed the availability of free thiol 

groups at the CD8+ T cell surface by incubating them with Cy5-labeled maleimide [27]. The 

maleimide group can interact with thiol groups to form a stable thioether bond. Confocal 

images clearly demonstrated the presence of thiol groups that appeared to be uniformly 

distributed over the entire cell surface (Figure 1B). 

3.2.1 Attachment of liposomes to the surface of non-activated CD8+ T cells 

Isolated CD8+ T cells from the spleen of OT-I mice were incubated with fluorescently 

labeled (DiD) liposomes and the amount of liposomes coupled to the cell surface was 

quantified by flow cytometry. We first determined the fraction of PDP lipids that needs to 

be incorporated into the liposomal membrane to achieve efficient binding. To this end, the 

cells were incubated with liposomes containing increasing amounts of PDP lipids, ranging 

from 10 to 50 wt%. Cells were incubated with a 2 mg ml-1 lipid concentration as we 

determined that a higher concentration only results in a moderate increase in cellular 

attachment (Figure 2A). To quantify nonspecific interactions, the cellular binding of PG 

liposomes with PG lipid wt% also ranging from 10 to 50, was determined in parallel. It was 

verified that both PDP and PG liposomes have equivalent zeta potentials (Figure 2B). As 

displayed in Figure 2C, the nonspecific binding was independent of the liposomal 

composition. Strikingly, only liposomes composed of 50 wt% PDP-modified lipids showed 

specific binding to the T cells, accompanied by a more than three-fold difference in mean 

fluorescence intensity per cell between PG and PDP liposomes for this composition. Hence, 

further experiments were performed with liposomes carrying 50 wt% PDP-functionalized or 

PG lipids.  

The presence of fluorescently labeled liposomes at the surface of the CD8+ T cells was 

visualized by confocal microscopy. The images depicted in Figure 2D show localized bright 

fluorescent spots at the T cell surface, contrary to the free thiol staining with Cy5-labeled 

maleimide that showed a more uniform distribution (Figure 1B). Of note, from these 

images it is evident that the liposomes are indeed predominantly anchored to the surface 

of the cells and not internalized, confirming previous reports [12, 29]. 
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Figure 2. The reversible coupling of DiD fluorescently labeled liposomes to the surface of 
non-activated OT-I CD8+ T cells. (A) Binding of DiD-labeled liposomes with 50 wt% PDP lipids to 
non-activated CD8+ T cells as a function of total lipid concentrations. The liposomes were composed 
of 50 wt% PE-PDP, 3 wt% DiD and 47 wt% DOPC lipids. Data represent DiD mean fluorescence 
intensity (MFI) per cell ± SD (n = 2). (B) Zeta potential measurements of the different liposome 

compositions. (C) CD8+ T cells were incubated with PG and PDP liposomes with increasing wt% PG 
and PDP lipids as indicated in the graph. Data represent DiD mean fluorescence intensity (MFI) per 
cell ± SD (n = 2). (D) Confocal overlay image (left) and red channel (right) of T cells incubated with 
Alexa Fluor® 488-labeled anti-CD8 antibodies (green), Hoechst cell nucleus stain (blue), and DiD-
labeled liposomes (red) (Scale bar = 5 µm). (E) Decrease in DiD MFI after incubation of the cells 
with increasing concentrations of glutathione. Data represent MFI ± SD (n = 3; ns = not significant; 

*** p <0.001; **** p <0.0001).  
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3.2.2 Triggered detachment of the liposomes from the cell surface of non-activated CD8+ 

T cells. 

Having established the optimal liposome composition, we next sought to evaluate 

whether the liposomes can be detached again from the cell surface. We anticipated that 

incubating the liposome-loaded T cells with reducing agents such as glutathione can cause 

a thiol-disulfide exchange reaction, resulting in the release of the disulfide-bound liposomes 

from the T cell surface [30]. To explore the latter, the liposome-loaded CD8+ T cells were 

incubated with mounting concentrations of glutathione. As depicted in Figure 2E, an 

increase in the glutathione concentration was associated with a decrease in the amount of 

attached DiD-labeled PDP liposomes, indicative of their triggered release. Upon incubation 

with 2 mg ml-1 glutathione, a release of 60% of the attached particles was observed.  

3.3 Reversible coupling of liposomes to the surface of activated CD8+ T cells 

Given that activated T cells outperform their non-activated counterparts in terms of 

tumor migratory capacity and cytolytic activity, we next aimed to assess the impact of T 

cell activation on the covalent coupling of liposomes. For this purpose, murine OT-I T cells 

were activated using anti-CD3/CD28 Dynabeads®. The activation status was evaluated by 

the expression of the IL-2 receptor CD25, which is upregulated after stimulation [31]. 

3.3.1 Attachment of liposomes to the surface of activated CD8+ T cells 

Similar to the attachment of liposomes to the surface of non-activated T cells, the 

coupling of liposomes to activated CD8+ T cells was first quantified as a function of wt% 

incorporated PDP lipids. The zeta potential data from the different liposome compositions 

were represented in Figure 3A. In accordance with the results on non-activated CD8+ T 

cells, we again observed a significant specific binding only for the liposomes with 50 wt% 

PE-PDP lipids incorporated (Figure 3B). Thus, also for the activated T cells this composition 

was selected for further investigation. To evaluate the maximal coupling, the cells were 

incubated with increasing liposome concentrations. A sharp increase in cell binding was 

observed from 0.1 to 1 mg ml-1 lipids while a further increase up to 10 mg ml-1 only resulted 

in a moderate improvement of the coupling (Figure 3C). In analogy with non-activated T 

cells, liposomes bound to activated T cells also remain localized at the cell surface in distinct 

foci, as verified with confocal microscopy (Figure 3D).  
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Figure 3. The coupling of DiD fluorescently labeled liposomes to the surface of activated 
OT-I CD8+ T cells, activated with anti-CD3/anti-CD28 Dynabeads® during 10 days. (A) Zeta 
potential measurements of the different liposomal compositions. (B) CD8+ T cells were incubated 

with 2 mg ml-1 PG and PDP liposomes with increasing amounts of PG and PDP lipids as indicated. Data 
represent the mean fluorescence intensity (MFI) of DiD per cell ± SD (n = 3). (C) Binding of DiD-
labeled liposomes to CD8+ T cells as a function of lipid concentrations. Data represent DiD mean 

fluorescence intensity (MFI) per cell ± SD (n = 3). (D) Confocal images of T cells incubated with 
Alexa Fluor® 488-labeled anti-CD8 antibodies (green), Hoechst cell nucleus stain (blue), and DiD-
labeled liposomes (red) (Scale bar = 5 µm). 

3.3.2 Attachment of liposomes as a function of T cell activation status 

During the activation process CD8+ T cells undergo a marked increase in size 

(Figure 4) and phenotypic changes such as upregulation of multiple surface markers like 

CD25, as represented in Figure 5A. To address whether these changes influence the 

attachment of particles to the cell surface, CD8+ T cells were activated with anti-CD3/CD28 

Dynabeads® over a two-week time period and the specific coupling of liposomes was 

quantified at different activation time points (Figure 5A). In accordance with the 

manufacturer’s protocol, the cells were restimulated with new Dynabeads® on day 7 of 

activation. 
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Figure 4. Size of CD8+ T cells as a function of activation time. (A) Mean forward scatter (FSC) 
± SD of activated CD8+ T cells as a function of activation time (n = 1 for non-activated cells and n = 
3 for activated cells). FSC and SSC plots of cells activated during (B) 7, (C) 10, (D) 12, and (E) 14 

days. Data represent viable cells that were selected based on a SYTOX® green dead cell stain. 

In general, a significantly higher attachment of PDP-functionalized liposomes to 

activated cells was observed compared to the non-activated T cells. In analogy with 

previous experiments, PG liposomes were incubated with the T cells as a control for 

nonspecific binding. Here, a similar trend in T cell binding was detected, albeit with markedly 

lower fluorescence intensity. Furthermore, the expression of the CD25 surface marker 

strongly increased from day 7 to day 10 following activation, indicative of an improved T 

cell activation efficiency upon a second activation step with anti-CD3/CD28 Dynabeads® on 

day 7. In contrast, when exceeding 10 days of activation again a gradual decrease in CD25 

expression was observed. Importantly, the efficiency of liposome coupling to the T cells 

perfectly correlates with the CD25 expression levels, also reaching optimal specific liposome 

attachment to the T cell surface at day 10 of activation.  
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Figure 5. Reversible coupling of liposomes to the surface of OT-I CD8+ T cells as a function 
of their activation status. (A) Attachment of DiD-labeled PG or PDP liposomes (50 wt% PG/PDP – 

2 mg ml-1) to the surface of activated CD8+ T cells after the indicated days of activation. CD25 
expression was quantified as a marker for T cell activation. Data represent the mean fluorescence 
intensity (MFI) per cell ± SD from both DiD labeled liposomes (PG and PDP) and PE-labeled CD25 

antibody staining (n = 4). (B) PG and PDP liposomes were attached to the surface of the cells, 
followed by an incubation step with or without 2 mg ml-1 glutathione. Data represent the DiD mean 
fluorescence intensity (MFI) per cell ± SD (n = 3; ns = not significant; **** p <0.0001). (C) 
Fluorescence single particle tracking (fSPT) size distribution of PDP liposomes both before T cell 

coupling and after triggered release from the T cell surface with glutathione. 

3.3.3 Triggered detachment of liposomes from the cell surface of activated CD8+ T cells 

To verify that the coupling of PDP liposomes to the surface of activated T cells was 

indeed reversible, the release of liposomes from the surface was evaluated by incubating 

the activated and liposome-loaded CD8+ T cells with glutathione. In accordance with the 
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data obtained from non-activated T cells, the glutathione concentration was fixed at 

2 mg ml-1. Glutathione was able to release ~50% of the PDP liposomes from the CD8+ T 

cells surface, while the DiD fluorescence per cell for the nonspecifically bound PG liposomes 

remained unaffected (Figure 5B). Confocal images of cells incubated with or without 

glutathione are represented in Figure 6. 

 

Figure 6. Confocal images of liposomes attached to CD8+ T cells incubated with or without 
glutathione. Cells were first incubated with DiD-labeled liposomes, followed by the incubation of the 

cells with phosphate buffered saline (PBS) supplemented with 5% fetal bovine serum (FBS) (A), and 
with 2 mg ml-1 glutathione in PBS supplemented with 5% FBS (B). The left panel shows overlay 
images and the right panel DiD fluorescence (scale bar = 50 µm). 

To determine whether the released liposomes still have the required size to allow 

subsequent internalization by target cells, we analyzed the size of the detached particles in 

the extracellular medium by fluorescence single particle tracking (fSPT). This technique is 

a microscopy-based method in which fluorescently labeled particles are illuminated by laser 

light and the Brownian motion of the particles is recorded by a fast and sensitive EMCCD 

camera. Based on the trajectories of single particles, calculated from the recorded movies 

by specialized algorithms, the diffusion coefficient and hence the hydrodynamic size of the 

moving particles can be determined, even in complex biological fluids [23]. A comparison 

was made between the liposomes prior to the T cell coupling and the liposomes collected 

after detachment from the T cell surface with glutathione. The average initial liposome size 

of 178 nm, as measured by fSPT, is comparable with a diameter of 150 nm obtained with 
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DLS. The liposomes that were released from the T cell surface in the presence of glutathione 

have a slightly increased average diameter (228 nm), which remains within an acceptable 

size range for subsequent endocytosis by tumor cells (Figure 5C). 

3.4 Influence of cell surface-attached liposomes on T cell functionalities 

3.4.1 Proliferation of CD8+ T cells after coupling of liposomes 

Proliferation is one of the key cellular functions of T cells upon activation. We therefore 

sought to evaluate whether the proliferative capacity of the cells could be compromised at 

the highest achievable liposome-conjugation in this study. The proliferation of T cells was 

determined by staining the activated T cells with CFSE and following the subsequent dilution 

of this stain over the daughter cells as a function of cell division. To this end, the cells were 

first incubated with a high concentration of 50 wt% PDP liposomes (20 mg ml-1 lipid 

concentration) for which a maximal coupling is expected (Figure 3). For the untreated T 

cells, a clear decrease in CFSE fluorescence intensity could be observed over time, reflecting 

CFSE dilution by T cell division. Importantly, T cells carrying a maximal amount of PDP 

liposomes on their surface also maintained a normal proliferative behavior (Figure 7A). 

Furthermore, the cell surface-attached liposomes were equally distributed over the 

daughter cells during cell division as was demonstrated by the simultaneous dilution of the 

DiD fluorescent signal per cell, albeit with all cells still positive for DiD after 48h 

(Figure 7B). 

 

Figure 7. Proliferation of OT-I CD8+ T cells after liposome coupling to the cell surface. CD8+ 
T cells were first labeled with CFSE and incubated with a high concentration of 50 wt% PDP liposomes 
labeled with DiD (20 mg ml-1 lipids), followed by the incubation over 24h and 48h within cell culture 

medium supplemented with 30 U ml-1 rIL-2. (A) Flow cytometry histograms representing the CFSE 
fluorescence intensity and (B) liposomal DiD fluorescence intensity per T cell for both liposome-loaded 
(solid line) and non-loaded cells (dotted line) at the start of incubation (black line), after 24h (dark 
gray line), and after 48h (light gray line). 
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3.4.2 Cytotoxic T cell effector function after coupling of liposomes 

CTLs are designed to specifically kill target tumor cells. To evaluate whether the 

anchoring of liposomes to the surface of CD8+ T lymphocytes affects their cytotoxic function, 

OT-I T lymphocytes were used that have a TCR recognizing an ovalbumine (OVA)-derived 

peptide. Co-culturing of OT-I T cells with E.G7-OVA lymphoma cells that present this OVA-

peptide in major histocompatibility complex class I (MHC I), would result in TCR-mediated 

killing of the E.G7-OVA cells. Isogenic yet OVA negative EL4 cells were included in the co-

culture experiment as a control for the specificity of this interaction. To discriminate both 

cell types, EL4 and E.G7-OVA cells were stained with a low and high concentration of CFSE, 

respectively (Figure 8). The CFSE-labeled EL4 and E.G7-OVA cells were mixed in equal 

amounts followed by the addition of the OT-I T cells in an effector:target (E:T) ratio of 1:1 

and 1:20 as indicated in the Figures 9A-C. 

 

Figure 8. Schematic overview of co-culturing OT-I CD8+ T cells with E.G7-OVA target cells 
and EL4 control cells. E.G7-OVA and EL4 cells were labeled with a high and low CFSE concentration, 

respectively. Both cell types were mixed in equal amounts and incubated for 4h at 37 °C with OT-I 
CD8+ T cells.  

 

At a 1:1 effector:target ratio the OT-I T cells were able to lyse the majority of the 

E.G7-OVA population in contrast to the EL4 cells that remained unaffected, reflecting the 

specificity of the CTL effector function assay. Notably, Figure 9B clearly demonstrates that 

the covalent attachment of liposomes to the T cell surface does not interfere with their 

cytotoxic function as both liposome-loaded and non-loaded T cells killed 72% of the E.G7-

OVA population. To exclude the possibility that this E:T ratio was too high and could 

therefore obscure the inhibitory effect of the conjugated liposomes, the co-culture 

experiment was repeated at a suboptimal E:T ratio of 1:20. Although the killing effect of 
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the E.G7-OVA cells obtained at the 1:20 ratio is strongly reduced with only 6% lysis 

compared to 72% for the 1:1 ratio, again the attachment of liposomes to the T cell surface 

did not affect target cell lysis (Figure 9C). Quantitative data of this CTL assay are 

represented in Figures 9D-E. 

 

 
 

Figure 9. Co-culture of (liposome-loaded) OT-I CD8+ T cells with E.G7-OVA target cells and 
EL4 control cells. (A) Histograms representing a co-culture of EL4 and E.G7-OVA cells without T 
cells (gray fill), with non-loaded T cells (dotted line), and with liposome-loaded (5 mg ml-1 lipids) T 
cells (solid line). Cells were mixed in both a (B) 1:1 effector:target (E:T) ratio and a (C) 1:20 E:T 

ratio. (D) Graphs representing the percentage of viable E.G7-OVA cells after the incubation without 
OT-I T cells, with non-loaded T cells, and with liposome-loaded T cells (5 mg ml-1 lipids) in a 1:1 and 
(E) 1:20 effector:target (E:T) ratio. The % E.G7-OVA cells ± SD represented here is the E.G7-OVA 
cell fraction of the total population of EL4 and E.G7-OVA cells (n = 3, ns = not significant, 
*** p <0.001).  
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3.5 Coupling of siRNA-loaded NPs to cytotoxic T cells 

Next, a drug-loaded nanoparticle was developed for anchoring to the surface of CD8+ 

T cells, exploiting our previously optimized coupling protocol. As a therapeutic agent we 

selected small interfering RNA (siRNA), which needs to be delivered into the cytosol of 

target cells to activate gene silencing. However, as the PDP liposomes are negatively 

charged they do not allow loading of siRNA based on electrostatic interaction. To this end, 

our research group recently developed a hybrid core-shell formulation, in which siRNA is 

pre-loaded in a biodegradable cationic nanogel (NG) core that is subsequently coated with 

a negatively charged lipid shell [25]. Here, we modified this nanocomposite formulation 

using PDP liposomes to construct the outer lipid shell and to enable subsequent coupling of 

the siRNA-loaded nanogels (siNGs) to the CTL surface.  

 

Figure 10. The coupling of siRNA-loaded nanoparticles (NPs) to the surface of cytotoxic T 

cells. Nanogels (NGs) were first loaded with 5 pmol of Alexa Fluor® 488-labeled siRNA per µg NG 

(siNGs), followed by coating with a lipid layer composed of 50 wt% PE-PDP, 3 wt% DiD and 47 wt% 
DOPC. Following purification, the lipid-coated siNGs were incubated with activated CD8+ T cells. (A) 
Confocal images of lipid-coated siNGs coupled to CD8+ T cells via a disulfide binding. siRNA molecules 
were labeled with Alexa Fluor® 488 (green) and the lipid coat was labeled with DiD (red). (B) Flow 
cytometry plots representing CD8+ T cells incubated with or without lipid-coated siNGs. (C) Influence 
of the lipid coat on the siRNA release in the presence of competing polyanions such as 2.5 mg ml-1 

dextran sulfate (DEXS) and human serum measured by fluorescence fluctuation spectroscopy. Data 
represent mean % siRNA release ± SD (n = 3; ** p <0.01; *** p <0.001). 
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Following incubation of this core-shell formulation with activated CTLs, we could 

demonstrate their coupling to the CTL cell surface. In Figure 10A, confocal images show 

the coupling of double-labeled PDP lipid-coated siNGs to CD8+ T cells, in which the green-

labeled siRNA (Alexa Fluor® 488) perfectly co-localizes with the red-labeled (DiD) lipid coat. 

In addition, flow cytometry plots indicated that all T cells were loaded with the lipid-coated 

siNGs as the fluorescent signals of both labeled siRNA and lipids are closely correlated 

(Figure 10B). During the coating procedure of the siNGs with the highly anionic PDP 

liposomes a small fraction (~10%) of siRNA was released from the NG core. Importantly, 

Figure 10C shows that the lipid coat offers ample protection against siRNA decomplexation 

in the presence of high concentrations of competing polyanions and in human serum, as 

was measured through fluorescence fluctuation spectroscopy. This indicates the successful 

deposition of a protective lipid shell around the siNG core.  

3.6 Attachment of liposomes to the surface of splenocytes 

To broaden the use of this cell-mediated drug delivery approach, we evaluated the 

coupling of liposomes to other immune cell types. To this end, a splenocyte population, 

containing distinct types of immune cells, especially T cells (CD4+ and CD8+ T cells) and B 

cells, was incubated with the PDP-functionalized liposomes, followed by a staining with CD3 

and CD19 antibodies, which distinguish T cells from B cells (Figure 11, left panel). Figures 

11B and C clearly demonstrate the higher attachment of liposomes to the surface of CD19+ 

B cells compared to the T cell population. CD4+ and CD8+ T cells were distinguished by a 

CD3 and CD8 antibody stain (Figure 11, right panel). The attachment of PDP liposomes 

was not significantly different between both T cell subtypes, while the coupling was 

substantially higher for the CD3/CD8-negative population, likely representing B cells 

(Figures 11E-F). Confocal images revealed that CD8-negative cells have the capacity to 

internalize the PDP liposomes, likely explaining the large difference in liposomal loading 

between B and T lymphocytes (Figure 12). 
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Figure 11. Attachment of PDP-functionalized liposomes to splenocytes. Mouse splenocytes 
were incubated with DiD-labeled PDP-functionalized liposomes, followed by staining with CD3 either 

in combination with CD19 or CD8. (A) Splenocytes were stained with both CD3 and CD19 antibodies. 
(B) Histograms representing the coupling of DiD labeled liposomes to the surface of CD3+ versus 
CD19+ cells. (C) Graphs showing the DiD mean fluorescence intensity (MFI) per cell ± SD (n = 2). 
(D) Splenocytes were stained with CD3 and CD8 antibodies. (E) Histograms representing the coupling 
of DiD labeled liposomes to CD3+, CD8+ and CD3/CD8-negative splenocytes. (F) Graphs showing the 
DiD mean fluorescence intensity ± SD (n = 2). Statistical significance is indicated as: ns = not 
significant, *** p <0.001, **** p <0.0001. 
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Figure 12. Confocal images of CD8+ T cells contaminated with other types of splenocytes 
that were incubated with DiD-labeled PDP liposomes. (A) Confocal overlay images of T cells 

incubated with Hoechst cell nucleus stain (blue), (B) Alexa Fluor® 488-labeled anti-CD8 antibodies 

(green), and (C) DiD-labeled liposomes (red) (Scale bar = 5 µm and 10 µm). 
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4 DISCUSSION 

The primary goal of this study was to investigate whether liposomes can be reversibly 

attached to the surface of cytotoxic T lymphocytes (CTLs). To this end, we exploited the 

presence of thiol groups naturally present on the surface of cells (exofacial thiols) to 

covalently couple liposomes that are equipped with thiol-reactive pyridyldithiopropionate 

(PDP) groups through the formation of a disulfide bond. Our results clearly demonstrate 

that the surface of the T cells can be conjugated with high amounts of liposomes. Although 

the exofacial thiol groups appear to be uniformly distributed over the plasma membrane, 

as evaluated with Cy5-maleimide, confocal microscopy imaging revealed a more speckled 

distribution profile for the liposomes which is in agreement with previous observations by 

Irvine and colleagues [29]. It is conceivable that only a fraction of the exposed thiols at the 

cell surface is accessible for thiol-reactive nanoparticles (NPs) in contrast to small 

molecules, which are less prone to steric hindrance. Another important observation is the 

need to incorporate a substantial fraction (50 wt%) of thiol-reactive lipids in the liposomal 

formulation to achieve a significant and specific cell surface binding, both for activated and 

non-activated T cells. We hypothesize that the presence of high amounts of thiol-reactive 

lipids could anchor a single liposome to the T cell surface via multiple disulfide bonds, 

thereby rendering the coupled liposomes more resistant to the various washing steps and 

disulfide cleavage possibly occurring at the cell surface by thioredoxins and 

oxidoreductases, initiating thiol-disulfide exchanges [32, 33]. Our study also revealed the 

importance of the activation status of the T cells toward liposomal coupling. We could 

demonstrate a five-fold increase in the attachment of liposomes for T cells activated during 

10 days versus non-activated T cells. Further, it was also shown that the attachment of 

liposomes was strongly correlated with the CD25 receptor expression, as a marker of the T 

cell activation status. Likely, the enlargement of the cells upon activation is responsible for 

this higher coupling efficiency, given that the concomitant increase in accessible plasma 

membrane surface will expose more exofacial thiols per cell. Hence, dramatic differences in 

cell surface-conjugated liposomes could be observed at different activation time points. 

Besides the increase in size, also the upregulation of various surface proteins, bearing 

cysteine-rich extracellular domains, upon activation of the T cells could influence the 

liposome coupling efficiency. To attain a maximal drug load per T cell, it thus seems more 

appropriate to employ activated cells instead of naive T cells for the attachment of 

liposomes. Although it is recommended in adoptive T cell therapy (ACT) to use less-

differentiated T cells, naive T cells still require ex vivo activation prior to systemic 

administration to be able to migrate to the tumor site. However, T cell proliferation upon 

activation results in the rapid division of the surface-conjugated liposomes over the 

daughter cells as shown in the proliferation assay. Considering the proliferation during the 

time needed for T cells to migrate and accumulate in the tumor (~24-72h) together with 

the lower surface liposome-loading, cell-mediated liposome delivery using naive T cells will 
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likely result in a lower accumulation of drug-loaded liposomes at the tumor site [8, 34]. 

Importantly, the T cells loaded with the maximum amount of liposomes retain their capacity 

to proliferate in vitro while dividing their liposome cargo over the daughter cells. 

Furthermore, even when a suboptimal effector-to-target ratio was tested, a similar cytotoxic 

effect against target tumor cells was observed between liposome-loaded and non-loaded T 

cells. As was observed by confocal imaging, the liposomes only occupy a limited amount of 

the cell membrane, likely not influencing the interaction with target cells.  

Within this study, the reducing agent glutathione was selected as a tumor-specific 

trigger for subsequent liposome detachment from the T cell surface. Indeed, glutathione 

levels are low in the circulation and extracellular fluids while elevated levels can be found 

inside cells, thus avoiding premature liposome release [35]. On the other hand, the tumor 

microenvironment typically shows increased thiolytic activity, originating from the release 

of glutathione by dead cells and the overexpression of thiolytic proteins such as thioredoxin, 

enabling the uncoupling of disulfide-linked NPs in the direct vicinity of tumor cells [36]. In 

the presence of glutathione, 50-60% detachment was achieved in both activated and non-

activated T cells. The inability to achieve complete release of the coupled liposomes is likely 

due to both nonspecific interactions and the requirement that multiple disulfide bonds need 

to be broken up simultaneously. As represented in Figure 6, the confocal images show that 

the partial detachment is not due to internalization of the particles, as it can be observed 

that the refractory particles are still located at the surface of the T cells. Also previous 

reports on the internalization of particles in T cells agree that the endocytic uptake of NPs 

in this cell type is rather exceptional. This observation is in contrast with B cells that tend 

to internalize nanoparticles and therefore are not suitable for the proposed reversible 

coupling strategy [37]. In addition, the exact role of B cells in the tumor microenvironment 

is still unclear, excluding their use in current cancer immunotherapy regimens. In contrast, 

both CD4+ and CD8+ T cells are of therapeutic interest. For the CD4+ population, it has been 

demonstrated that they augment proliferation, survival and efficacy of cytolytic CD8+ T cells 

and further also induce the CD8+ T cell memory functions [20, 38, 39]. Especially the CD4+ 

T helper type 1 (TH1) subpopulation has been shown to inhibit tumor growth [40]. CD4+ 

and CD8+ T cells showed no difference in liposome coupling, which makes the CD4+ T cells 

also suitable carriers for the reversible coupling of NPs. Similar to CD8+, activation of CD4+ 

T cells initiates their proliferation and differentiation into effector cells that are able to 

migrate to the tumor [19]. 

Importantly, we could show that the liposomes do not aggregate upon release from 

the cell surface as only a minor increase in the liposome diameter was observed compared 

to the original liposomes. The latter is of key importance for the envisioned subsequent 

internalization of the released particles in the target tumor cells.  
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In general, the use of cells as carriers was inspired by the observation that certain 

pathogens can evade the immune system by attaching themselves to the surface of red 

blood cells [41-43]. These observations paved the way for NP cell-mediated delivery, in 

which the carriers might prevent the clearance of the particles upon intravenous injection 

and enhance the accumulation of NPs in inaccessible regions [44-46]. Different coupling 

strategies have been assessed such as passive adsorption and ligand-receptor interactions, 

however, the covalent linkage of particles to reactive groups that are present at the cellular 

surface has proven most promising in terms of coupling stability [6, 47]. 

To our knowledge, this is the first study that demonstrates the reversible coupling of 

NPs to CTLs. This reversible strategy is of interest to improve the intratumoral delivery of 

both low molecular weight chemotherapeutic drugs but is of particular interest for 

membrane-impermeable macromolecular therapeutics, like small interfering RNA (siRNA). 

While the nanocarriers should prevent siRNA degradation in the systemic circulation and 

fast renal clearance, the T cell-mediated delivery might actively enhance its accumulation 

in the tumor site. Triggered detachment of the nanomedicines from the carrier cell surface 

should enable their subsequent internalization by target cells in the tumor and intracellular 

delivery of the therapeutic payload. In light of this concept, we developed a lipid-polymer 

nanocomposite that allows high siRNA loading in the polymer core and is coated with a PDP-

modified lipid shell. The latter improves both NP stability and at the same time enables the 

functionalization of the NP surface with a PDP linker lipid to allow reducible binding to CD8+ 

T cells. Genetic interference using siRNAs to target genes involved in cancer cell 

proliferation, survival, angiogenesis, and metastasis has been widely investigated [48, 49]. 

In the context of cancer immunotherapy, key regulators of the immunosuppressive 

pathways in immune cells of the tumor microenvironment can also be envisioned. Moreover, 

applying siRNA as a therapeutic agent to induce sequence-specific silencing of disease-

related target genes can avoid off-target toxicity to healthy cells. The latter is also of 

particular importance to avoid side effects of the released drug onto the CTL carrier. 

Although the T-cell mediated NP delivery concept can be expanded to lipid-based NPs loaded 

with chemotherapeutics, within the latter approach it is imperative to also consider the 

possible toxic effects of the chemotherapeutic agent onto the carrier cells itself.  

Although the injection of tumor-specific T cells as a therapy already showed 

impressive clinical outcomes, the limited number of patients that can be cured with this 

therapy is often related to the immunosuppressive role of the tumor microenvironment, the 

intra-tumor heterogeneity and loss of antigens to which the ACT was engineered [50, 51]. 

These factors jointly underscore the need to investigate combinatorial anti-cancer strategies 

leading to synergistic effects as was suggested here via the enhancement of the efficacy of 

the T cell therapy by the concurrent delivery of siRNA-loaded NPs, acting against ACT-

refractory tumor cells and/or immunosuppressive cells. Future research will be focused on 

the in vivo evaluation of this novel concept in validated models of ACT.  
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5 CONCLUSION 

A novel technique was developed to reversibly attach lipid-based NPs to the surface 

of CTLs. This study revealed the importance of both the lipid composition and the cell 

activation status on the loading efficiency of the CD8+ T cells. Furthermore, it was shown 

that the presence of NPs on the cell surface does not affect the in vitro evaluated cellular 

functions such as proliferation and cytolytic activity. Cell-mediated delivery of NPs to tumor 

tissues is promising in terms of overcoming barriers that intravenously injected free NPs 

encounter on their way to the tumor tissue. Additionally, a reversible coupling strategy is 

of importance to allow subsequent internalization of the released NPs by tumor target cells, 

especially for the delivery of membrane-impermeable macromolecular therapeutics that 

require cytosolic delivery into tumor cells to be functional. To that end, we demonstrated 

the triggered release of disulfide-coupled liposomes from the T cell surface via glutathione, 

mimicking the thiolytic tumor microenvironment. Exploiting this optimized coupling 

strategy, we demonstrated the anchoring of siRNA-loaded lipid-coated nanogels to the 

surface of activated CD8+ T cells, which can also be expanded to anti-tumor CD4+ T cells. 
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ABSTRACT 

In Chapter 2, we have developed a novel technique to reversibly attach liposomes to 

the surface of cytotoxic T lymphocytes (CTLs) without interfering with their proliferation or 

cytolytic function, as evaluated by in vitro assays. However, the final aim is to exploit the 

CTL’s capacity to migrate to and deliver their nanoparticle-load in the tumor tissue. 

Therefore, we investigated the influence of the liposome-load onto the tumor infiltration of 

CTLs in a melanoma mouse model. We extended the reversible coupling strategy with a 

stably attached liposomal formulation and compared both approaches in vitro and in vivo. 

Although CTLs loaded with liposomes showed a lower infiltration in the tumor 48h after 

transfer, this did not result in a negative impact on the tumor growth. On the contrary, a 

higher control over the tumor growth was observed for the liposome-loaded T cells. 

Subsequently, in vitro data revealed a substantially higher secretion of immunostimulatory 

cytokines when CTLs were loaded with liposomes, which might explain the enhanced anti-

tumor effect. Because the success of adoptive T cell therapy is highly affected by the 

immunosuppressive tumor microenvironment, we aimed to additionally boost the immune 

system by concomitant delivery of immune adjuvants. Therefore, the immune adjuvant 

monophosphoryl lipid A (MPLA) was selected and incorporated into the T cell-anchored 

liposomes. In vitro co-culturing of dendritic cells (DCs) and CTLs loaded with MPLA 

liposomes demonstrated upregulation of CD40 and CD80 co-stimulatory molecules and 

higher secretion of the pro-inflammatory cytokine IL-12 by DCs, indicating successful 

maturation of DCs. Further in vivo evaluation by intratumoral injection of CTLs reversibly 

coupled with MPLA liposomes showed improved survival in the melanoma model. 
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1 INTRODUCTION 

As introduced in Chapter 1, cancer therapy struggles with finding an acceptable 

balance between potential therapeutic benefit and toxicity of the treatment. Formulating 

anti-cancer drugs into nanoparticles (nanomedicines) can improve their therapeutic index, 

enables a tunable drug release, and improves their biodistribution [1]. However, to take full 

advantage of these benefits, one of the most prominent hurdles remains in vivo targeting 

of the nanoparticles (NPs) to the site of action. Both passive tumor targeting based on the 

enhanced permeation and retention (EPR) phenomenon and active targeting by 

functionalizing the NPs with targeting ligands have been clinically investigated. However, 

the widespread use of these strategies is hampered by several factors such as heterogeneity 

in tumor vasculature between patients and tumor types [2].  

In Chapter 2, we described cytotoxic T cell (CTL)-mediated delivery of NPs as an 

interesting alternative that might overcome these targeting limitations, by making use of 

the chemotaxis-driven tumor infiltration of T lymphocytes. We already demonstrated that 

the reversible coupling of NPs on the CTL surface did not affect the proliferation and cytolytic 

function of the activated CD8+ T cells. In a next step, we sought to further investigate 

whether the decoration with NPs would affect the CTL’s ability to migrate to the tumor. 

Migration of activated T cells, as introduced in Chapter 1, is a highly dynamic process that 

involves many consecutive steps, including tethering to the endothelium, rolling, firm 

adhesion, and finally extravasation into the tumor tissue [3, 4]. Within this chapter, we 

investigated the in vivo tumor migration of CTLs carrying both pyridyldithiopropionate 

(PDP)-functionalized liposomes (Chapter 2) as well as maleimide (MAL)-functionalized 

liposomes on their plasma membrane. Both liposomes interact with free thiol groups on the 

cell surface, forming a reducible disulfide-bond or a more stable thioether bond, 

respectively. Although reversible coupling is beneficial for triggered liposome release (e.g. 

for intratumoral delivery of siRNA), it is important to consider that premature release may 

occur due to reduction reactions in biological fluids, e.g. blood [5]. To account for this, a 

comparison was made in vivo between both coupling strategies.  

Next to investigating the impact of liposome coupling on in vivo CTL migration, we 

also aimed to assess the therapeutic value of our approach. As introduced in Chapter 1, 

besides tumor cells also several types of immune cells have an immunosuppressive role in 

the tumor microenvironment [6]. To this end, liposomes can be loaded with siRNA designed 

to downregulate such immunosuppressive pathways or chemotherapeutics that specifically 

trigger immunogenic cell death (ICD), like the anthracycline doxorubicin [7, 8]. In contrast, 

in this chapter we focused on a different therapeutic approach based on the delivery of 

immunostimulatory compounds that further potentiate the immune system to eradicate the 

tumor. For example tumor-infiltrated dendritic cells (DCs) can be altered by the tumor 

microenvironment to induce T cell anergy and apoptosis, referred to as regulatory DCs [9]. 
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Shifting the phenotypes of these cells from immunosuppressive towards immune-activating 

by Toll-like receptor (TLR) triggering via TLR-agonists, such as CpG and monophosphoryl 

lipid A (MPLA), has been shown to improve the therapeutic efficacy [10, 11]. A recent study 

by Van Lint et al. showed that upon intratumoral (IT) delivery of mRNA encoding a 

constitutively activated TLR4 together with the co-stimulatory molecule CD70 and CD40 

ligand, tumor-infiltrated DCs can be reactivated to migrate to the tumor draining lymph 

nodes and stimulate CTLs [12]. Moreover, it has been shown that also T cells in the tumor 

microenvironment itself can be reactivated and that this approach also induced CTL 

responses against neo-epitopes, which shows the potential of the reactivated DCs to present 

a variety of antigens engulfed in the tumor tissue.  

Considering that IT delivery is not suitable for all cancer types and that systemic 

delivery of adjuvants has been shown to induce severe side effects, we proposed here the 

targeted tumor delivery of the potent TLR4-agonist MPLA via T-cell mediated transport [11]. 

TLR4 is predominantly expressed on the surface of monocytes, mature macrophages and 

DCs [13]. Although other TLRs such as TLR9 (stimulated by CpGs) have been demonstrated 

to be very potent targets, we preferred to interact with TLR4 as this receptor is accessible 

at the cell surface, hence bypasses the need for adjuvant internalization, and enables us to 

compare the therapeutic effect of both stable and reversible coupling strategies. Recently, 

our group showed the encapsulation of MPLA in liposomes for the maturation of DCs 

(Verbeke et al., manuscript submitted). Based on this knowledge, we encapsulated the 

MPLA molecules into our previously optimized liposome composition for coupling to CTLs.  

By combining the adoptive T cell therapy with the tumor-targeted delivery of an 

immune-stimulating adjuvant, we envision a chain of events leading to a more potent anti-

cancer immune response. First, we anticipate that adoptively transferred T cells migrate to 

the tumor and kill cancer cells expressing the antigens to which the therapy was targeted. 

Simultaneously, the CTLs deliver MPLA-loaded liposomes to the tumor. The interaction of 

MPLA with tumor-infiltrated DCs can convert these cells into immune-activators, through 

which also CTLs can be reactivated to induce potent immune responses. Subsequently, as 

killed tumor cells and their associated antigens can be internalized and cross-presented by 

tumor-infiltrated DCs, new specific tumor antigens can be presented to CTLs.  

In this chapter, we first investigated the infiltration of liposome-loaded tumor-specific 

CTLs into MO4 tumors in mice and additionally evaluated the impact of liposome coupling 

on T cell activation in more detail. As the final aim is to achieve a synergistic effect of 

adoptive T cell therapy with drug-loaded nanoparticle delivery, we further investigated the 

incorporation of MPLA into our liposome formulation. A co-culture of DCs and CTLs was 

initiated to assess whether MPLA incorporated in liposomes and anchored to CTLs is still 

able to interact with the TLR4 of DCs. Finally, we investigated the in vivo therapeutic effect 

of this T cell-mediated delivery of MPLA-loaded liposomes in a MO4 tumor mouse model. 
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Upon IT delivery of liposome-loaded CTLs, preliminary data showed an improved survival 

for mice injected with MPLA-loaded liposomes anchored via a reducible bond to CTLs. 
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2 MATERIALS AND METHODS 

2.1 CD8+ and OT-I T cell culture 

CD8+ T cells were isolated from the spleen of C57BL/6 or OT-I mice using a negative 

isolation CD8+ kit (stem cell technologies, Grenoble, France). Cells were activated with anti-

CD3/CD28 Dynabeads® (Gibco-Invitrogen, Merelbeke, Belgium) at a density of 2 x 106 

cells/well and a bead-to-cell ratio of 1:1 in a 24-well plate. The cells were cultured in 

complete T cell culture medium containing advanced RPMI medium (Gibco-Invitrogen, 

Merelbeke, Belgium) supplemented with 10% fetal bovine serum (FBS; Hyclone, Thermo 

Scientific, MA, USA), 2 mM L-glutamine (Gibco-Invitrogen), 1% penicillin/streptomycin 

(Gibco-Invitrogen). According to the manufacturer’s protocol 30 U ml-1 rIL-2 (Miltenyi 

Biotec, Leiden, The Netherlands) was added to the culture medium and restimulation was 

performed by adding new beads every 7 days.  

2.2 MO4 cell culture 

The mouse melanoma cell line MO4 was kindly provided by K. Rock, University of 

Massachusetts Medical Center. The cells were cultured in RPMI 1640 medium (Sigma-

Aldrich, Diegem, Belgium) supplemented with 5% FetalClone™ I (FCI; Hyclone™), 

100 U ml-1 penicillin, 100 µg ml-1 streptomycin, 2 mM L-glutamine, 1 mM sodium pyruvate 

and non-essential amino acids (Sigma-Aldrich).  

2.3 Dendritic cell culture 

Primary murine bone marrow-derived DC (BM-DC) cultures were generated from 

C57BL/6 mice. To this end, mice were euthanized and bone marrow was flushed from the 

hind limbs. The collected bone marrow was cryopreserved in FetalClone™ I serum (FCI, 

Batch n°AXD36551) with 2% glucose (Sigma-Aldrich, Bornem, Belgium) and 10% DMSO 

(Sigma-Aldrich). To start a culture of BM-DCs, bone marrow of one mice leg was thawed 

and collected cells were seeded in a 100 mm Not TC-Treated polystyrene Culture Dish 

(Corning®, Amsterdam, The Netherlands). Cells were cultured in RPMI 1640 medium 

(Gibco-Invitrogen, Merelbeke, Belgium) supplemented with penicillin/streptomycin/L-

glutamine (1%, Gibco-Invitrogen), β-mercaptoethanol (50 µM, Gibco-Invitrogen) and 5% 

FCI serum. Granulocyte-macrophage colony-stimulating factor (GM-CSF; 20 ng ml-1, 

Peprotech, Rock Hill, NJ, USA) was used to promote differentiation of the monocytes into 

BM-DCs. On day 3 of the culture, an additional 15 ml culture medium containing GM-CSF 

(40 ng ml-1) was added. After two more days, cells were collected by centrifugation (5 min 

at 300 g), resuspended in culture medium at 106 cells ml-1 and seeded in 24 well plates for 

experiments (5x105 cells per well). 
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2.4 Mice culture 

CD45.2+ C57BL/6 and OT-I mice for in vivo experiments were ordered from Charles 

River (L’arbresle, France) and CD45.1+ C57BL/6 mice were obtained from Prof. J. Van 

Ginderachter (Vrije Universiteit Brussel, Belgium). C57BL/6 mice for in vitro experiments 

were purchased from Harlan (Gannat, France). All mice were housed in specific pathogen 

free (SPF) facilities according to the regulations of the Belgian law and the local Ethical 

Committee.  

2.5 Liposome formulation and characterization 

The liposomes were composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

18:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate] 

(PE-PDP) or 18:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-

maleimidophenyl)butyramide] (PE-MAL), and the fluorescent dyes 1,1'-dioctadecyl-

3,3,3',3'-tetramethylindodicarbocyanine (DiD) or CholEsteryl 4,4-Difluoro-5,7-Dimethyl-4-

Bora-3a,4a-Diaza-s-Indacene-3-Dodecanoate (cholesteryl BODIPY® FL C12). DOPC, PE-PDP 

and PE-MAL lipids were purchased from Avanti Polar Lipids (Alabaster, USA). DiD and 

cholesteryl BODIPY® FL C12 were purchased from Molecular probes (Invitrogen™, 

Merelbeke, Belgium). The liposome composition comprised 50 wt% PE-PDP or PE-MAL, 

3 wt% DiD or 1 wt% cholesteryl BODIPY® FL C12, and 47 or 49 wt% DOPC, respectively. 

For liposome compositions containing the Toll-like receptor 4 (TLR4) agonist 

monophosphoryl lipid A (MPLA, Sigma-Aldrich), 0.6 or 3 wt% of the DOPC fraction was 

replaced by MPLA. To form all the liposomes, a lipid mixture in chloroform was prepared 

and pipetted in a round-bottom glass flask, followed by evaporation of the chloroform 

solvent to form a thin lipid film. The dried lipids were rehydrated in phosphate buffered 

saline (PBS; Gibco-Invitrogen) at ambient temperature followed by an extrusion of the 

resultant multilamellar liposomes through a 200 nm polycarbonate filter (Whatman, 

Diegem, Belgium) or the liposomes were sonicated for 2 times 25 s in a bath sonicator 

(Branson Ultrasonics, Dansbury, USA).  

2.6 Coupling of liposomes to the T cell surface 

CD8+ T cells that were activated during 9-11 days, were separated from the activation 

beads and incubated in serum-free advanced RPMI with 5 mg ml-1 maleimide or PDP-

functionalized liposomes during 45 min at 37°C. Subsequently, the cells were washed with 

T cell culture medium to remove the unbound liposomes. The amount of liposomes attached 

to the CD8+ T cells was quantified via flow cytometry by measuring the DiD (red) or 

cholesteryl BODIPY® FL C12 (green) fluorescence intensity per cell using a FACSCalibur™ 

(BD Pharmingen, Erembodegem, Belgium) or a CytoFLEX (Beckman Coulter, Suarlée 

Belgium) and analyzed by FlowJo (Treestar Inc, Ashland, USA) software. 
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2.7 In vitro evaluation of proliferation and T cell viability after coupling of 

liposomes 

CD8+ T cells activated during 9 days, were first stained with 5 µM CFSE (Life 

Technologies, Merelbeke, Belgium) and subsequently conjugated with DiD-labeled 

liposomes as previously described. The proliferation of the T cells was then measured by 

the dilution of the CFSE stain over the daughter cells with flow cytometry 24h after loading. 

The distribution of the liposomes over the daughter cells was determined by measuring the 

DiD fluorescence intensity per cell. During the experiment, the activated cells (3 x 105/well) 

were incubated in cell culture medium supplemented with 30 U ml-1 rIL-2 in a U-bottom 

96-well plate (Falcon, BD Biosciences, Erembodegem, Belgium). The viability of the cells 

was determined via either a WST-1 Cell Proliferation Assay (Cayman Chemical, MI, USA) or 

a CellTiter-Glo® luminescent Cell Viability Assay (Promega, Leiden, The Netherlands). For 

the WST-1 assay, the cells were resuspended in T cell culture medium supplemented with 

30 U ml-1 rIL-2 and 25 x 104 cells/100 µl/well were transferred to a 96-well plate. After 24h 

of incubation, the cells were treated with 10 µl of the WST-1 mixture, according to the 

manufacturer’s instructions. The cells were shaken for 1 min and incubated for 4h at 37°C. 

The absorbance for each sample was measured at 450 nm and 690 nm background via an 

EnVision® Multilabel plate reader (Perkin Elmer, Zaventem, Belgium). For the CellTiter-Glo® 

assay, T cells were resuspended in T cell culture medium supplemented with 30 U ml-1 rIL-

2 and 5 x 104 cells/100 µl/well were transferred to an opaque 96-well plate. After 24h of 

incubation, the cells were treated with a CellTiter-Glo® reagent, according to the 

manufacturer’s instructions. In brief, the cells were first incubated for 30 min at room 

temperature, followed by the addition of 100 µl of the CellTiter-Glo® reagent. After 10 min 

incubation, the luminescence signal was recorded by a GloMax™ 96 Luminometer 

(Promega). 

2.8 Migration of OT-I T cells to the MO4 tumors 

For the induction of subcutaneous tumors, CD45.1 mice were anesthetized by 

inhalation of isoflurane (Abbvie) and inoculated with 3 x 105 MO4 tumor cells, suspended 

in PBS, by subcutaneous injection in the lower back. 14 to 17 days after tumor inoculation, 

when tumors were present, the mice were randomly divided in different treatment groups. 

The mice were injected with 1 to 5 x 106 OT-I T cells via different delivery routes 

(intraperitoneally, intravenously, intratumorally), as indicated in the results section. OT-I T 

cells were activated during 9 to 11 days as described previously. Depending on the 

performed experiment, mice were intraperitoneally (IP) injected with cyclophosphamide 

(2 mg in 100 µl PBS, Endoxan, Baxter S.A., Lessines, Belgium), 1 or 2 days prior to OT-I T 

cell transfer.  
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24 to 72h after OT-I transfer, mice were euthanized and the tumors were harvested 

and collected in gentleMACS™ C tubes (Miltenyi Biotec) in RPMI 1640 medium (Sigma-

Aldrich). Single-cell suspensions of the tumor tissue were prepared using the GentleMACS 

Dissociater (Miltenyi Biotec), followed by incubating the tumor tissue with collagenase I 

(10 000 U ml-1, Sigma-Aldrich, cat.no. C0130) and dispase II (32 mg ml-1, Roche, 

Vilvoorde, Belgium) for 40 min at 37 °C while rotating on a MACSmix™ Tube Rotator 

(Miltenyi Biotec). Next, DNase I (5 mU ml-1, Sigma-Aldrich) was added and an additional 

mechanical dissociation step was performed on the GentleMACS Dissociater. The digested 

tumor was filtered over a 70 µm nylon filter (Falcon, BD Biosciences, Erembodegem, 

Belgium) and a red blood cell lysis buffer was added. Spleens were also harvested, crushed 

through a 70 µm nylon filter, and treated with red blood cell lysis buffer. The tumor cell 

suspension and splenocytes were finally stained with CD3-PE-Cy7 (Biolegend, Antwerp, 

Belgium), CD8-PerCP-Cy5.5 (eBioscience, Vienna, Austria), and CD45.2-biotin (BD 

Biosciences) in combination with FITC-avidin (BD Biosciences). The amount of infiltrated 

OT-I T cells in the tumor was determined by flow cytometry using a LSR Fortessa flow 

cytometer (BD Biosciences) and analyzed by FACSDiva software (BD Biosciences) in 

combination with FlowJo software (Treestar Inc, Ashland, USA).  

2.9 Migration of liposome-loaded OT-I cells to the MO4 tumor and spleen 

C57BL/6 mice were inoculated with MO4 tumor cells as previously described. Two 

days before OT-I transfer, the mice were IP injected with cyclophosphamide. Prior to T cell 

transfer, the OT-I CD8+ T cells were activated during 9 days and stained with 5 µM CFSE in 

PBS supplemented with 0.1% bovine serum albumin (BSA, Sigma-Aldrich) for 20 min at 

37°C. Subsequently, liposomes were coupled to T cells as previously described and 

resuspended in PBS for IP injection. For these experiments, the mice received 1.5 x 106 OT-

I T cells. Two days after OT-I transfer, the tumors were isolated and investigated for OT-I 

T cell infiltration as previously described. Additionally, tumor growth was measured before 

and after OT-I injection using a caliper. The tumor volume was determined by measuring 

the greatest longitudinal diameter (length) and the greatest transverse diameter (width), 

followed by the calculation of the tumor volume via the next formula: tumor volume = ½ 

(length x width²). 

2.10 Dendritic cell co-culture  

75 x 103 BM-DCs in 100 µl DC cell culture medium were transferred to a U-bottom 

96-well plate (Falcon). Activated CD8+ T cells that were loaded with BODIPY® FL-labeled 

PDP- and MAL-functionalized liposomes (with or without MPLA) as previously described were 

mixed at a T cell:DC ratio of 1:1 or 1:5 during 24 h at 37°C. As a positive control for 

maturation, the DCs were incubated with 1 µg ml-1 of E. Coli-derived lipopolysaccharide 

(LPS, Sigma-Aldrich) or MPLA in soluble form. After incubation, the cells were stained with 
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CD11c-APC, CD40-PE, and CD80-PE-Cy7 antibodies (all eBioscience) during 30 min at 4°C 

in FACS buffer (PBS supplemented with 5% BSA) for evaluation via flow cytometry using a 

CytoFLEX (Beckman Coulter, Suarlée Belgium) and FlowJo software.  

For confocal imaging, BODIPY® FL-labeled liposomes were conjugated to the cell 

surface of CD8+ T cells as previously described and co-cultured with DCs. The nucleus of 

the cells was stained with 10 µg ml-1 Hoechst 33342 (Molecular Probes). The dyes were 

respectively excited by a 488 nm argon-ion laser and a 408 nm diode laser (both purchased 

from CVI Melles Griot). Images were recorded with a Plan Apo VC 60x 1.4 NA oil immersion 

objective lens (Nikon).  

2.11 In vivo therapeutic adoptive T cell transfer with MPLA-loaded liposomes 

C57BL/6 female mice were inoculated with MO4 tumor cells as previously described. 

In a first experiment, 14 days after tumor inoculation, the mice were randomly divided in 

different treatment groups based on tumor volume and housed per condition in the same 

cage. The mice were intratumorally injected with 1.5 x 106 OT-I T cells (activated during 

10 days) that were loaded with PDP- or MAL-functionalized liposomes with or without 

0.6 wt% MPLA. Every two days, the tumor size was measured using a caliper (non-blinded). 

When the tumor volume exceeded 1500 mm3, the mice were euthanized via cervical 

dislocation. 

2.12 ELISA 

Supernatants of CD8+ T cells that were loaded with PDP and MAL liposomes and 

cultured in vitro were screened for the presence of IFNγ and TNFα. Supernatants of DCs 

that were co-cultured with T cells were screened for IL-12p70. Cytokine measurements 

were all performed via Ready-SET-Go!® ELISA assays (Affymetrix, eBioscience), according 

to the manufacturer’s instructions.  

2.13 Statistical analysis 

A two-tailed Student's t-test was performed to determine statistical differences 

between datasets. All statistical analyses were performed using GraphPad Prism 6 software 

(La Jolla, CA, USA). p-values <0.05 were regarded significant. Statistical significance is 

indicated as follows: * p <0.05; ** p <0.01; *** p < 0.001; **** p < 0.0001. Survival 

was visualized in Kaplan-Meier plots. 
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3 RESULTS 

3.1 In vivo migration of OT-I T cells to MO4 tumors 

In Chapter 2, we showed the loading of CD8+ T cells with liposomes without 

compromising their in vitro proliferation and cytolytic functions. Because the final aim is to 

use T cells as vehicles to deliver nanomedicines to the tumor, we next investigated whether 

liposome-loaded T cells are able to migrate to the tumor by using a mouse MO4 tumor 

model. MO4 melanoma cells, expressing ovalbumin, were injected subcutaneously in the 

lower back of the mice. Subsequently, they were injected intraperitoneally (IP) with CD8+ 

T cells derived from the spleen of OT-I mice, which express a T cell receptor that specifically 

recognizes the ovalbumin-derived epitope SIINFEKL in the context of MHC class I. In a first 

set of experiments, we sought to optimize the protocol to test the tumor-infiltration of 

liposome-loaded T cells by flow cytometry analysis of the isolated tumor. This stepwise 

optimization process consists of evaluating (1) the time point of tumor isolation, (2) the 

number of injected OT-I T cells, and (3) the use of cyclophosphamide as a pretreatment for 

adoptive T cell transfer. Figure 1A represents a schematic overview of the generally used 

protocol.  

Within this set of experiments, CD45.1 congenic C57BL/6 mice were used for tumor 

inoculation. These mice only express the CD45.1 receptor on their hematopoietic cells. After 

reaching visible tumors, the CD45.1 mice were IP injected with CD45.2+CD8+ OT-I T cells 

that were activated during 9-11 days in vitro with CD3/CD28 Dynabeads®. As the injected 

OT-I cells only express CD45.2, the tumor-infiltrated OT-I cells can be distinguished from 

the endogenous immune cells by a CD45.2 antibody staining. As shown in Figure 1B, the 

percentage of CD3+CD8+CD45.2+ cells in the tumor population is the highest 48h after OT-

I transfer, which was consequently selected as the time point for further evaluation. 

Moreover, also the infiltration into the spleen was assessed, which demonstrated virtually 

no infiltration (Figure 1C). 

As in different studies mice were injected with varying amounts of tumor-specific T 

cells, ranging from ~106 to 108 cells, we verified whether the number of injected T cells has 

an impact on the amount of T cells that are able to infiltrate the tumor and on the tumor 

growth. For this purpose, we compared the injection of 1x106 versus 5x106 OT-I CD8+ T 

cells, which resulted in no significant differences, neither in the percentage of infiltrated OT-

I T cells (Figure 1D) nor in the relative tumor growth assessed 48h after transfer 

(Figure 1E). The benefits of a lymphodepleting strategy before adoptive transfer were 

already discussed in Chapter 1. Both total body irradiation and lymphoablative 

chemotherapy are used in the clinic [14]. We selected the lymphodepleting 

chemotherapeutic agent cyclophosphamide to IP inject in mice one day prior to OT-I 

transfer. 



96 | C h a p t e r  3  

 

Figure 1. Migration of injected OT-I CD8+ T cells to MO4 tumors. (A) Schematic overview of 

the procedure to evaluate the migration of OT-I CD8+ transferred T cells to MO4 tumors. First, 

CD45.1+ C57BL/6 mice were subcutaneously injected with MO4 tumors in the lower back. During the 
growth of the tumor, OT-I CD8+ T cells were isolated from the spleen of OT-I CD45.2+ mice, followed 
by their activation and expansion ex vivo. On day 16, the mice were intraperitoneally injected with 
1 or 5 x 106 CD45.2+ OT-I CD8+ T cells, followed by isolation of the tumor and spleen after 24, 48, 
and 72h. (B) Graph representing the percentage of CD45.2+ cells in the CD3+CD8+ population at 
different type points after OT-I transfer in the isolated tumor or (C) spleen (Control: n = 1, 24-48h: 
n = 3, 72h: n = 2). (D) The percentage of CD3+CD8+CD45.2+ cells in the total isolated tumor 

population ± SD for mice injected with 1 versus 5 x 106 CD45.2+CD8+OT-I T cells (n = 3). (E) Tumor 
growth 48h after transfer of 1 x 106 compared to 5 x 106 CD45.2+CD8+ OT-I T cells versus mice not 
treated with OT-I cells. (F) Mice were treated with 2 mg/mouse of cyclophosphamide (abbreviated 
as cyclophos) 24h prior to CD45.2+CD8+ OT-I transfer. The relative tumor growth was determined 
24h after OT-I transfer. (G) The percentage of CD3+CD8+CD45.2+ cells in the tumor was determined 
24h after OT-I transfer (-cyclophos: n = 4, +cyclophos: n = 3). Statistics are indicated as ns = not 
significant. 
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In agreement with earlier studies, the mice were treated with a dose of 2 mg/mouse 

of cyclophosphamide [15-17]. Remarkably, already 24h after OT-I transfer two mice with 

an initial tumor size of 40 and 80 mm3 showed a complete regression of their tumor. 

However, the average relative tumor growth determined 24h after OT-I transfer showed no 

significant differences for cyclophosphamide treated and untreated mice (Figure 1F). 

Although at this early time point the percentage of CD3+CD8+CD45.2+ cells in the tumor 

was very low, a trend to a higher amount of OT-I T cells that infiltrated the tumor after 

cyclophosphamide treatment was observed (Figure 1G). In summary, the optimized 

protocol was decided to include the IP injection of 2 mg of cyclophosphamide two days prior 

to IP transfer of 1 x 106 OT-I cells and followed by tumor isolation 48h after transfer. 

3.2 In vivo migration of liposome-loaded OT-I CD8+ T cells to MO4 tumors 

Having optimized the protocol to evaluate the migration of OT-I T cells to MO4 tumors, 

we next sought to investigate whether liposome-loaded T cells are still able to infiltrate the 

tumor and induce a tumor killing effect. To this end, the cells were first loaded with PDP- 

or MAL-functionalized liposomes followed by IP injection. Here, the CD8+ OT-I T cells were 

stained with CFSE prior to transfer to detect infiltrated cells. As depicted in Figure 2A, cells 

loaded with either PDP- or MAL-functionalized liposomes showed lower infiltration in the 

tumor when analyzed 48h after transfer. Surprisingly, compared to the unloaded T cells, 

the liposome loaded T cells showed an enhanced therapeutic effect with stabilization or 

even regression of the tumor, which was most pronounced for the MAL-loaded T cells 

(Figure 2B). In addition, although the liposomes were fluorescently labeled with DiD, no 

significant differences in DiD label between liposome-loaded cells and non-loaded cells could 

be observed 48 h after transfer (Figure 2C).  

Figure 2. Migration of PDP and MAL liposome-loaded OT-I T cells to MO4 tumors. Mice were 
subcutaneously inoculated with MO4 tumor cells in the lower back, followed by the intraperitoneal 
(IP) injection of 2 mg/mouse cyclophosphamide. Two days later the mice were IP injected with 
1.5 x 106 CFSE-stained CD8+ OT-I T cells. The infiltration of OT-I T cells was compared between cells 
without liposome-load (NO) and PDP/MAL liposome-loaded OT-I T cells. (A) Two days after OT-I 
transfer, the mice were sacrificed and their tumors were isolated. The percentage of CFSE-positive 

cells in the tumor tissue was quantified by flow cytometry. (B) The relative tumor growth 48h after 
OT-I transfer was compared between mice injected with OT-I T cells without liposome-load and 
PDP/MAL liposome-loaded OT-I T cells. (C) The mean fluorescence intensity per cell (MFI) ± SD of 
the DiD-labeled liposomes was quantified by flow cytometry (NO and MAL: n = 8, PDP: n = 6). 
Statistics are indicated as ns = not significant, * p <0.05. 
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3.3 Influence of liposome coupling on the in vitro T cell viability, proliferation 

and cytokine secretion 

In an attempt to elucidate the rather remarkable observation that liposome-loaded T 

cells elicited improved acute anti-tumor responses compared to non-loaded OT-I T cells, in 

vitro assays were initiated investigating the impact of the liposome-load on the T cells. First, 

we evaluated T cell viability as a function of liposome coupling (0.5 and 5 mg ml-1 of total 

lipids). The loading efficiency of the particles onto the cells is represented in Figure 3A. 

Increasing the lipid concentration ten-fold only slightly increased the attachment of the 

liposomes to the cells. Importantly, we could show that the viability of the cells, as 

quantified by a WST-1 assay, was not compromised by the loading with liposomes. In 

contrast, we could detect a significantly higher amount of cells after liposome loading 

(Figure 3B). Although we already showed in Chapter 2 that the coupling via a PDP linker 

did not influence T cell proliferation, we wanted to verify this for the MAL-functionalized 

liposomes as well. T cells were first incubated with different concentrations of both PDP and 

MAL liposomes, ranging from 0.1 to 5 mg ml-1 of total lipids, demonstrating the saturation 

of liposome coupling with increasing lipid concentrations (Figures 4A-B).  

 

Figure 3: Viability of CD8+ T cells as a function of the liposome-load. Activated CD8+ T cells 

were first coupled with PDP- and MAL-functionalized liposomes in 2 different concentrations (0.5 

versus 5 mg ml-1). (A) Histograms representing the liposome-load per T cell as was measured by 
flow cytometry. (B) 24h after incubation, the cell viability was quantified via a WST-1 assay. Data 
represent the percentage viability ± SD of 2 independent experiments with n = 3 (ns = not 
significant; * p <0.05; ** p <0.01; *** p <0.001; **** p <0.0001). 

T cell proliferation, as determined by the dilution of CFSE stain over the daughter 

cells, remained unaffected by both PDP and MAL liposomes over 24h of incubation 

(Figures 4C-D). Another important feature of activated T cells is the secretion of immune-

promoting cytokines, including interferon gamma (IFNγ), tumor necrosis factor alpha 

(TNFα), and IL-2, which are important mediators of cytotoxic T cell anti-tumor responses.  
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Figure 4. Proliferation and cytokine secretion after loading CD8+ T cells with PDP- and MAL-
functionalized liposomes. Activated CD8+ T cells were first coupled with (A) PDP- and (B) MAL-
functionalized DiD-labeled liposomes in 3 different concentrations (0.1 - 0.5 - 5 mg ml-1). (C) 
Histograms representing the CFSE fluorescence intensity per cell as was measured by flow cytometry 
at time point 0h and 24h, indicated in the graph. (D) Upon proliferation, the CFSE stain is diluted 
over the daughter cells which is indicated in the graph as the percentage of reduction in CFSE 
fluorescence intensity per T cell ± SD over 24h of incubation (n = 1 experiment with 3 independent 

samples; ns = not significant; * p <0.01). Supernatants of CD8+ T cells loaded with PDP and MAL 
liposomes were assessed for the presence of (E) IFNγ and (F) TNFα (experiment was performed 3 
times from which 1 experiment with n = 3 was selected for representation; ns = not significant; 
* p <0.05; ** p <0.01; *** p <0.001). 
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Of note, we observed a significant increase in both IFNγ and TNFα secretion by T cells 

carrying liposomes on their cell surface, independent from the coupling strategy or the 

amount of attached liposomes (Figures 4E-F). We were not able to determine the amount 

of IL-2 as this was supplemented to the growth medium to support the survival of the 

activated T cells. 

3.4 Intratumoral, intraperitoneal and intravenous injection of liposome-loaded 

CD8+ T cells 

Independent of the coupling chemistry, liposomes remained undetectable in the tumor 

48h after IP injection of liposome-loaded T cells (Figure 2C). To investigate this in more 

detail, we also aimed to determine the presence of DiD-labeled MAL liposomes after direct 

intratumoral (IT) injection of liposome-loaded and CFSE stained CD8+ OT-I T cells in the 

MO4 tumors. Prior to transfer, more than 99% of the transferred cells had both a CFSE and 

DiD label (Figures 5A-B). In contrast, already one day after IT injection, only a very low 

percentage of cells is still positive for both CFSE and DiD (Figures 5C-D). Interestingly, a 

high percentage of DiD-positive cells without CFSE label could be isolated from the tumor. 

Taken together, these data suggest both a fast proliferation rate of the IT injected T cells 

as well as the transfer of DiD particles to endogenous cells in the tumor microenvironment.  

Finally, the T cell-mediated delivery of liposomes via IP injections was compared with 

intravenous (IV) delivery. Judging from the low infiltration of transferred CFSE-labeled OT-

I T cells in MO4 tumors 48h after injection, IV administration has no advantage over the IP 

route (Figures 5E-G). In addition, it was verified whether fluorescently-labeled liposomes 

coupled to OT-I cells could be observed in the tumor after IV injection. Unfortunately, IV 

injection did not improve the presence of DiD-labeled liposomes in the tumor (Figure 5H). 

Moreover, the percentage of infiltrated cells is very low for all conditions and no significant 

differences were observed for both delivery routes (Figure 6A). As IP injection of OT-I cells 

compared to IV achieved better control over tumor growth, the IP delivery route was 

maintained for the next in vivo experiments (Figure 6B).  
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Figure 5. The T cell-mediated delivery of liposomes to MO4 tumors via distinct delivery 
routes. (A) Density plots representing CFSE-labeled CD8+ OT-I T cells without liposomes and (B) 

cells coupled with DiD-labeled MAL liposomes prior to injection. (C) Density plots representing tumor 
isolated cells of a control mouse and (D) a mouse intratumorally injected with MAL liposome-loaded 
CFSE-labeled OT-I T cells. (E) Density plots representing a comparison between mice with MO4 
tumors that were injected with PBS as a control, (F) intraperitoneally (IP) injected with CFSE-labeled 
OT-I T cells, (G) intravenously (IV) injected with CFSE-labeled OT-I T cells, and (H) IV injected with 

CFSE-labeled OT-I T cells that were loaded with DiD-labeled PDP liposomes.  

 

 

Figure 6. The impact of the delivery route on the tumor infiltration of CD8+ OT-I T cells and 
the relative tumor growth 48h after transfer. (A) The percentage of CFSE-positive T cells ± SD 

in the MO4 tumors of mice injected intraperitoneally (IP) versus intravenously (IV) with OT-I T cells, 
and the IV injection of PDP liposome-loaded OT-I T cells (IP OT-I and IV OT-I PDP: n = 4; IV OT-I: 
n = 5; ns = not significant). (B) Comparison in relative tumor growth 48h after transfer between 
mice IP injected with non-loaded OT-I T cells and mice injected IV with non-loaded, PDP liposome-
loaded, and MAL liposome-loaded OT-I T cells. 

 

3.5 Coupling of MPLA liposomes to T cells and in vitro evaluation of dendritic cell 

maturation 

Although very low percentages of transferred OT-I T cells infiltrated the tumor, an 

enhanced tumor killing effect was observed by tumor size measurements. However, an 

immunosuppressive tumor microenvironment may hinder the therapeutic effects obtained 

by adoptively transferred T cells. Therefore, we anticipated that by shifting the tumor 

microenvironment from immunosuppressive to immune-stimulatory, higher therapeutic 

effects could be obtained. To this end, we incorporated the immune adjuvant 

monophosphoryl lipid A (MPLA) in the lipid bilayer of the liposomes. First, we evaluated the 

effect of incorporating MPLA into liposomes on T cell coupling and T cell functionalities. 

Secondly, we assessed whether the MPLA can induce maturation of dendritic cells (DCs) 

upon in vitro co-culturing with liposome-loaded CD8+ T cells.  

3.5.1 Influence of MPLA liposomes on proliferation, viability and cytokine secretion of CD8+ 

T cells 

Figure 7 represents the preliminary effects of coupling MPLA-loaded MAL liposomes 

(0.6 wt% and 3 wt% MPLA) to CD8+ T cells. As depicted in Figures 7A-B, the T cell 
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proliferation and resulting distribution of DiD-labeled liposomes over the daughter cells, as 

measured 24h after liposome coupling, was not influenced by the presence of MPLA.  

 

Figure 7. In vitro evaluation of proliferation, viability, and IFNγ secretion of CD8+ T cells 
that were coupled with monophosphoryl lipid A (MPLA)-loaded liposomes. CD8+ T cells were 
first labeled with CFSE and incubated with DiD-labeled liposomes (5 mg ml-1 lipids), followed by the 

incubation over 24h in cell culture medium supplemented with 30 U ml-1 rIL-2. Cells without liposomes 
onto their surface and cells incubated with 0.15 mg ml-1 free MPLA were compared with cells anchored 

with MAL liposomes without MPLA or with 0.6 wt% and 3 wt% MPLA. (A) Histograms representing 
the dilution of CFSE and (B) the distribution of the DiD-labeled liposomes over the daughter cells 24h 
after coupling. (C) Percentage cell viability ± SD of the CD8+ T cells measured by a CellTiter-Glo® 
assay 24h after coupling of the liposomes (n = 1 experiment with 4 independent samples). (D) IFNγ 
concentration ± SD secreted by CD8+ T cells that were coupled with the liposomes during 24h, 

measured by an ELISA assay (n = 1 experiment with 4 independent samples). Statistics represent 
ns = not significant; * p <0.05; ** p <0.01. 
 

Likewise, T cell viability, as assessed by a CellTiter-Glo® assay, showed no significant 

differences upon incubation with MPLA or MPLA liposomes (Figure 7C). Interestingly, the 

INFγ cytokine secretion significantly increased upon MPLA-liposome coupling, which was 

shown to be independent of MPLA (Figure 7D). 
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3.5.2 Maturation of dendritic cells in co-culture with MPLA-containing liposomes loaded 

onto the surface of CD8+ T cells 

In analogy with the study by Van Lint et al. that showed the improved survival when 

tumor-infiltrated DCs were shifted towards a more immunostimulatory phenotype, we 

focused on determining the effects of MPLA on DCs upon co-culturing with T cells bearing 

MPLA liposomes on their surface [12]. As a positive control for maturation, the DCs were 

supplemented with 1 µg ml-1 of E. coli-derived lipopolysaccharide (LPS), which is a potent 

initiator of DC maturation. Additionally, DCs incubated with 1 µg ml-1 free MPLA were 

included as a control for maturation by MPLA.  

Our preliminary data, as represented in Figure 8, showed a marked upregulation of 

the co-stimulatory receptors CD40 and CD80 on the DC surface as a function of the 

presence of MPLA. Both free MPLA as MPLA incorporated in liposomes and loaded onto CD8+ 

T cells were able to induce this effect, with elevated levels when 3 wt% was incorporated 

versus 0.6 wt%. A distinct higher amount of cells showed augmented CD40/CD80 

expression for the 1:1 ratio (T cell:DC) compared with the 1:5 ratio. Further, the coupling 

via PDP-functionalized liposomes showed a lower percentage of CD40/CD80-positive cells, 

which cannot be attributed to differences in loading efficiency onto the T cells since for both 

a similar coupling efficiency was shown (Figure 9A).  

Next to the upregulation of co-stimulatory receptors when DCs become mature, they 

also secrete immunostimulatory cytokines such as IL-12. Hence, we measured via an ELISA 

assay the secretion of IL-12p70, which is the active form of IL-12. The differences in IL-

12p70 secretion as depicted in Figure 9B had a similar trend as for the maturation markers, 

which is a confirmation of the latter results. It has been demonstrated in the literature that 

T cell-anchored liposomes tend to accumulate in the immune synapse upon their interaction 

with antigen-presenting cells [18]. To verify if this close apposition could result in liposome 

transfer, we quantified the uptake of fluorescently labeled T cell-coupled liposomes by DCs. 

Remarkably, we could detect high fluorescent signals in the DC population for the various 

formulations tested, suggesting effective liposome internalization by DCs. The observed 

variations in DC fluorescence are indicative of differences in extent of liposome interaction 

with DCs and are likely correlated with DC maturation as well (Figure 9C). Moreover, 

confocal imaging of co-cultured T cells and DCs demonstrated the internalization of green 

labeled liposomes by DCs, containing bright fluorescent perinuclear spots (Figure 9D).  
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Figure 8. Evaluation of dendritic cell (DC) maturation markers after 24h of co-culturing 
with monophosphoryl lipid A (MPLA)-containing liposome-loaded CD8+ T cells. CD8+ T cells 

were loaded with PDP- and MAL-functionalized liposomes containing no MPLA, 0.6 wt% MPLA or 
3 wt% MPLA. The T cells were co-cultured with DCs during 24h in a 1:1 versus 1:5 ratio of T cells:DCs. 
Untreated DCs and DCs incubated with 1 µg ml-1 of lipopolysaccharide (LPS) or 1 µg ml-1 free MPLA 
were used as negative and positive controls, respectively. (A) Graph representing the percentage 

± SD of CD40-positive DCs and (B) the corresponding histograms. (C) Graph representing the 
percentage ± SD of CD80-positive DCs and (D) the corresponding histograms (n = 1 experiment with 
3 independent samples). 
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Figure 9. Interaction of monophosphoryl lipid A (MPLA)-loaded liposomes with dendritic 
cells (DCs) and the subsequent secretion of IL-12p70. (A) Prior to co-culturing with DCs, the 
CD8+ T cells were loaded with both PDP- and MAL-functionalized liposomes carrying 0.6 wt% or 3 wt% 
MPLA. The graph represents the mean fluorescence intensity (MFI) of BodipyFL-labeled liposomes per 
CD8+ T cell (n = 1). (B) IL-12p70 concentration ± SD measured by an ELISA assay for DCs that were 
co-cultured with (MPLA-containing) liposome-loaded T cells for 24h (n = 1 experiment with 3 

independent samples). (C) Graph representing the mean fluorescence intensity (MFI) per DC ± SD 
of the BodipyFL-labeled liposomes upon co-culturing with PDP and MAL liposome-loaded T cells (n = 1 
experiment with 3 independent samples). (D).Confocal image of a co-culture of DCs and T cells that 
were previously loaded with BodipyFL-labeled liposomes (green dots). The nuclei of the cells were 
stained with Hoechst (blue).  

 

3.6 In vivo therapeutic evaluation of T-cell mediated delivery of MPLA-loaded 

liposomes  

As was shown via in vitro co-culture experiments, the MPLA-loaded liposomes coupled 

onto T cells were still able to induce maturation in DCs. However, further in vivo evaluation 

is necessary to prove the therapeutic benefit of this concept in a more complex 

environment, containing tumor-associated cells as well as a multitude of different immune 

cells. As a final step in this chapter, we thus aimed to assess whether the incorporation of 
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MPLA into liposomes that are subsequently coupled to T cells could result in therapeutic 

benefit in the MO4 tumor model following IT injection. 

Mice were inoculated with MO4 tumors as described above for the migration 

experiments. When tumors reached an average size of 500 mm³, the mice were IT injected 

with 1.5 x 106 OT-I T cells loaded with PDP- and MAL-functionalized liposomes containing 

0.6 wt% MPLA. Mice that were injected with PBS as a control showed rapid tumor growth 

and had to be sacrificed within two days following treatment. Tumor injection with OT-I T 

cells with or without (PDP or MAL) liposomes showed little to no therapeutic benefit. Only 

when mice were treated with T cell-anchored liposomes carrying the MPLA adjuvant, a delay 

in tumor growth was noticeable, which was most pronounced for the PDP-coupled 

liposomes. Only for this formulation, a substantial improvement in median survival could 

be documented in this melanoma tumor model (Figure 10). 

 

Figure 10. Intratumoral injection of monophosphoryl lipid A (MPLA)-containing liposomes 
coupled to CD8+ OT-I T cells. 14 days after inoculation of C57BL/6 mice with MO4 tumor cells, the 
mice were randomized based on tumor volume in 6 treatment groups. The graphs show the tumor 
growth as a function of time for mice injected with (A) PBS as a control, CD8+ OT-I T cells (B) without 

liposomes, with (C) PDP-functionalized liposomes, (D) MPLA-containing PDP-functionalized 
liposomes, (E) MAL-functionalized liposomes, (F) MPLA-containing MAL-functionalized liposomes. 
(G) Representation of the Kaplan-Meier survival curve of the differently treated mice with the median 
survival data (n = 5 mice per treatment group).   
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4 DISCUSSION 

The aim of this study was to investigate whether cytotoxic T cells (CTLs), bearing 

liposomes on their surface, are able to migrate to the tumor and whether the concomitant 

delivery of liposome-encapsulated therapeutics improves the therapeutic outcome of 

adoptive T cell therapy (ACT). Two distinct coupling strategies were simultaneously 

screened, i.e. using pyridyldithiopropionate (PDP)- and maleimide (MAL)-functionalized 

lipids, initiating a reversible disulfide bond or a more stable thioether bond, respectively. In 

analogy with clinical protocols, a lymphodepletion step prior to OT-I transfer was included 

in the treatment regimen, as it removes suppressive regulatory T cells and cytokine sinks, 

thus resulting in enhanced anti-tumor responses for ACT [19]. In general, patients are 

treated with the lymphoablative chemotherapeutics cyclophosphamide and fludarabine or 

with total body irradiation [20]. Based on the literature, we injected the mice 1 or 2 days 

before adoptive transfer with a dose of 2 mg cyclophosphamide [17]. Although it was shown 

by a study of Gattinoni and colleagues that after lymphodepletion through total body 

irradiation no differences in the infiltration of adoptively transferred T cells could be 

observed, we clearly showed a substantial increase 24h after transfer in cyclophosphamide 

pre-treated mice [21]. 

In literature, both intravenous (IV) and intraperitoneal (IP) injection routes have 

demonstrated similar accumulation of T cells in the tumor with a comparable effect on tumor 

growth [22]. In contrast, our data showed a trend for improved control over tumor growth 

when OT-I T cells were injected IP compared to IV. Unfortunately, both delivery routes were 

not able to demonstrate concomitant delivery of liposomes in the tumor. Given that the 

fluorescence intensities of CFSE per cell rapidly decreased over time, it is also conceivable 

that the fast distribution of the liposome-load over the daughter cells upon proliferation also 

dilutes the liposome label to undetectable levels. Another hypothesis is the premature 

release of the liposomes from the T cells before reaching the tumor tissue. Although the 

PDP-coupled liposomes can possibly be detached in the systemic circulation through 

disulfide reduction, Irvine and colleagues clearly showed increased levels of MAL-

functionalized liposomes in the tumor due to T cell-mediated delivery [23]. In our hands, 

even 24h following direct intratumoral (IT) injection of MAL-liposome loaded T cells, few T 

cells with detectable liposome signal could be isolated from the tumor. These data indicate 

that fast proliferation of the activated T cells indeed limits detection of liposomes in the 

tumor mass. Interestingly, we could identify a substantial number of CFSE-negative cells in 

the tumor microenvironment with measurable liposome fluorescence. From these results, 

we speculate that intercellular liposome transfer can occur upon close contact between the 

transferred T cells and other cell types in the tumor tissue.  

It is key that the modification with liposomes does not negatively affect T cell 

functions. In agreement with Irvine and colleagues, we demonstrated that the coupling of 
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liposomes to the T cell surface had no influence on the T cell proliferation. Although these 

authors also did not observe alterations in cytokine expression levels upon T cell-anchoring 

of liposomes, our results showed that the secretion of the immunostimulating cytokines 

IFNγ and TNFα was clearly elevated. The latter observation may contribute to the improved 

therapeutic effect of liposome-loaded T cells. Indeed, although the presence of liposomes 

on the T cells surface slightly reduced T cell extravasation into the tumor, possibly through 

steric hindrance, a significant improvement in tumor growth control was observed, which 

was most prominent for the MAL-coupled liposomes.  

Currently, it has become clear that a single cancer immunotherapy approach in most 

patients is unlikely to completely eradicate the tumor due to a complex interplay of the 

tumor microenvironment [24]. For example, ACT can only be successful when T cell effector 

functions and persistence are not impeded by a tumor growth-supporting microenvironment 

[25]. This highlights the needs for combination therapy, merging the benefits of distinct 

anti-cancer treatments. A combination of immunotherapy with chemotherapy holds great 

potential, not only because tumor cells can effectively be eradicated but also due to the 

contribution of certain types of chemotherapeutics to induce immunogenic cell death (ICD). 

This specific cell death mechanism generates endogenous immune adjuvants, which might 

aid in overcoming the immunosuppressive tumor microenvironment [8, 26]. However, 

within this study the delivery of chemotherapeutics, as was evaluated for doxorubicin, had 

an immediate detrimental effect onto the carrier cells, the reason likely being the unstable 

encapsulation of the compound in the functionalized liposomes (data not shown). The latter 

observation calls for the use of chemotherapeutics to which carrier T cells are resistant, as 

shown recently for the active metabolite of the topoisomerase I inhibitor irinotecan [27]. 

However, the latter study focused on the use of polyclonal T cells that were not able to kill 

tumor cells and were only used as carriers to deliver the chemotherapeutic cargo to 

lymphoid tumors.  

Besides the tumor cells that can act as mediators of immune suppression, also certain 

types of immune cells are known to support the tumor growth [28]. For example, upon 

interaction with immunosuppressive mediators, dendritic cells (DCs) can acquire a 

suppressive phenotype and stimulate regulatory T cells to counteract CTL responses [29]. 

Hence, an interesting therapeutic approach is the delivery of therapeutics that can shift the 

local environment from immunosuppressive to immunostimulatory. To this end, immune 

adjuvants are very promising. Unfortunately, the systemic administration of several of these 

adjuvants has shown to induce severe side effects [30, 31]. Therefore, we proposed here 

the T-cell mediated targeting of adjuvant-loaded liposomes to the tumor.  

For this purpose, the immune adjuvant monophosphoryl lipid A (MPLA), a Toll-like 

receptor 4 (TLR4) agonist, was selected based on studies that showed their role in maturing 

DCs, leading to the induction of tumor-specific CD4+ and CD8+ T cell responses [32, 33]. In 
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addition, previous studies showed that MPLA can easily be inserted in the lipid bilayer of 

liposomes and that the encapsulation in nanocarriers enhances the DC maturation [34-36] 

(Verbeke et al., manuscript submitted).  

Of note, we showed that the incorporation of MPLA into the liposome had no influence 

on the coupling efficiency or T cell functionalities, including CTL proliferation and IFNγ 

secretion, which could be expected since CD8+ T cells have low or absent expression of 

TLR4 on their surface [37]. Importantly, we showed that MPLA liposomes, when loaded 

onto the T cell plasma membrane, were still able to induce maturation of DCs. The 

maturation process of DCs to become potent T cell activators is associated with multiple 

phenotypic changes. We showed here the upregulation of the co-stimulatory receptors 

CD40 and CD80 and further an increased secretion of the immunostimulatory cytokine IL-

12. This cytokine is important for the polarization of T cells to IFNγ-producing TH1 

phenotypes [38].  

Based on the literature describing that upon interaction of liposome-loaded T cells 

with APCs the liposomes tend to accumulate in the synapse, we anticipated that the TLR4 

of DCs could be stimulated upon close contact with MPLA-containing liposomes attached to 

the surface of T cells [18]. Flow cytometry data and confocal imaging revealed that the 

liposomes were to a significant extent internalized by the DCs, even for the MAL liposomes 

that are expected to be stably attached to the T cell surface. Although the mechanism 

behind the transfer of liposomes from T cells to DCs is not yet elucidated, several 

hypotheses could be formulated. First, when T cells undergo apoptosis, T cell membrane 

debris with liposomes attached might become available for phagocytosis by DCs. Secondly, 

it has been shown previously that DCs can internalize fragments of the cell membrane or 

cytoplasm from other cells upon close contact, through a process called ‘nibbling’ [39]. 

Studies have shown that via this nibbling process DCs can internalize antigens from live 

tumor cells and even B cells [40-42].  

Supported by these promising in vitro data, we finally aimed to evaluate the 

therapeutic benefit of the MPLA liposomes in vivo, in a mouse model of melanoma. To this 

end, we opted to first evaluate the activity of our liposome-coupled T cells through IT 

injection, bypassing several extratumoral barriers, to enable unbiased assessment of the 

activity of the modified T cells in the complex tumor microenvironment. Interestingly, an 

enhanced survival was only observed for the mice treated with OT-I cells loaded with MPLA 

liposomes coupled via a PDP linker. Although in vitro data showed a higher maturation of 

DCs when a MAL linker was used for the T cell coupling, these in vivo data suggest the 

benefit of a reducible coupling system. Future work will be directed to answer the question 

whether T cell-mediated delivery of immune adjuvants results in clinical benefit with either 

PDP- or MAL-anchored liposomes, upon systemic injection.   
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5 CONCLUSION 

In this study, we attached liposomes to the surface of CTLs via a reversible (PDP) and 

stable (MAL) coupling. For both coupling techniques, no negative impact on proliferation or 

viability of the CTLs could be observed in vitro. In addition, it was clearly demonstrated that 

the coupling induced a higher secretion of the immunostimulatory cytokines IFNγ and TNFα, 

which might explain the enhanced anti-tumor response of liposome-loaded CTLs observed 

in a mouse melanoma model. Ultimately, liposomes were loaded with the adjuvant MPLA 

and coupled to CTLs to improve the immune responses against the tumor. First, we showed 

the successful maturation of DCs in vitro when co-cultured with CTLs that were coupled 

with MPLA-loaded liposomes. Secondly, an improved survival of mice with melanoma was 

demonstrated after IT injection of CTLs loaded with MPLA liposomes, from which the anti-

tumor effect was most pronounced for the reversible coupling. It remains for future research 

to evaluate the therapeutic effect of this combinatorial strategy after systemic injection. 
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ABSTRACT 

Cell-mediated delivery of nanoparticles (NPs) to the tumor has been investigated to 

overcome current NP targeting problems such as low infiltration and poor accumulation of 

NPs in the tumor tissue. However, the cytosolic delivery of drugs to tumor cells requires the 

release of drug-loaded NPs from the cell surface. Therefore, a triggered release system 

based on tumor microenvironmental stimuli such as low pH, high redox potential, and 

elevated levels of tumor-associated enzymes is of interest. In this study, we exploited 

enzymes that are known to be upregulated in many cancers as triggers for liposome release. 

For this purpose, we investigated a novel cleavable peptide construct as a linker between 

liposomes and CD8+ T cells. We first showed the attachment of the peptide linker to the 

surface of CD8+ T cells. Next, we demonstrated that the coupling was stable in serum-

enriched medium, whereas a substantial amount of liposomes coupled via a reducible 

disulfide bridge, as investigated in Chapters 2 and 3, were released under the same 

conditions. Although we demonstrated the cleavability of the peptide sequence by specific 

enzymes when the peptide linker was attached to magnetic beads, only a minor release 

was observed when this linker was attached to CD8+ T cells. As for trypsin, a highly 

unspecific protease, the cleavage was maximal, we suggested that steric hindrance at the 

highly complex cell membrane might be responsible for the low activity of the specific 

enzymes. 
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1 INTRODUCTION 

Exploiting the tumor-homing ability of cells (e.g. stem cells, macrophages, and T cells) 

for targeted delivery of nanoparticles (NPs) has been shown to improve the infiltration and 

accumulation of NPs in the tumor tissue [1]. Because several drug compounds (e.g. nucleic 

acids) require intracellular delivery, as they are not able to passively cross cell membranes, 

triggered release of NPs from the carrier cell surface following extravasation in the tumor 

is of interest. In Chapters 2 and 3, we described PDP-functionalized liposomes that were 

coupled to CD8+ T cells via a reversible disulfide bond. Although it was demonstrated that 

these liposomes could be detached again from the T cell surface as a function of glutathione 

concentration, a significant fraction of liposomes (~40%) remained stably anchored. In 

addition, such reversible coupling systems may encounter stability problems upon systemic 

injection, as was shown in the literature that disulfide exchange reaction can occur in the 

blood [2]. These arguments jointly highlight the need for a coupling system that is stable 

until the tumor tissue is reached and that is sensitive to a tumor-associated trigger, inducing 

maximal detachment of the NPs.  

In literature, different types of triggers have been described, based on redox potential, 

pH, enzyme, and temperature [3]. Exploiting these cues for tumor-triggered release 

requires substantial biochemical differences in the tumor microenvironment compared to 

normal tissues. However, also external stimuli such as light and ultrasound have been 

applied to mediate a triggered release of drugs from NPs in the tumor [4, 5]. With regard 

to internal stimuli, for example, hydrazone bonds that are sensitive to low pH values have 

been described as linker for the reversible attachment of drug-loaded NPs to the surface of 

neural stem cells [6]. The interstitial pH in tumors is indeed slightly more acidic (pH 6.5-

6.8) compared to other tissues owing to the Warburg effect. However, the limited pH 

difference also limits the choice of appropriate linkers with sufficient selectivity, typically 

resulting in slow and inefficient NP release [7]. The differences in redox potential based on 

the higher levels of extracellular glutathione in the tumor mass compared to normal tissues, 

were also exploited by us and others as tumor-specific stimuli (Chapter 2) [8, 9]. However, 

based on our study, the disulfide-linked liposomes could not be quantitatively released in 

the presence of glutathione.  

Here, we investigated the use of an enzyme-sensitive peptide linker. Several enzymes 

are known to be present in the tumor tissue in elevated levels as they play crucial roles in 

cancer growth, invasion, and metastasis [10]. Linker chemistries sensitive to tumor-

associated enzymes, such as matrix metalloproteinases (MMPs) and phospholipases, have 

been investigated for targeted tumor delivery. For example, a MMP2-sensitive peptide linker 

was incorporated between a NP and polyethylene glycol (PEG) chain, the latter being 

essential to safeguard NP stability in the bloodstream and enhance the circulation time of 

NPs. However, upon extravasation in the tumor, the PEG chain can hinder the uptake of the 
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NPs by tumor cells. By using a tumor-specific cleavable peptide, it has been shown that the 

PEG chain can be selectively cleaved in the tumor interstitium, thus enhancing subsequent 

NP cell internalization [11-13]. 

Here, we investigated an enzyme-cleavable peptide that was introduced by Desnoyers 

et al. [14]. They selected a peptide linker based on its sensitivity to the proteases 

matriptase, urokinase-type plasminogen activator (uPA), and legumain, all three enzymes 

having important roles in tumor invasion and metastasis. Matriptase is a type II 

transmembrane serine protease that is strictly expressed by epithelial cells and 

overexpressed in a variety of human carcinomas such as breast, ovarian, lung, cervical, 

and prostate cancer [15, 16]. uPA is a member of the urokinase plasminogen activator 

system (uPAS), which is involved in a number of tumor- and metastasis-promoting 

processes [17]. Moreover, increased tumor levels of uPAS-associated components such as 

uPA has been shown to be correlated with a poor prognosis [18, 19]. The protease legumain 

is a lysosomal protease that is expressed in the majority of solid cancers such as breast, 

colon, ovarian, and prostate cancer [20]. The enzyme is released in the tumor 

microenvironment and is active in an acidic environment [21]. As for all three enzymes 

their activity is low in healthy tissues due to the presence of endogenous inhibitors and 

unfavorable pH conditions, the peptide linker cleavage is restricted to the tumor tissue.  

Within this study, we developed a peptide linker that can be used to reversibly attach 

liposomes to the surface of CD8+ T cells, containing the suggested protease-cleavable 

peptide sequence. We first assessed the cleavability of the linker by matriptase and uPA via 

a bead-based assay, followed by the coupling of the linker to the surface of the cells. 

Importantly, it was investigated whether the peptide linker is stable in serum-enriched 

medium and can be cleaved from the surface of the cells upon incubation with the enzymes.   
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2 MATERIALS AND METHODS 

2.1 CD8+ T lymphocyte culture 

Female C57BL/6 mice were purchased from Harlan Laboratories (Gannat, France) and 

housed in a specific pathogen free (SPF) facility according to the regulations of the Belgian 

law and the local Ethical Committee. CD8+ T cells were isolated from the spleen of mice 

using a negative isolation CD8+ kit (Stem Cell Technologies, Grenoble, France). Cells were 

activated with anti-CD3/CD28 Dynabeads® (Gibco-Invitrogen, Merelbeke, Belgium) at a 

density of 2 x 106 cells/well and a bead-to-cell ratio of 1:1 in a 24-well plate. The cells were 

cultured in complete T cell culture medium containing advanced RPMI medium (Gibco-

Invitrogen) supplemented with 10% fetal bovine serum (FBS; Hyclone, Thermo Scientific, 

MA, USA), 2 mM L-glutamine (Gibco-Invitrogen), 1% penicillin/streptomycin (Gibco-

Invitrogen). According to the manufacturer’s protocol, 30 U ml-1 rIL-2 (Miltenyi Biotec, 

Leiden, The Netherlands) was added to the culture medium. For the experiments described 

in this study, cells were activated during 5-10 days.  

2.2 Preparation of liposomes and characterization 

The liposomes were composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 

egg phosphatidyl glycerol (egg PG), 18:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-[3-(2-pyridyldithio)propionate] (PE-PDP), 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[PDP(polyethylene glycol)-2000] (PE-PEG-PDP), 18:1 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine-N-[4-(p-maleimidophenyl)butyramide] (PE-

MAL), and the fluorescent 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD). 

All lipids were purchased from Avanti Polar Lipids (Alabaster, USA) and DiD from Molecular 

probes (Invitrogen, Merelbeke, Belgium). To create the liposomes, a lipid mixture in 

chloroform was prepared and pipetted in a round-bottom glass flask, followed by 

evaporation of the chloroform solvent to form a thin lipid film. The dried lipids were 

rehydrated in phosphate buffered saline (PBS; Gibco-Invitrogen) at ambient temperature 

followed by an extrusion of the resultant multilamellar liposomes through a 200 nm 

polycarbonate filter (Whatman, Diegem, Belgium).  

2.3 Evaluation of the enzymatic cleavability of the peptide linker 

A mixture of 50 µl peptide linker (200 µg ml-1, Eurogentec, Seraing, Belgium) with 

1 µl of EasySep™ Streptavidin RapidSpheres™ (Stem Cell Technologies) was incubated for 

10 min at room temperature in a Falcon™ round-bottom polystyrene tube (Corning, Lasne, 

Belgium). Next, Bodipy® FL-labeled L-cystine (Molecular Probes) was incubated for 45 min 

at room temperature in 0.5 mg ml-1 Tris(2-carboxyethyl)phosphine hydrochloride (TCEP; 

Sigma-Aldrich, Diegem, Belgium) solution to generate a reduction of the disulfide bond and 

the subsequent formation of Bodipy® FL-labeled cysteine [22].The reduced cysteine form 
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was added to the mixture and incubated for 15 min at room temperature. Subsequently, 

150 µl PBS supplemented with 1mM ethylenediaminetetraacetic acid (EDTA; Sigma-Aldrich) 

was added to the mixture and the tube was placed into an EasySep™ Magnet (Stem Cell 

Technologies). After 1 min, the unbound solution was removed and the magnetic beads 

were washed two times with 200 µl PBS-EDTA to remove the unbound peptide linker and 

labeled cysteine. Subsequently, the magnetic beads were incubated for 30 min at 37°C with 

100 µl of recombinant human matriptase (1-100 nM) or recombinant human urokinase-

type plasminogen activator (uPA; 0.065-6.5 mg ml-1) diluted in PBS-EDTA, and 0.05% 

trypsin-EDTA (Gibco-Invitrogen). Matriptase and uPA were both purchased from R&D 

systems (Minneapolis, USA). Next, the tubes were placed in the magnet for 1 min and the 

unbound solution was transferred to a black 96-well plate for measuring the fluorescence 

intensity via an EnVision® Multilabel plate reader (Perkin Elmer, Zaventem, Belgium). 

2.4 Coupling of PDP- and MAL-functionalized liposomes to CD8+ T cells and 

incubation in serum-containing media 

CD8+ T cells that were activated during 6-15 days were separated from the activation 

beads and incubated in serum-free advanced RPMI medium with 2 mg ml-1 PG, PDP or MAL-

functionalized liposomes during 45 min at 37°C. The cells were washed with PBS buffer to 

remove the unbound liposomes and subsequently incubated with mounting concentrations 

of FBS (0.5-50% diluted in PBS) for 30 min at 37°C. The cells were washed to remove the 

released liposomes. The amount of liposomes attached to the CD8+ T cells was quantified 

via flow cytometry by measuring the DiD fluorescence intensity per cell, using a 

FACSCalibur™ (BD Pharmingen, Erembodegem, Belgium) and analyzed by BD CellQuest™ 

and FlowJo (Treestar Inc, Ashland, USA) software. 

2.5 Coupling of the peptide linker to CD8+ T cells and measuring stability in 

serum-containing media 

The activated CD8+ T cells were first separated from the activation beads followed by 

the incubation with mounting concentration of peptide linker, ranging from 2-500 mg ml-1 

for 30 min at 37°C. The cells were washed two times with PBS buffer supplemented with 

0.1% bovine serum albumin (BSA buffer; Sigma-Aldrich), followed by the incubation with 

50 µg ml-1 Alexa Fluor® 488-labeled streptavidin (Molecular Probes) for 15 min at room 

temperature. After two washing steps with 0.1% BSA buffer, the coupling of peptide linker 

to CD8+ T cells was quantified by measuring the Alexa Fluor® 488 fluorescence intensity per 

cell via flow cytometry. To further evaluate the amount of labeled streptavidin necessary to 

obtain saturation of the peptide linker, mounting concentrations of labeled streptavidin (50-

500 µg ml-1) were added to CD8+ T cells that were first incubated with 20 mg ml-1 of peptide 

linker. To evaluate the stability in serum, the cells were incubated with two different 
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concentrations of FBS (5 and 50% of FBS in PBS) for 30 min at 37°C, followed by washing 

the cells with PBS to remove the cleaved peptide linker. 

2.6 Evaluation of the enzymatic cleavage when anchored to CD8+ T cells 

After incubating CD8+ T cells with the peptide linker (20 µg ml-1) and Alexa Fluor® 

488-labeled streptavidin (50 µg ml-1) as described above, the cells were incubated for 

30 min at 37°C with mounting concentrations of matriptase (10-100 nM) and uPA (1.3-

13 µg ml-1). As a control, cells were incubated with 0.05% trypsin-EDTA for 4 min at 37°C. 

The cells were washed two times with 0.1% BSA buffer to remove the cleaved peptide 

linker, followed by the quantification of cleavage using flow cytometry.  

2.7 Biotinylation of T cells and visualization by confocal microscopy 

Activated CD8+ T cells were incubated for 15 min at room temperature with mounting 

concentrations of a biotin 3-sulfo-N-hydroxysuccinimide ester sodium salt (Biotin-sulfo-

NHS; Sigma-Aldrich), ranging from 0.1 to 100 µM in 0.1% BSA buffer. Cells were washed 

two times with 0.1% BSA buffer, followed by the incubation with 50 µg ml-1 Alexa Fluor® 

488-labeled streptavidin for 15 min at room temperature. Cells were washed two times to 

remove the unbound streptavidin, prior to determining the biotinylation of CD8+ T cells 

using flow cytometry. Confocal microscopy images of biotinylated CD8+ T cells were 

acquired using a Nikon C1si confocal laser scanning microscope (Nikon Benelux, Brussels, 

Belgium) equipped with a Plan Apo VC 60x 1.4 NA oil immersion objective lens (Nikon). The 

Alexa Fluor® 488 dye was excited with a 488 nm argon-ion laser (CVI Melles Griot, NM, 

USA). 

2.8 Coupling of liposomes to CD8+ T cells via a peptide linker 

The activated CD8+ T cells were first biotinylated as described above. To this end, 

50 µM of biotin-sulfo-NHS was incubated with the cells. After a washing step with 0.1% BSA 

buffer, the biotinylated cells were incubated for 15 min at room temperature with 50 mg ml-

1 streptavidin (from S.avidinii, Invitrogen). Before adding the liposomes, the cells were 

washed to remove unbound streptavidin. The liposomes were prepared as described above 

and consisted of DOPC, PE-PDP or PE-PEG-PDP, and DiD in a wt% ratio of 87:10:3. The 

liposomes were first mixed for 15 min at 37°C with the peptide linker, which consisted of a 

liposome concentration of 0.5 mg ml-1 and peptide linker concentration of 0.1 mg ml-1. 

Next, 50 µl of this liposome solution was added to 5 x 105 of (biotinylated) CD8+ T cells and 

incubated for 15 min at 37°C. The cells were washed two times with 0.1% BSA buffer to 

remove the unbound liposomes. Subsequently, the cells were incubated with matriptase 

(100nM) or uPA (13 µg ml-1) for 45 min at 37°C. As a control, cells were incubated with 

0.05% trypsin-EDTA for 4 min at 37°C. The cells were washed and the liposome coupling 
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was quantified by measuring the fluorescence intensity of the DiD label using flow 

cytometry.  

2.9 Statistical analysis 

A two-tailed Student's t-test was performed to determine statistical differences 

between datasets. All statistical analyses were performed using GraphPad Prism 6 software 

(La Jolla, CA, USA). p-values <0.05 were regarded significant. Statistical significance is 

indicated as follows: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001. 
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3 RESULTS AND DISCUSSION 

To evaluate the reversible coupling of liposomes to the surface of CD8+ T cells via an 

enzyme-sensitive coupling system, a cleavable peptide linker construct was developed. In 

Figure 1, the enzyme-targeted amino-acid sequence is indicated in bold with on both sides 

of the sequence glycine/serine-rich flanking sequences (indicated in gray). The sequence of 

the cleavable peptide within this construct was based on a study by Desnoyers et al., who 

selected this peptide sequence by a CLiPS library [14]. This library allows determining a 

peptide sequence that is cleavable by a selected set of proteases. In this case, proteases 

with well-known upregulation in several cancer types were selected, including matriptase, 

urokinase-type plasminogen activator (uPA), and legumain. For our purpose, the peptide 

linker was further optimized to enable attachment with the CD8+ T cell on one side and on 

the other side with the liposomes. To this end, a maleimide (MAL) and a biotin group were 

incorporated on opposite sides of the peptide sequence, enabling interaction with T cell 

exofacial thiol (as described in Chapter 3) and biotinylated liposomes, respectively 

(Figure 1).  

 

Figure 1. Schematic overview of the peptide linker construct. The peptide linker consists of a 
maleimide (MAL) group, a cleavable peptide region, and a biotin group. The cleavable peptide contains 
the specific cleavage sequence as indicated in bold, flanked by glycine/serine-rich short unspecific 

sequences as indicated in gray. The MAL group can form a stable thioether bond upon interaction with 
exofacial thiol groups at the CD8+ T cell surface. Subsequently, a streptavidin group is added to attach 
the peptide linker to the biotinylated liposomes. The peptide linker can specifically be cleaved by three 
proteases: matriptase, urokinase-type plasminogen activator (uPA), and legumain. G, glycine; S, 
serine; L, leucine; R, arginine; D, aspartic acid; N, asparagine; H, histidine; SH, thiol. 

 

3.1 Magnetic bead-based assay to assess enzymatic cleavability of the peptide 

linker 

First, it was assessed whether the novel synthesized peptide linker can be cleaved by 

the suggested enzymes. To this end, the peptide linker was conjugated to streptavidin-

functionalized magnetic beads via a biotin-streptavidin interaction, as shown in Figure 2A. 

To quantify the cleavage, the peptide linker-bead construct was incubated with 

fluorescently-labeled cysteine, which forms a stable thioether bond with the MAL group of 
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the peptide linker. Matriptase and uPA were selected to evaluate the cleavability of the 

linker and were added to the construct in mounting concentrations. Subsequently, the 

beads were placed into a magnet and the medium, containing cleaved material, was 

transferred to a 96-well plate. The data showed that cleavage by matriptase and uPA 

increased as a function of their concentration (Figures 2B-C). The highest concentration 

had a similar cleavage as trypsin, which was added as a positive control for the cleavability, 

as trypsin is a highly unspecific protease [23]. Based on these results, we could conclude 

that both matriptase and uPA were able to cleave the peptide construct.  

 

Figure 2. Evaluation of matriptase and urokinase-type plasminogen activator (uPA) 

enzymatic cleavage of the peptide linker. (A) a The peptide linker that contains a biotin group, 
the cleavable sequence, and a maleimide (MAL) group can interact with streptavidin on magnetic 

beads via a biotin-streptavidin interaction. b Subsequently, it was incubated with Bodipy® FL cysteine 
(Cys-BodipyFL) that can bind to the MAL group of the peptide linker. c The peptide linker-bead 
construct was incubated with mounting concentrations of either matriptase or uPA. d After incubation 
with the enzymes, the tube containing the peptide linker-bead construct was placed into a magnet. e 
The medium containing cleaved material was removed to a 96-well plate. f The mean fluorescence 

intensity per sample was measured in a plate reader. (B) The peptide linker-bead construct was 
incubated with mounting concentrations of matriptase, ranging from 10 to 100 nM and (C) uPA, 
ranging from 0.065 to 6.5 µg ml-1. Trypsin was used as a positive control for the cleavability. Graphs 
are representing the mean fluorescence intensity (MFI) per sample ± SD. Statistics are indicated as 
ns = not significant; * p <0.05; ** p <0.01; *** p <0.001 (n = 2 independent samples).  
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3.2 Coupling of the peptide linker to CD8+ T cells 

In a next step, we evaluated the attachment of this peptide linker to the surface of 

CD8+ T cells. As shown in Figure 3A, the coupling between the construct and the cells is 

based on a MAL group interacting with exofacial thiol groups at the cell surface, which is 

similar to the anchoring of MAL-functionalized liposomes as described in Chapter 3.  

 

Figure 3. Coupling of a cleavable peptide linker to the surface of CD8+ T cells. (A) Schematic 
overview of the attachment of a cleavable peptide linker to the surface of activated CD8+ T cells via 
a thioether bond between exofacial thiol groups of CD8+ T cells and a maleimide (MAL) group 
incorporated in the peptide linker construct. Subsequently, the cells were incubated with Alexa Fluor® 
488-labeled streptavidin to quantify the coupling via flow cytometry. (B) Graph representing mean 
fluorescence intensity (MFI) per cell ± SD of the CD8+ T cells incubated with mounting concentrations 
of peptide linker (2-500 µg ml-1), followed by the incubation with 50 µg ml-1 Alexa Fluor® 488-labeled 

streptavidin (strep-AF488). As a control, cells were incubated with labeled streptavidin without linker 
(Strep ctrl). (C) Graph representing MFI ± SD of cells incubated with 20 µg ml-1 peptide linker, 
followed by the incubation with mounting concentrations of labeled streptavidin (50-500 µg ml-1). As 

a control, CD8+ T cells were incubated with labeled streptavidin without peptide linker. Statistics 
represent a comparison with the ‘Strep ctrl’ and are indicated as ns = not significant; ** p <0.01; 
**** p <0.0001 (n = 2 independent samples).  

First, the peptide linker was added to the cells in mounting concentrations, followed 

by incubation with fluorescently-labeled streptavidin to quantify the binding efficiency 

(Figure 3B). As a negative control, cells were incubated with labeled streptavidin alone. 

These data show the highly specific interaction of labeled streptavidin with the peptide linker 

and consequently an efficient attachment of peptide linker to T cells. As for a peptide linker 

concentration of 20 µg ml-1, all cells were positive for the coupling of a peptide linker, this 
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concentration was selected for further research (data not shown). In order to quantify the 

cleavability of this peptide construct from the cell surface by specific enzymes, the peptide 

linkers need to be saturated with labeled streptavidin. To evaluate this, cells that were 

pretreated with or without 20 µg ml-1 peptide linker were incubated with mounting 

concentrations of labeled streptavidin (Figure 3C). Based on these data, a streptavidin 

concentration of 250 µg ml-1 was selected for further research.  

3.3 Stability of the peptide linker in serum and the enzymatic cleavage when 

anchored to CD8+ T cells 

As mentioned in the introduction, the stability of redox-sensitive systems in the 

systemic circulation cannot be absolutely guaranteed. Therefore, we aimed to investigate 

the serum stability of PG-, PDP- and MAL-coupled liposomes (Chapters 2 and 3) as well 

as the peptide linker presented in this chapter. First, we compared the stability of 

aspecifically attached (PG) liposomes with the reversibly attached (PDP) liposomes and 

stably anchored (MAL) liposomes in fetal bovine serum (FBS) concentrations, ranging from 

0.5 to 50% (Figure 4). For PG liposomes, an immediate release at 0.5% was observed 

while PDP and MAL liposomes remained attached. However, mounting the concentration up 

to 5%, ~40% of the PDP liposomes were detached from the surface. The MAL liposomes 

only showed a minor release, even when incubated with 50% FBS.  

 

Figure 4. Stability of PDP- and MAL-liposome coupling to CD8+ T cells as a function of the 
serum concentration. CD8+ T cells were first incubated with 2 mg ml-1 PG, PDP or MAL liposomes, 
followed by the incubation with mounting percentages of fetal bovine serum (FBS) in PBS. The 
percentage of liposome release was quantified by measuring the mean fluorescence intensity per cell 
of the DiD-labeled liposomes using flow cytometry. The percentage of released liposomes was 
quantified by a comparison with cells that were not incubated with FBS. The graph represents the 

percentage liposome release ± SD (PG: n = 3; PDP: n = 4; MAL: n = 1 with n = number of 
independent experiments). 
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Next, we investigated whether the peptide linker performs better in FBS-enriched 

medium. As represented in Figure 5A, the attachment of the peptide linker to CD8+ T cells 

was stable, even at the highest FBS concentration. Having established the stability of the 

linker in the systemic circulation, we next aimed to assess the specific cleavability by tumor-

associated proteases. Unfortunately, incubating this peptide linker attached to T cells with 

both matriptase and uPA only resulted in a minor cleavage of less than 20% (Figure 5B).  

 
Figure 5. Stability of the peptide linker in serum and cleavage upon incubation with 
matriptase and urokinase-type plasminogen activator (uPA). CD8+ T cells were first coupled 
with 20 µg ml-1 of the peptide linker, followed by the incubation with 250 µg ml-1 Alexa Fluor® 488-

labeled streptavidin. (A) Graph representing the mean fluorescence intensity (MFI) ± SD of cells 
subsequently incubated with PBS supplemented with two concentrations of fetal bovine serum (FBS). 
(B) Graph representing the percentage linker cleavage ± SD of cells incubated with different 
concentrations of matriptase (M; 10-100 nM), uPA (1.3-13 µg ml-1), a combination of both specific 

enzymes, and 0.05% trypsin. Statistics are indicated as ns = not significant; * p <0.05 (n = 2 
independent samples). 

Even when combining both enzymes, no significant increase in cleavage could be 

observed while trypsin, used as a positive control, resulted in almost a complete cleavage 

of the peptide linker from the cell surface. The fact that trypsin, as a highly unspecific 

protease, is able to cleave a variety of surface receptors, may suggest that steric hindrance 

at the cell surface is a major limiting step for the specific enzymes to interact with the 

peptide linker. 

3.4 Evaluation of the reversible coupling of liposomes to CD8+ T cells via an 

enzyme-sensitive linker  

In an attempt to avoid that steric hindrance of the cell membrane impedes the 

cleavage, we inverted the system, which means that the biotin-streptavidin interaction 

appears at the cell surface and the interaction with the liposomes occurs via the interaction 

of the MAL group from the peptide linker with PDP groups incorporated in the liposomes 

(Figure 6A). The reason behind this switch is the hypothesis that streptavidin, with its high 

molecular weight of 60 kDa, increases the distance between the cleavable peptide and the 

cell surface, which might reduce the steric hindrance [24].  
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To enable a biotin-streptavidin interaction at the cell surface, the CD8+ T cells were 

first biotinylated via incubation with biotin sulfo-N-hydroxysuccinimide ester (biotin-sulfo-

NHS). Upon interaction of the NHS group with surface amines, the cell surface is decorated 

with biotin groups. It has been shown previously that biotinylation of cells does not affect 

their phenotype, viability or homing ability [25]. Additionally, a biotin-streptavidin 

interaction has already been exploited for the successful conjugation of particles to the 

surface of mesenchymal stem cells [26].  

 

Figure 6. Biotinylation of CD8+ T cells to attach liposomes via a peptide linker. (A) a CD8+ T 

cells were biotinylated by incubating the cells with 50 µM biotin-sulfo-NHS. b After biotinylation, the 
cells were incubated with 50 mg ml-1 streptavidin. c DiD-labeled liposomes were prepared containing 
10 wt% PE-PDP or PE-PEG-PDP lipids. d Next, the liposomes were incubated with the peptide linker 
to form a stable bond via the maleimide (MAL) group of the peptide linker. e The liposome-peptide 
construct was incubated with CD8+ T cells, which results in the coupling of liposomes to the cell surface 
via a biotin-streptavidin interaction. f The cells were incubated with both matriptase and urokinase-
type plasminogen activator (uPA) to initiate the cleavage of the peptide bond. (B) Graph representing 

the mean fluorescence intensity (MFI) ± SD of biotinylated CD8+ T cells by incubating the cells with 
mounting concentrations of biotin-sulfo-NHS (0.1-100 µM), followed by the incubation with 50 µg ml-

1 Alexa Fluor® 488-labeled streptavidin. As a control, cells were only incubated with labeled 
streptavidin (Strep ctrl). (C) Confocal image of a CD8+ T cell incubated with 100 µM biotin-sulfo-NHS 
and 50 µg ml-1 Alexa Fluor® 488-labeled streptavidin (Scale bar = 10 µm).  

In this study, CD8+ T cells were first biotinylated via incubation with biotin-sulfo-NHS, 

followed by the incubation with streptavidin (Figure 6A). Secondly, DiD-labeled PDP-

functionalized liposomes were prepared and incubated with the peptide linker. Finally, the 

linker-modified liposomes were attached to the T cell surface via a biotin-streptavidin 

interaction, which has been described in the literature as a very stable bond and resistant 

to extreme pH, high temperature, and proteolytic enzymes [27, 28]. First, it was verified 
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whether the surface of CD8+ T cells could easily be biotinylated. As represented in 

Figure 6B, increasing the amount of biotin-sulfo-NHS up to 10 or 100 µM resulted in 

specific binding of labeled streptavidin. Confocal imaging of the biotinylated T cells revealed 

the homogenous distribution of the biotin-streptavidin interaction over the cell surface 

(Figure 6C).  

Next, we evaluated the coupling of both PEGylated and non-PEGylated PDP-

functionalized liposomes. We anticipated that by using a PEG spacer between the liposomes 

and the peptide linker, steric hindrance due to the attached liposomes might be diminished 

and subsequently facilitate the interaction of specific enzymes with the cleavable peptide 

sequence. PDP-functionalized liposomes can interact with a MAL group as previously shown 

by Geers et al [29]. Unfortunately, it was shown that the coupling was lower for liposomes 

that were first incubated with the peptide linker compared to the unmodified PDP liposomes, 

independent of PEGylation (Figures 7A-B). This implies that the coupling via this peptide 

linker construct is less efficient than the disulfide bridges as described in Chapters 2 and 3.  

 
Figure 7. Coupling of liposomes to the surface of CD8+ T cells via an enzyme-sensitive 
linker. (A) Graphs representing the mean fluorescence intensity (MFI) ± SD of DiD label that was 
incorporated into the PDP-functionalized liposomes. CD8+ T cells were first biotinylated, followed by 
the incubation with 50 µg ml-1 streptavidin. Next, the liposomes (Lipo) were incubated with or without 

peptide linker (Pep), followed by the incubation with biotinylated cells. Subsequently, the liposome-
loaded cells were incubated with 100 nM matriptase (M), 13 µg ml-1 urokinase-type plasminogen 
activator (uPA) or 0.05% trypsin (T). (B) Graphs representing MFI ± SD of DiD that was incorporated 
together with PE-PEG-PDP lipids in liposomes (Lipo) that were first incubated with (Pep-Lip) or without 
(Lipo) peptide linker, followed by the incubation with biotinylated CD8+ T cells (n = 2 independent 

samples). 

After attachment of PDP liposomes to the T cells via the peptide linker, the cells were 

incubated with both matriptase and uPA. Unfortunately, no cleavage could be observed as 

represented in Figure 7A. Additionally, as a positive control, cells were treated with trypsin, 

which resulted in a moderate cleavage of ~40%. In summary, taken together this lower 

coupling efficiency and no cleavage upon incubation with specific tumor-associated 

enzymes, we have to conclude that this peptide linker is likely not suitable for this purpose 

and does not provide benefit over the PDP coupling approach. In the study by Desnoyers 

et al., the cleavage of a similar peptide linker from an antibody as a prodrug strategy was 
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very successful for both matriptase and uPA [14]. However, in our strategy, we are 

confronted with the very complex and highly dynamic nature of the cell membrane, which 

was shown to be a considerable obstacle for this enzyme-sensitive approach [30]. 
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4 CONCLUSION 

For the coupling of liposomes to the surface of CD8+ T cells, it was shown that finding 

a balance between good stability in serum and optimal triggered release via tumor 

microenvironmental stimuli is not a simple task. As was shown for the reversible coupling 

by PDP-functionalized liposomes, the coupling of the PDP linker was reversible upon 

incubation in glutathione, however not sufficiently stable in serum. In search for a more 

specific triggered system, we developed a novel linker containing a cleavable peptide. 

Although cleavability of this linker by specific enzymes such as matriptase and urokinase-

type plasminogen activator (uPA) was shown when the linker was attached to magnetic 

beads and good stability was obtained in serum-containing media, the cleavability when 

coupled to CD8+ T cells was highly limited. We hypothesized that steric hindrance by the 

highly complex cell membrane might interfere with the interaction of specific enzymes with 

the peptide linker. Moreover, as coupling of liposomes via this linker was lower compared 

to the coupling without linker, we have to conclude that the tested linker is not suitable for 

this reversible coupling system.  
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ABSTRACT 

The success of cancer immunotherapy through the adoptive transfer of cytotoxic T 

lymphocytes (CTLs) is highly dependent on the potency of the elicited anti-tumor responses 

generated by the transferred cells, which can be hindered by a variety of upregulated 

immunosuppressive pathways. Downregulation of these pathways in the T cells via RNA 

interference (RNAi) could significantly boost their capacity to infiltrate tumors, proliferate, 

persist and eradicate tumor cells, thus leading to a durable anti-tumor response. 

Unfortunately, it is well known that primary T cells are hard-to-transfect and conventional 

non-viral transfection agents are generally ineffective. Viral transduction and 

electroporation are more efficient but their use is restricted by high cost, safety issues, and 

cytotoxicity. Photoporation has recently gained interest as a gentle alternative physical 

approach to deliver membrane-impermeable macromolecules into cells. By attaching gold 

nanoparticles (AuNPs) to the cell surface followed by pulsed laser illumination, transient 

membrane pores can be generated that allow the diffusion of macromolecules directly into 

the cell cytosol. Here, we evaluated this technique for the non-toxic and effective delivery 

of siRNA and subsequent silencing of target genes in activated CTLs. We compared 

photoporation with nucleofection, the current standard physical technique for T cell 

transfection, and demonstrated a significantly reduced cytotoxicity and improved loading 

efficiency for the photoporation technique. 
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1 INTRODUCTION 

As introduced in Chapter 1, adoptive T cell therapy (ACT) has emerged as a powerful 

approach to cure advanced cancers [1]. Although ACT already showed impressive clinical 

outcomes for specific types of cancer, e.g. melanoma, the number of patients that do not 

respond to the therapy remains high [2]. Indeed, many cancers have adopted a variety of 

strategies to escape immune surveillance, thus limiting the efficacy of ACT. Suppressive 

interactions between cytotoxic T cells (CTLs) and other cells within the tumor 

microenvironment are in part regulated by inhibitory immune checkpoint receptors present 

on the CTL surface, such as the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and 

programmed cell death 1 (PD-1) [3]. Their blockage by monoclonal antibodies has shown 

durable clinical responses in a variety of tumors within the past years, underscoring the 

importance of such immunosuppressive signals on the clinical outcome of ACT [4-6]. 

However, the use of monoclonal antibodies is restricted to the inhibition of extracellular 

targets. Recent research elucidated various alternate immune-regulatory pathways that are 

active in the CTL cytoplasm and contribute to the impaired T cell-mediated anti-tumor 

response [7, 8]. Consequently, it is of outstanding interest to investigate to what extent 

inhibition of these intracellular pathways could further improve the efficacy of ACT [9].  

RNA interference (RNAi) is a powerful tool that enables sequence-specific 

downregulation of gene expression using synthetic small interfering RNA (siRNA) molecules 

[10, 11]. Key to successful gene silencing is the efficient delivery of siRNAs to the cytosol 

of the target cells [12]. Although viral gene transfer results in acceptable transduction 

efficiency of T lymphocytes, the use of viral vectors is labor-intensive, expensive and 

associated with important safety concerns [13, 14]. On the other hand, primary T cells have 

been shown to be particularly hard-to-transfect via conventional non-viral transfection 

methods, such as lipid-and polymer-based nanoparticles [15-18]. Although few studies 

have shown significant silencing by siRNA-loaded nanoparticles in both CD4+ and CD8+ T 

lymphocytes, the majority of particles struggles with low endocytic uptake as well as the 

inefficient endosomal escape of siRNA molecules, factors that all contribute to their limited 

success so far [19-22]. Therefore, physical techniques such as electroporation might be 

favorable as they allow delivery of macromolecular drugs across the cell membrane directly 

into the cytosol [23]. Although it enables higher transfection efficiencies compared to 

nanoparticle-based delivery methods, cytotoxicity issues are a major limiting factor [18]. 

Hence, there is a need for practicable transfection methodologies to enable non-toxic and 

efficient siRNA delivery to primary T cells. 

Within this study, we propose photoporation as an alternative physical technique to 

transfect primary CTLs with siRNA and this with significantly reduced cytotoxicity [24]. This 

approach transiently permeabilizes the plasma membrane by focusing nanosecond laser 

pulses onto cells with gold nanoparticles (AuNPs) attached to the cell surface. The property 
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of surface plasmon resonance allows AuNPs to efficiently absorb light and regulate the 

transfer of light energy in thermal energy. Short laser pulses of sufficiently high intensity 

cause a rapid increase in temperature of the irradiated AuNPs, causing the evaporation of 

water in their direct vicinity, resulting in the formation of vapor nanobubbles (VNBs) [25]. 

Within nanoseconds, the VNBs expand and collapse, thereby inducing local membrane 

damage by high-pressure shockwaves, forming reversible pores in the cell membrane 

through which surrounding macromolecules can directly enter into the cell’s cytoplasm [26, 

27]. The delivery of macromolecules such as siRNA to adherent tumor cell lines by this 

technique was recently successfully demonstrated by our research group, achieving efficient 

target gene knockdown with negligible cytotoxicity [28]. However, the value of 

photoporation for siRNA delivery to hard-to-transfect (primary) suspension cells such as 

CTLs remains to be explored. 

Here, we report on the potential of VNB photoporation to silence target genes in CTLs. 

First, we assessed the optimal number of AuNPs per cell for safe and effective delivery of 

model macromolecules (10 kDa dextran) as well as siRNA in isolated murine CD8+ T cells. 

In addition, we compared photoporation with nucleofection, which currently is the standard 

non-viral method for transfecting primary T lymphocytes. Although photoporation and 

nucleofection resulted in a comparable knockdown in the surviving cells, due to cell viability 

issues with the nucleofection technique, a higher amount of transfected cells is effectively 

achieved with photoporation. These results show the potential of VNB photoporation as a 

novel physical technique to efficiently and safely deliver distinct membrane-impermeable 

macromolecules to primary suspension cells for both therapeutic and diagnostic purposes.  
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2 MATERIALS AND METHODS 

2.1 CD8+ T lymphocyte culture 

Female C57BL/6 mice were purchased from Harlan Laboratories (Gannat, France) and 

housed in a specific pathogen free (SPF) facility according to the regulations of the Belgian 

law and the local Ethical Committee. CD8+ T cells were isolated from the spleen of mice 

using a negative isolation CD8+ kit (Stem Cell Technologies, Grenoble, France). Cells were 

activated with anti-CD3/CD28 Dynabeads® (Gibco-Invitrogen, Merelbeke, Belgium) at a 

density of 2 x 106 cells/well and a bead-to-cell ratio of 1:1 in a 24-well plate. The cells were 

cultured in complete T cell culture medium containing advanced RPMI medium (Gibco-

Invitrogen) supplemented with 10% fetal bovine serum (FBS; Hyclone, Thermo Scientific, 

MA, USA), 2 mM L-glutamine (Gibco-Invitrogen), 1% penicillin/streptomycin (Gibco-

Invitrogen). According to the manufacturer’s protocol, 30 U ml-1 rIL-2 (Miltenyi Biotec, 

Leiden, The Netherlands) was added to the culture medium. For the experiments described 

in this study, cells were activated during 6-8 days.  

2.2 Determining the number of gold nanoparticles per cell 

CD8+ T cells were activated during 7 days and 2.4 x 105 cells were incubated with 

1:70 and 1:350 dilutions of the stock concentration (8.2 x 1011 particles/ml) of 70 nm 

cationic gold nanoparticles (AuNPs, #CU11-70-P30-50, Nanopartz, Loveland, CO, USA). The 

AuNPs were diluted in T cell culture medium for incubation with the cells during 30 min or 

1h at 37°C. The AuNPs had a zeta potential of 30 mV as measured by a Zetasizer Nano ZS 

(Malvern, UK) equipped with Dispersion Technology Software (DTS). Subsequently, the 

cells were washed with T cell culture medium to remove the unbound AuNPs. 4 x 104 cells 

were transferred to a glass-bottom 96-well plate for imaging. Confocal laser scanning 

microscopy (C1si, Nikon Benelux, Brussels, Belgium) in reflection mode with a 60× water 

immersion lens (Plan Apo 60x, NA 1.2, Nikon) was used to image AuNP adsorbed to the cell 

membrane. Microscopy images were analyzed in ImageJ (National Institutes of Health) to 

determine the number of AuNPs per cell.  

2.3 Generation of vapor nanobubbles to deliver macromolecules to CD8+ T cells 

CD8+ T cells were first incubated with AuNPs at varying concentrations for 30 min at 

37°C in T cell culture medium, followed by a washing step with advanced RPMI medium to 

remove unbound AuNPs. Subsequently, the cells were resuspended in advanced RPMI 

medium supplemented with either 2 mg ml-1 FITC-labeled dextrans of 10 kDa alone (FD; 

Sigma-Aldrich, Bornem, Belgium) or combined with 5 µM Cy5-fluorescently labeled small 

interfering RNA (siRNA; Eurogentec, Seraing, Belgium). The cells were transferred to a 96-

well plate to perform laser treatment. A homemade setup, including an optical system and 

electric timing system, was used to generate the vapor nanobubbles (VNBs) [28]. A pulsed 
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laser (~7 ns) tuned at a wavelength of 561 nm (OpoletteTM HE 355 LD, OPOTEK Inc., 

Faraday Ave, CA, USA) was used for illumination of AuNPs to generate VNBs. The laser 

beam was fixed at ~150 µm and the laser intensity was adjusted to 160 µJ. After laser 

treatment, the cells were washed with T cell culture medium. The amount of cells that were 

photoporated with FD was quantified by flow cytometry using a FACSCalibur™ (BD 

Pharmingen, Erembodegem, Belgium) or a CytoFLEX (Beckman Coulter, Suarlée Belgium) 

and analyzed by FlowJo (Treestar Inc, Ashland, USA) software.  

2.4 Confocal microscopy 

Laser treatment was performed as described above, followed by the incubation of the 

cells in 2 µM Calcein red-orange AM (Molecular Probes, Merelbeke, Belgium) for 30 min at 

room temperature. Prior to confocal imaging, the cells were washed with T cell culture 

medium and transferred to a glass-bottom 96-well plate. Confocal microscopy images were 

acquired using a Nikon C1si confocal laser scanning microscope equipped with a 10x 

objective lens (Plan Apo, NA 0.45, Nikon). The Calcein red-orange AM dye and FITC label 

were excited with a 561 nm diode laser and a 488 nm argon-ion laser, respectively (both 

purchased from CVI Melles Griot, NM, USA).  

2.5 Viability assay 

Activated CD8+ T cells were first incubated with different concentrations of AuNPs, 

ranging from 1.6 to 12 x 109 AuNPs/ml (1:500 to 1:70 dilution of the stock AuNP 

concentration). Photoporation of the CTLs was performed as described previously, followed 

by a washing step with T cell culture medium to remove the free FD. Finally, the cells were 

resuspended in T cell culture medium supplemented with 30 U ml-1 rIL-2 and 5 x 104 

cells/100 µl/well were transferred to an opaque 96-well plate. After 24h of incubation, the 

cells were treated with a CellTiter-Glo® luminescent Cell Viability Assay (Promega, Leiden, 

The Netherlands), according to the manufacturer’s instructions. In brief, the cells were first 

incubated for 30 min at room temperature, followed by the addition of 100 µl of the 

CellTiter-Glo® reagent. After 10 min incubation, the luminescence signal was recorded by a 

GloMax™ 96 Luminometer (Promega).  

2.6 Gene silencing via vapor nanobubble-mediated photoporation 

For silencing experiments, the activated CD8+ T cells were photoporated in the 

presence of siRNA molecules. Twenty-one nucleotide siRNA duplexes that were targeted 

against tyrosine phosphatase receptor type C (CD45) or used as a control were purchased 

from Eurogentec. The 5’-ends of the antisense strands were phosphorylated and both sense 

and anti-sense strands had a UU-overhang at the 3’-end. siRNA targeting the CD45 gene 

(siCD45) had the following sequence: sense strand = 5′-GAA-GAAUGC-UCA-CAG-AUA-A-

3′; antisense strand = 5′-UUA-UCU-GUG-AGCAUU-CUU-C-3′. The control duplex, (siCTRL) 
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had the following sequence: sense strand = 5′-UGC-GCU-ACG-AUC-GACGAU-G-3′; 

antisense strand = 5′-CAU-CGU-CGA-UCG-UAG-CGC-A-3′. The CD8+ T cells were 

photoporated as previously described with different concentrations of siRNA, ranging from 

0.2 µM to 5 µM together with 2 mg ml-1 FITC-dextran (FD) dissolved in advanced RPMI. 

After laser treatment, the cells were washed with T cell culture medium and resuspended 

in this medium supplemented with 30 U ml-1 rIL-2. The cells were transferred to a U-bottom 

96-well plate (Falcon, BD Biosciences, Erembodegem, Belgium) at a concentration of 0.5-

1 x 105 cells/200 µl/well. After 24h, 48h or 72h of incubation, the cells were washed with 

phosphate buffered saline (PBS; Gibco-Invitrogen) supplemented with 5% FBS. 

Subsequently, the cells were incubated for 30 min at room temperature with PerCP-Cy™5.5 

fluorescently-labeled CD45 antibody (BD Pharmingen) in PBS supplemented with 5% FBS. 

After washing the cells, the amount of transfected cells was determined by the FITC signal 

and silencing of the CD45 receptor was quantified using flow cytometry.  

2.7 Nucleofection 

CD8+ T cells were stimulated for 7 days with anti-CD3/CD28 Dynabeads® as previously 

described. The cells were nucleofected with FD and siRNA using the Amaxa® Mouse T Cell 

Nucleofector™ kit (Lonza, Cologne, Germany) and a Nucleofector™ 2b device (Lonza), 

according to the manufacturer’s protocol. In brief, 1 x 106 CD8+ T cells were resuspended 

in T cell Nucleofector® solution supplemented with a final concentration of 2 mg ml-1 FD and 

the indicated concentration of siRNA. The cell suspension was transferred to a cuvette and 

transfected in the Nucleofector™ device using program X-01, followed by the dilution in 

500 µl prewarmed Amaxa® T cell culture medium, supplemented with 30 U ml-1 rIL-2. 

Subsequently, the cells were transferred to a 12-well plate containing 1.5 ml prewarmed 

culture medium and were cultivated at 37°C and 5% CO2 for 48h. For the viability assay, 

the cells were also diluted in prewarmed Amaxa® T cell culture medium supplemented with 

30 U ml-1 rIL-2, followed by transferring 1 x 105 cells to an opaque 96-well plate for 24h of 

incubation. A CellTiter-Glo® viability assay was performed as previously described. 

2.8 Statistical analysis 

A two-tailed Student's t-test was performed to determine statistical differences 

between datasets. All statistical analyses were performed using GraphPad Prism 6 software 

(La Jolla, CA, USA). p-values <0.05 were regarded significant. Statistical significance is 

indicated as follows: * p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001.  
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3 RESULTS 

3.1 Intracellular delivery of macromolecules to cytotoxic T lymphocytes via 

photoporation 

To investigate whether vapor nanobubble (VNB) photoporation can be applied to 

transfect cytotoxic T cells (CTLs) with macromolecules, gold nanoparticles (AuNPs) were 

first attached to the surface of activated CD8+ T cells. A schematic presentation of the 

photoporation procedure is shown in Figure 1A.  

 

Figure 1. Vapor nanobubble-mediated photoporation of cytotoxic T lymphocytes (CTLs) via 
the attachment of gold nanoparticles (AuNPs) to the cell membrane. (A) Schematic overview 
of the photoporation of CTLs by first incubating the cells with AuNPs that adsorb to the cell surface, 

followed by a nanosecond laser pulse that creates vapor nanobubbles (VNBs) around the cell-attached 

AuNPs. The collapse of the VNBs forms pores in the cell membrane through which extracellular 
macromolecules such as fluorescently labeled 10 kDa dextrans can enter the cells. (B) The number 
of AuNPs attached to the CTLs was determined by confocal reflection microscopy (red dots indicated 
with arrows) and subsequent image processing, in which both the number of AuNPs and the number 
of cells were counted. (C) Representation of the number of AuNPs per CTL ± SD (n = 5 images; ~65 
cells/image) of cells incubated with two different concentration of AuNPs (1:70 versus 1:350) for 

30 min and 1h (ns = not significant).  
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3.1.1 Determining the number of gold nanoparticles per CD8+ T cell 

Cationic AuNPs of 70 nm were used to allow electrostatic adsorption to the negatively 

charged cell membrane. To optimize the number of cell-attached AuNPs, the cells were 

incubated with varying concentrations of AuNPs, ranging from 1.6 to 12 x 109 AuNPs/ml. 

The AuNP concentrations in the graphs are represented as dilutions of the stock 

concentration of AuNPs (8.2 x 1011 AuNPs/ml). Following a washing step to remove 

unbound particles, the number of attached AuNPs per cell could be determined by confocal 

microscopy and subsequent image processing, exploiting the excellent light scattering 

properties of the AuNPs (Figure 1B). Cells incubated with 12 x 109/ml (1:70) versus 

2.3 x 109/ml (1:350) AuNPs had an average of 6 versus 3 AuNPs per cell, respectively 

(Figure 1C). Increasing the incubation time from 30 min to 1h did not result in higher 

attachment. 

3.1.2 Determining the photoporation efficiency and cytotoxicity  

For photoporation, after removing the unbound AuNPs, CTLs were incubated with 

10 kDa FITC-labeled dextran (FD) as a model macromolecule. Next, the CTL-attached 

AuNPs were illuminated by a single 7 ns laser pulse (0.9 J/cm²) for VNB generation, hence 

creating small transient pores in the cell membrane through which FD can diffuse into the 

cytoplasm [28]. For increasing AuNP concentrations, we found an increasing percentage of 

cells with a detectable FD signal. Up to 80% FD-positive cells were obtained for the highest 

AuNP concentration tested (Figure 2A). As a control, cells devoid of AuNPs were treated 

with a laser pulse (‘laser control’) leading to a low percentage of FD-positive cells (~10%) 

compared to untreated CTLs. In parallel, a CellTiter-Glo® assay was performed to assess 

cytotoxicity of the treatment, measured after 24h (Figure 2B). The cytotoxicity clearly 

increased with increasing AuNP concentration. At a concentration of 1:350, an acceptable 

70% cell viability was obtained, for which 55% of the cells were FD-positive. Confocal 

microscopy of CTLs photoporated in the presence of FD and incubated with the live cell 

imaging dye Calcein red/orange AM confirmed the intracellular FD delivery and survival of 

the cells (Figures 2C-E). Considering both delivery efficiency and toxicity, we thus selected 

the 1:350 dilution for further investigation.  
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Figure 2. Cytosolic delivery of model macromolecules to cytotoxic T cells (CTLs) via 
photoporation. (A) CTLs were incubated with four different concentrations of gold nanoparticles 
(AuNPs) ranging from 1:500 - 1:70 dilution of the AuNP stock concentration (8.2 x 1011 
AuNPs/ml), followed by a nanosecond laser pulse in the presence of 2 mg ml-1 10 kDa FITC-

dextran (FD). As a control, cells without AuNPs received similar treatment (Laser ctrl). The graph 
represents the number of FD positive cells ± SD (n = 3) that was measured by flow cytometry. 
(B) The percentage cell viability ± SD was determined as a function of AuNP concentration (n = 
3). Cells without any treatment (blank) or treated with laser alone (withouth AuNPs; Laser ctrl) 
are shown as control. All samples treated with laser were compared to the blank sample. (C) 
Confocal microscopy images of CTLs first incubated with 1:350 dilution of the AuNP stock 
concentration, followed by the incubation with the Calcein red-orange AM dye to stain living cells 

after (D) photoporation in the presence of 2 mg ml-1 FD. (E) Merged confocal image of orange 
and green fluorescence channels, showing both viable and FD-positive cells (yellow). (F) CTLs 
were treated two times with a laser pulse for the selected 1:350 AuNP dilution. The graph 
represents the number of FD-positive cells ± SD (n = 3) compared to cells treated with one time 
laser pulse but without AuNPs (Laser ctrl). (G) Percentage cell viability ± SD as a function of 
multiple laser treatments compared to blank cells (n = 3). Statistics are indicated as ns = not 

significant; * p <0.05; ** p <0.01; *** p <0.001; **** p <0.0001. 
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Another way to improve transfection efficiency instead of increasing AuNP 

concentration is to repeat the photoporation procedure a second or third time. Although 

subjecting T cells to two consecutive photoporation treatments did not result in a significant 

increase in FD delivery, a clear trend to an additional 10-15% of FD-positive cells was 

observed in all experiments (Figure 2F). Importantly, this second laser treatment did not 

result in a significant additional cytotoxicity as shown in Figure 2G. A third laser treatment 

was shown to equally increase the number of positive cells with another 10% (Figure 3). 

Of note, as AuNPs likely melt and break up in smaller fragments after being heated by the 

first laser pulse, every additional laser treatment requires an additional incubation with 

AuNPs, which is rather time-consuming [28, 29]. Therefore, we selected the protocol with 

two consecutive laser treatments using a 1:350 dilution of AuNPs for all further 

experiments. 

 

Figure 3. Cytosolic delivery of FITC-dextran (FD) to cytotoxic T cells (CTLs) as a function 
of number of laser treatments. CTLs were incubated 1, 2 or 3 times with a 1:350 dilution of gold 
nanoparticles (AuNPs - stock concentration 8.2 x 1011 AuNPs/ml), each time followed by a single laser 
pulse in the presence of 10 mg ml-1 FD. As a control, cells without AuNPs were similarly treated in the 

presence of FD (Laser ctrl). (FSC = Forward scatter) 
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3.2 Evaluation of siRNA delivery and gene silencing in cytotoxic T lymphocytes 

via photoporation 

Having optimized the photoporation protocol on activated CTLs using FD as a model 

macromolecule, we next sought to investigate its suitability toward siRNA delivery and gene 

silencing. To this end, the protein tyrosine phosphate receptor type C (CD45) was selected 

as model target. The receptor is expressed by all hematopoietic cells and was already widely 

used as model target molecule in several immune cell types [22, 30]. We evaluated gene 

knockdown on the protein level by antibody staining using flow cytometry. To quantify the 

fraction of photoporated cells, FD was co-delivered with the siRNA. To validate whether FD 

can indeed be used as a marker for siRNA delivery, we performed a photoporation 

experiment with fluorescently labeled siRNA. The extent of cellular delivery of Cy5-labeled 

siRNA and FD via photoporation of CTLs is positively correlated, as is represented in 

Figure 4. Moreover, it was shown that the presence of FD had no influence on the delivery 

efficiency of siRNA. These results confirm that FD can be used as marker for successful 

siRNA delivery by photoporation. 

 

Figure 4. Co-delivery of FITC-dextran (FD) and fluorescently-labeled siRNA to cytotoxic 
T cells (CTLs). (A) CTLs were incubated with a 1:350 dilution of gold nanoparticles (AuNPs) 
prior to laser treatment in the presence of Cy5-labeled siRNA. Flow cytometry plot representing 
the delivery of FD versus Cy5-labeled siRNA. (B) Percentage of siRNA positive cells ± SD (n = 1 

experiment with 2 independent samples; ns = not significant) with or without the co-delivery of 
FD. 
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As represented in Figure 5A, a broad distribution on the amount of FD delivered per 

CTL was observed. Since the delivery of FD and siRNA are positively correlated, also a 

higher silencing could be expected for the cells showing a higher FD signal. To evaluate 

this, CTLs were incubated with 2 mg ml-1 FD and either 1 µM siRNA against CD45 (siCD45) 

or control siRNA (siCTRL). Following photoporation, we divided the FD-positive cells in a 

FD+ and FD++ population. The FD+ population comprises the total FD-positive population 

while FD++ represents 35% of the total FD-positive population (Figure 5A). For both 

populations the percentage of knockdown was obtained by normalizing the CD45 expression 

of siCD45 treated cells to the expression levels of cells photoporated in the presence of 

siCTRL. As expected, silencing was absent for the FD-negative population, while for the 

FD++ population a trend toward higher silencing compared to FD+ was observed 

(Figures 5B-C). The highest silencing was observed 48h after laser treatment reaching 

~40 and ~60% reduction of CD45 protein expression for FD+ and FD++ cells, respectively 

(Figures 5D-E). Further increasing the concentration of siRNA to 5 µM did not show a 

significant increase in silencing (measured after 48h), which is in agreement with previous 

reports showing that applying more siRNA does not result in higher knockdown efficiency 

but rather in a prolonged silencing effect (Figures 5F-G) [31]. Moreover, also a five-fold 

reduction of the siRNA concentration did not significantly lower CD45 silencing, which 

suggests that at this concentration already maximal silencing was obtained.  
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Figure 5. Gene silencing in cytotoxic T cells (CTLs) by the delivery of siRNA via vapor 
nanobubble (VNB)-mediated photoporation. CTLs were incubated with a 1:350 dilution of 
the gold nanoparticles (AuNPs) followed by laser treatment in the presence of 1 µM siRNA and 
2 mg ml-1 FITC-dextran (FD). CTLs were either incubated with siRNA against CD45 (siCD45) or 

with control siRNA (siCTRL). (A) Histogram representing the delivery of FD to the CTLs 24h after 
delivery, combined with gating of cells showing total FD-positive (FD+, light gray solid line) and 
high FD-positive signal (top 35% of the positive cells, FD++,dark gray dotted line). (B) 
Histograms representing the expression of CD45 after 48h of incubation for samples treated with 
1 µM siCD45 versus siCTRL for the FD-, FD+ and (C) FD++ population. (D) Percentage CD45 
knockdown ± SD (n = 3) in the FD+ population and (E) FD++ population as a function of post-
photoporation incubation time. (F) Percentage CD45 knockdown ± SD (n = 2; ns = not 

significant) as a function of the siRNA concentration, ranging from 0.2 to 5 µM for FD+ and (G) 
FD++ cells. 
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3.3 Comparing siRNA delivery efficiency and cell viability via vapor nanobubble-

mediated photoporation with nucleofection  

The Nucleofector™ technology is an electroporation-based technique marketed by 

Lonza (Amaxa®) for the delivery of plasmids and siRNA in target cells, including hard-to-

transfect cells. Also this technique utilizes the temporary creation of small pores in the cell 

membrane by electrical pulses to allow the delivery of nucleic acid therapeutics directly in 

the cell cytoplasm. As nucleofection is currently the most commonly used technique for 

siRNA delivery to primary T cells, we chose to compare VNB photoporation with this 

technique [18]. For this purpose, an optimized Nucleofector™ protocol, as suggested by the 

manufacturer for the transfection of primary T cells, was used. Corroborating earlier reports 

in the literature, in our hands the nucleofection of primary T cells likewise resulted in high 

levels of cell death. After 24h, only 17% of the treated cells survived the nucleofection 

protocol versus 70% for the optimized photoporation approach (Figure 6A). However, 

within this small fraction of surviving cells, 95% was FD-positive compared with 65% FD-

positive cells for photoporation. From these data, we can conclude that for nucleofection 

the gain of viable FD-positive cells is 16% versus 45.5% for photoporation. Additionally, 

when cells were treated with 1 µM siRNA, a comparable knockdown of CD45 protein levels 

was observed for both techniques (Figure 6B). As shown in Figure 6C, similar to results 

obtained via photoporation, CD45 knockdown efficiency was not significantly altered when 

applying different siRNA concentrations (0.2 to 5 µM).  

Moreover, the extent of delivery greatly differed between both techniques, as 

demonstrated for FD. Although a more homogenous distribution of the delivered FD cargo 

was observed for nucleofection, the majority of FD-positive cells showed markedly higher 

fluorescence intensities when treated by photoporation (Figure 6D).  
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Figure 6. Cell viability and gene silencing in cytotoxic T lymphocytes (CTLs) by 
photoporation versus nucleofection. CTLs were nucleofected according to the manufacturer’s 

protocol in the presence of siRNA and 2 mg ml-1 FITC-dextran (FD). (A) Percentage CTL viability 

± SD (n = 3) as a function of the technique for the delivery of 2 mg ml-1 FD compared to blank 
CTLs. CTLs that were transfected by photoporation were treated two consecutive times with 
nanosecond laser pulses. (B) Percentage knockdown ± SD (photoporation n = 4; nucleofection 
n = 2; ns = not significant) of cells treated by photoporation (65% FD-positive cells) versus 
nucleofection (95% FD-positive cells) with 1 µM siRNA. Photoporated CTLs were divided in two 
populations represented as FD+ (100% FD-positive cells) and FD++ (top 35% of FD-positive 

cells). (C) Percentage knockdown ± SD (n = 2; ns = not significant) of cells nucleofected with 
different concentrations of siRNA, ranging from 0.2 to 5 µM. (D) Histograms of the FD-positive 
cells comparing the fluorescence intensity of the delivered FD by photoporation versus 
nucleofection, immediately after treatment. Statistics are indicated as ns = not significant; * p 
<0.05; **** p <0.0001. 
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4 DISCUSSION 

The goal of this study was to investigate whether target genes in cytotoxic T cells 

(CTLs) can be silenced by delivering small interfering RNA (siRNA) molecules via vapor 

nanobubble (VNB)-mediated photoporation. Because photoporation is mediated by 

plasmonic gold nanoparticles (AuNPs), we first investigated the attachment of positively 

charged AuNPs to the anionic CTL surface. In general, the endocytic uptake of nanoparticles 

in T cells is impaired, which implies that the majority of the particles remains attached to 

the surface without internalization [32, 33]. In this work, we aim to exploit this feature to 

selectively permeabilize the cell membrane. The number of adsorbed AuNPs per cell could 

be quantified from confocal images obtained in reflection mode. As expected, increasing the 

AuNP concentration resulted in more attached AuNPs. However, an average of 6 AuNPs per 

CTL already resulted in high toxicity. This toxicity can be explained by the formation of 

multiple pores per T cell, thus compromising the integrity of the cell membrane beyond 

repair. Therefore, a AuNP concentration corresponding to ~3 AuNPs per cell was selected 

as it showed the most optimal balance between delivery efficiency and viability. These 

results are in line with a previous study showing that only a few or even single particles per 

cell may result in efficient cellular delivery [34]. In addition, we showed that repeating the 

photoporation procedure a second time enhanced the transfection efficiency up to 65% 

while not substantially increasing the toxicity.  

The delivery of siRNA resulted in 40-60% silencing of the CD45 gene, which was used 

as a model target. Compared to the Nucleofector™ technology, which is the standard 

method to deliver siRNA to CTLs, photoporation at the optimized conditions of 70% cell 

viability yields a lower percentage of transfected cells albeit with a markedly higher average 

macromolecular dose per cell and significantly reduced cytotoxicity. This improved delivery 

by photoporation could become very important to maintain sufficiently high drug 

concentrations per cell when CTLs proliferate and divide their cytosolic content over the 

daughter cells. The low toxicity can in part be explained by the relatively small pores 

(<1 µm) generated by the photoporation technique together with their rapid repair that 

takes only a few tens of seconds [35]. Although the AuNPs reach a high temperature for 

the formation of VNBs, it was already demonstrated by us and others that this does not 

induce heat transfer to the surrounding medium as virtually all heat energy is converted to 

mechanical energy, also contributing to the reduced toxicity [28, 36]. Moreover, the size of 

the generated vapor nanobubbles and hence the extent of membrane damage can be 

further tuned by optimizing laser properties such as intensity and pulse duration, as was 

shown for T cells previously [37].  

Photoporation typically generates a broad distribution on the amount of 

macromolecules delivered per cell, which can likely be explained by the variation in the 

number of AuNPs per cell. Upon activation, the CD8+ T cells will considerably expand. As 
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was previously shown by our group, the number of nanoparticles that can be attached per 

T cell is highly dependent on the activation status and the resultant size of the CD8+ T cells 

[33]. For adoptive T cell transfer, CD8+ T cells need to be activated to exert their tumor-

migratory and cytotoxic function. Additionally, it has been shown that activated T cells are 

more amenable for transfection than their resting counterparts [38, 39].  

In general, nucleofection showed a higher percentage of transfected cells compared 

to photoporation. However, when considering the severe cell toxicity after 24h for 

nucleofection, it can be concluded that almost three times more CTLs can be generated with 

a comparable knockdown via the photoporation technique. Non-viral siRNA-loaded 

nanoparticles typically achieve lower transfection efficiencies in primary T lymphocytes, yet 

they are likely more suitable for in vivo use compared to physical methods such as 

photoporation and electroporation [22, 40]. We envision the use of photoporation during 

the ex vivo treatment of T lymphocytes in the context of adoptive T cell therapy (ACT), in 

which T cells are isolated from a patient and modulated ex vivo before reinfusion. Recent 

research showed that in many patients the success of ACT is still blunted by numerous 

factors that inhibit the activity of the CTLs, causing tumor escape [41]. Manipulating the 

immune escape mechanisms by immune checkpoint inhibitors such as CTLA-4 and PD-1 

antibodies has shown clinical success but the application of antibodies remains restricted to 

extracellular targets [42]. Exciting is the current elucidation of new intracellular targets in 

CTLs that upon silencing promote a more effective anti-tumor response, i.e. increase the 

tumor infiltration, T cell proliferation, and release of immune-stimulating cytokines [43, 44]. 

To this end, the delivery of siRNA targeting this suppressive intracellular circuitry via the 

photoporation technique may further boost the anti-tumor activity of the transferred T cells 

in the immunosuppressive tumor microenvironment, which will be the subject of future 

research.  

The focus of this work was to test the photoporation technique on CTLs in the context 

of ACT. Of note, preliminary data indicate that photoporation might be of value to transfect 

other types of immune cells as well, as we observed similar delivery efficiencies for both 

CD8+ and CD8- splenocytes, including CD4+ T cells and B cells (Figure 7). Furthermore, 

the photoporation technique can be extended to the delivery of other types of membrane-

impermeable macromolecules for both therapeutic and diagnostic use.  
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Figure 7. Cytosolic delivery of FITC-dextran (FD) to splenocytes. Splenocytes were activated 
during 9 days and incubated with 1:350 dilution of gold nanoparticles (AuNPs - stock concentration 

8.2 x 1011 AuNPs/ml) followed by two consecutive laser treatments in the presence of 10 mg ml-1 FD. 
After laser treatment, the cells were washed and stained with anti-CD8 antibodies in PBS 
supplemented with 5% FBS. (A) Flow cytometry plot representing the CD8 negative versus positive 
cells in the total splenocyte population. (B) Plot representing the percentage FD-positive cells in the 
CD8- population versus (C) CD8+ population.  
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5 CONCLUSION 

We proposed a novel technique for the efficient delivery of siRNA molecules to CTLs 

by VNB-mediated photoporation. To this end, we optimized the amount of AuNPs and 

number of laser treatments to obtain high delivery efficiency in combination with low 

toxicity. We further showed the co-delivery of fluorescently labeled dextrans with siRNA 

molecules, resulting in the silencing of the CD45 model protein. A comparison of 

photoporation with nucleofection, the latter being the standard non-viral method to deliver 

siRNA to CTLs, showed a three-fold higher number of efficiently transfected and viable T 

cells for photoporation, mainly as a result of the high cell toxicity with the Nucleofector™ 

technology. 
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Within this study, we showed how the interplay of nanomedicines with adoptive T cell 

therapy has potential to enhance anti-cancer responses. We proposed strategies to improve 

cancer immunotherapy by combining adoptive T cell therapy with the concomitant delivery 

of nanomedicines to the tumor and described a novel technique exploiting gold 

nanoparticles to deliver small interfering RNA (siRNA) molecules to primary cytotoxic T cells 

(CTLs), aiming to make them more effective. In this chapter, the broader context of this 

project will be sketched by discussing the recent progress in the field of cancer 

immunotherapy and nanomedicines, the challenges that currently limit the successes of 

both therapies, and how the concepts outlined in this thesis could help to overcome these 

important issues. 

In recent years, cancer immunotherapeutics, in particular the monoclonal 

antibodies for checkpoint blockade, have become part of the standard therapies for cancer 

[1]. Compared to conventional chemotherapeutics, immunotherapy has advantages in 

terms of reducing off-target side effects and inducing an anti-tumor memory that may 

protect patients from relapse. Moreover, besides eradicating primary tumor, also 

metastases are a target for the generated immune responses. Since the regulatory approval 

of the checkpoint inhibitor ipilimumab (anti-CTLA-4; marketed as Yervoy®) in 2011, cancer 

immunotherapy has become the fastest-growing area in pharmaceutical industry [2]. 

Moreover, Science magazine selected cancer immunotherapy as the breakthrough of the 

year in 2013 [3]. Nowadays, it becomes increasingly clear that for cancers not treatable via 

surgery or radiotherapy, the current standard of care, consisting of chemotherapy and 

targeted therapies will be challenged by immunotherapy and that the latter one has the 

potential to become the backbone of cancer therapy in the future. 

Successful clinical data of the administration of tumor-infiltrating lymphocytes (TILs) 

to patients with metastatic melanoma who were refractory to the standard therapies, paved 

the way for the use of adoptive T cell therapy (ACT) in a broader range of tumors by 

engineering T cells to express a novel, tumor-specific T-cell receptor (TCR) or chimeric 

antigen receptor (CAR). Recently, studies have demonstrated the impressive efficacy of 

CAR therapies targeting CD19 in patients with acute lymphoblastic leukemia [4]. The high 

number of clinical trials registered for CAR T cell therapy clearly illustrates its increasing 

popularity (~130 studies worldwide from which 12 in Europe; clinicaltrials.gov). 

In spite of the impressive clinical results of CAR in blood cancers, it is important to 

consider which specific T cell subsets have the highest potential in ACT to further improve 

the therapeutic outcome in solid tumors [5]. Currently, most of the clinical protocols involve 

the stimulation of unselected T cells with CD3/CD28 beads in the presence of IL-2, which is 

also the protocol that was followed in this thesis [6]. However, in the future, the pre-

selection of superior subsets of T cells will become increasingly important in clinical research 

[7]. 
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Less-differentiated T cells were shown to have a higher proliferative capacity and 

better persistence, which resulted in the eradication of large established tumors and the 

induction of long-term immunity [7, 8]. The selection of less-differentiated cells such as 

memory T cells (T memory stem cells, central memory T cells) can provide greater 

therapeutic potential of ACT, as recently demonstrated by Riddell and coworkers [9]. 

Moreover, the expansion of T cells in the presence of IL-7, IL-15 and IL-21 has been 

demonstrated to favor a T cell memory phenotype with increased survival and anti-tumor 

activity, which might outperform the incubation with IL-2 [10]. Moreover, in this study we 

mainly focused on the use of CD8+ T cells, whereas the role of CD4+ T cells may not be 

underestimated. Several studies have illustrated that CD4+ T cells help to improve the 

therapeutic outcome and support the development of CD8+ T cell memory functions [11, 

12]. As was shown in this study, CD4+ T cells can be equally loaded with liposomes as CD8+ 

T cells, which supports the idea to combine both cell types for further research.  

A second important feature is the upregulation of T cell inhibitory receptors or immune 

checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and 

programmed cell death 1 (PD-1) on activated T cells [13, 14]. Interactions of tumor cells 

or antigen-presenting cells with these immune checkpoints can promote the exhaustion of 

T cells [15]. Exhausted or dysfunctional T cells lose their capacity to proliferate, to 

produce immunostimulatory cytokines, and to exert cytolytic activity [14]. Consequently, 

the combination of T cell therapy with checkpoint inhibitors has demonstrated to enhance 

the therapeutic effect in preclinical studies [16, 17]. Moreover, the recent elucidation of 

several intracellular pathways involved in the dysfunctional status of the T cells has 

triggered research towards therapeutics that target these pathways [18]. As monoclonal 

antibodies can only target cell surface receptors, other mechanisms such as RNA 

interference (RNAi) are of interest. Indeed, several in vivo studies have illustrated the 

enhanced infiltration of T cells, the increased survival rates and improved memory functions 

after downregulating intracellular pathways via siRNA [19, 20]. For the delivery of such 

siRNAs, it is important to keep in mind that for ACT, cells are isolated from a patient to 

expand them, which allows the application of ex vivo transfection techniques. However, 

innovative approaches are still required, as the use of conventional ex vivo transfection 

methods, i.e. viral vectors and electroporation/nucleofection, are limited due to high 

production costs, safety issues and loss in viability. To this end, we proposed a novel 

strategy based on vapor nanobubble-mediated photoporation for the ex vivo delivery 

of siRNA, directly to the cytosol of the T cells. As a proof-of-concept, we showed the 

silencing of a model target while significantly improving the amount of viable transfected 

cells compared to nucleofection. To further investigate the potential of this strategy, future 

research needs to elaborate on this concept by using specific siRNA sequences that silence 

suppressive pathways to boost the survival, proliferative capacity and effector functions of 

T cells before adoptive transfer.  
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Besides making the T cells more effective, interfering with the immunosuppressive 

tumor microenvironment may also enhance clinical success. Nowadays, the tumor 

microenvironment is one of the major challenges in the development of cancer 

immunotherapies. It can impede the infiltration of anti-tumor T cells while a lack of 

immunostimulatory cytokines and the upregulation of various immunosuppressive 

pathways inhibit T cell stimulation and persistence. Besides immune checkpoints, other 

important mediators in the tumor microenvironment were shown to contribute to the 

dysfunction of T cells, such as the presence of tumor-promoting cytokines (e.g. IL-10, 

TGFβ) and the interaction with several immunosuppressive cells (e.g. regulatory T cells 

(Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages 

(TAMs)) [21]. Therefore, the identification and therapeutic targeting of these 

immunosuppressive players in the tumor microenvironment gained a lot of interest in recent 

years.  

It is clear that the success of a selected immunotherapy is influenced by a multitude 

of different mediators in the tumor microenvironment. Nowadays, it becomes more clear 

that combining different immunotherapies, interfering concomitantly with multiple immune 

mediators, entails synergistic effects [22, 23]. The best-studied combination is the 

administration of ipilimumab (anti-CTLA-4) together with nivolumab (anti-PD-1), which 

showed improved clinical outcome and will soon find its way to the clinic [24, 25]. Although 

monoclonal antibodies show good clinical responses, the unbalancing of the immune system 

can also generate severe side effects, referred to as immune-related adverse events 

(IRAEs). Because this is a new type of side effects in the clinic, it will be important to 

educate oncologists how to recognize and handle these side effects [26].  

Despite good clinical responses of immune checkpoints, this approach requires a T 

cell-infiltrated tumor with the presence of high amounts of TILs that can eradicate all tumor 

cells. Unfortunately, it has been demonstrated that the amount of TILs is often very low 

and that the tumor tissue is very heterogeneous, which explains why several tumor cells 

escape from T cell-mediated killing and induce relapse [27, 28]. Hence, this encourages 

researchers to further investigate in combination strategies with other types of 

immunotherapies. In Figure 1, the mechanisms of action associated with different types of 

anti-cancer therapeutics are illustrated.  

Within our study, we investigated the combination of ACT with the concomitant 

delivery of the immune adjuvant monophosphoryl lipid A (MPLA) to the tumor. We 

anticipated a tumor killing effect by the adoptively transferred CTLs accompanied by an 

enhanced activity of tumor-infiltrated dendritic cells (DCs) via MPLA. It has been shown 

previously that tumor-infiltrated DCs may have an immunosuppressive role, which 

counteract the CTL responses [29]. The Toll-like receptor 4 (TLR4) agonist MPLA may shift 

the phenotype of DCs in the tumor microenvironment from immunosuppressive to tumor-
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suppressive. A recent study has demonstrated the potential of boosting DCs in the tumor 

microenvironment by the delivery of adjuvant mRNA, inducing the reactivation of 

suppressed tumor-infiltrating T cells and the activation of new CTLs in the lymph nodes 

[30]. In vitro, we showed the maturation of DCs when incubated with T cells loaded with 

MPLA liposomes, which induced the production of IL-12, an immunostimulatory cytokine. 

Moreover, intratumoral injection of tumor-specific MPLA-loaded T cells resulted in improved 

survival of tumor-bearing mice. However, further research is needed to investigate whether 

the therapeutic outcome is also improved after systemic injection, which is the final goal of 

this combined strategy. We selected MPLA in our study based on its amphiphilic properties, 

which enables its incorporation in liposomes, and its activity at the cell surface, 

circumventing the need for cellular internalization. However, it should be considered that 

MPLA is possibly not the most optimal immune adjuvant to manipulate the tumor 

microenvironment. Indeed, in recent years much controversy has arisen concerning the 

immunostimulatory function of TLR4 agonists. Several studies have illustrated that TLR4 

agonists can induce anti-cancer responses while a few other studies have now demonstrated 

the opposite effect, i.e. the promotion of tumor growth [31, 32]. It was suggested that the 

pro- or anti-cancer effects might depend on the environmental conditions in the tumor [32]. 

In addition to TLR4 agonists, other adjuvants stimulating TLR 7/8 and TLR9 were shown to 

have great potential in stimulating DCs and could be of value to modulate the tumor 

microenvironment [31]. Importantly, although we anticipated that the stable T cell coupling 

of MPLA liposomes would induce DC maturation via close interaction with TLR4 receptors at 

the DC surface, our results showed an extensive internalization of liposomes by DCs, e.g. 

via the hypothesized ‘nibbling’ process. From this observation, it is clear that also other 

types of adjuvants (e.g. CpG, poly(I:C)) that require the cytosolic delivery can be of interest 

for targeted delivery to the tumor.  

In addition, combining ACT with the delivery of immunostimulatory cytokines as 

described by Irvine and colleagues to support the activity of the transferred T cells can be 

extended by the delivery of cytokines that have an immune-stimulating effect on the tumor 

microenvironment [33]. For example, it has been investigated whether T cells can be 

engineered to produce IL-12, which can shift multiple cell types within the tumor 

microenvironment from pro-oncogenic to tumor-suppressive [34]. However, in most 

studies, viral vectors are used to perform this genetic engineering, which increases concerns 

about safety and cost. For this purpose, the delivery of IL-12 via NPs could be a valuable 

alternative. As IL-12 was already shown to be easily entrapped within liposomes, the 

coupling of IL-12 loaded liposomes to T cells for adoptive transfer might be a novel 

interesting approach [35].  
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Figure 1. Mechanisms of action of different anti-cancer therapies. This figure was adapted 
from Ref. [23] and adjusted based on our own research. Cancer immunotherapies can be combined 

with either other type of immunotherapy or standard non-immune therapy, of which the latter one is 
now mainly used in the clinic, with the exception of RNA interference (RNAi). RNAi is already clinically 
investigated, however, not yet approved or available on the market. The types of immunotherapies 
that were evaluated within this work are indicated in green and their mechanisms of action in red. 
The therapeutic strategies that are suggested here as interesting therapies to combine with our 
concept are indicated in blue albeit that further development and investigation such as loading the 
nanoparticles with cytokines, chemotherapeutics, and RNAi, are needed. By combining these 

strategies, also other mechanisms of action (indicated in purple) can be exploited, leading to a 

synergistic outcome. 

Besides combining different immunotherapeutics, Figure 1 also indicates that 

combinations with standard anti-cancer therapies may act on distinct (immune) 

mechanisms of action, entailing synergistic effects. For example, combining immunotherapy 

with chemotherapeutics seems very interesting as it was recently observed that the 

induction of immunogenic cell death by specific types of chemotherapeutics may contribute 

to anti-cancer immune responses [36]. In particular, when tumor cells are destroyed in an 

immunogenic way, they release tumor antigens as well as factors to attract and activate 

antigen-presenting cells [37]. Therefore, in contrast to the detrimental impact of 

chemotherapeutics such as doxorubicin (DOX) on the immune system, the identification of 

DOX as an inducer of immunogenic cell death provided a rationale for its synergistic 

application with immunotherapy. Of course, DOX, as well as other chemotherapeutics, have 

the disadvantage of off-target toxicity, when administered systemically. To overcome this, 

chemotherapeutics are packaged in NPs (e.g. Doxil®/Caelyx®) to reduce side effects, 

increase circulation time, and enhance accumulation in the tumor tissue based on the 

enhanced permeation and retention (EPR) effect [38]. However, the general problem with 

EPR-mediated passive tumor-targeted delivery of nanomedicines is the heterogeneity of the 

EPR effect leading to low or even absent nanomedicine extravasation in tumors showing 
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limited EPR. This issue can be addressed by cell-mediated delivery of NPs containing 

chemotherapeutics, as proposed in this work. Following the successful anchoring of 

liposomes to the surface of CTLs, we evaluated the incorporation of DOX into these 

liposomes for T cell-mediated delivery. Unfortunately, we were not able to develop a 

sufficiently stable liposomal carrier that could avoid premature drug release and prevent 

toxicity to the T cell carriers (data not shown). To this end, it is important to further 

investigate the development of either a NP that can prevent premature drug release or 

selecting a chemotherapeutic for which T cells are resistant to therapeutic doses [39]. 

Also nucleic acid therapeutics, like siRNA, require the formulation into NPs prior to in 

vivo administration. NP encapsulation can protect them from degradation by nucleases and 

can help to overcome the cell membrane barrier for intracellular delivery. The delivery of 

siRNA to tumor cells, targeting genes involved in cell cycle arrest, cell apoptosis, and 

proliferation, has already been shown to induce tumor regression [40]. Besides targeting 

tumor cells, also certain types of immune cells such as regulatory DCs, MDSCs, and TAMs 

could be potential targets, as these cells were shown to promote tumor outgrowth. Hence, 

the downregulation of immunosuppressive pathways via siRNA in these cells can be an 

important therapeutic approach for future research. An example of a target that was already 

shown to induce a potent anti-tumor effect when downregulated is signal transducer and 

activator of transcription 3 (STAT3) in DCs [41]. Moreover, a combination of RNAi with 

immunostimulatory agents such as TLR agonists is suggested to even further enhance the 

anti-tumor response [42]. In analogy with NPs loaded with low molecular weight 

chemotherapeutics, siRNA loaded NPs face the same delivery challenges in vivo. To improve 

the accumulation of siRNA-loaded NPs in the tumor, we demonstrated in Chapter 2 that 

lipid-coated nanogels could be loaded with siRNA molecules and coupled to CD8+ T cells. 

Importantly, to allow intracellular delivery of siRNA to the abovementioned target cells, the 

NPs need to be released again from the carrier T cells in the tumor. To this end, we 

investigated a redox-sensitive coupling system enabling triggered release of liposomes from 

the T cell surface upon incubation with the reducing agent glutathione. However, optimal 

coupling stability in serum-enriched medium via this redox-sensitive linker could not be 

guaranteed. Therefore, we also evaluated the coupling via an enzyme-sensitive linker. 

Although stability problems in serum-enriched medium were solved, the enzyme-triggered 

release was very low, indicating the complexity of maintaining specific enzymatic activity 

on the highly dynamic cell membrane. To address the issue of stability, a more stable 

thioether bond proved to avoid premature NP release after systemic injection as shown by 

a rather limited release of liposomes upon contact with serum. Although the mechanism 

remains elusive, the ability of DCs to internalize nanoparticles that are stably attached to 

the T cell surface might be useful for the delivery of siRNA as well. However, it remains to 

be investigated what the most suitable coupling strategy is for in vivo delivery of NPs to the 

tumor, which subsequently influences the choice of therapeutic that can be delivered.  
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As explained here, a multitude of different combinations can lead to synergistic 

effects. However, the increasing number of (immuno)therapeutics, inter-patient variability 

in immune responses, and the tumor heterogeneity augment the need for predictive 

biomarkers to identify patients that may benefit from a selected therapeutic strategy and 

allow physicians to direct patients to the most suitable therapies [23, 43]. This personalized 

strategy may offer advantages in terms of reducing side effects and costs for patients that 

might not show therapeutic response. The implementation of a personalized approach in 

cancer immunotherapy can be further extended to the rational selection of suitable tumor 

antigens as targets in cancer vaccination and ACT with TCR/CAR engineered T cells. Self-

antigens can be used in a broad range of patients, although their clinical use is severely 

hampered by off-target toxicity and immune tolerance, as previously observed in clinical 

trials [44, 45]. Therefore, the identification of tumor-specific antigens or neoantigens as 

targets for these therapies will become increasingly important. Decreasing costs of next-

generation sequencing platforms will make this identification in a patient-specific manner 

more feasible in the future [46, 47]. Moreover, considering the heterogeneity within the 

primary tumor on the one hand and between metastases on the other hand, together with 

the well-known phenomenon of antigen loss in cancer cells under pressure of an antigen-

specific immune response, will require targeting of different neoantigens within a single 

treatment by ACT [27, 48, 49].  

Both the use of biomarkers and the search for patient-specific neoantigens highlight 

the need for a personalized treatment, which is in contrast with the paradigm of 

pharmaceutical companies to produce “off-the-shelf” therapeutics. However, the past few 

years have witnessed the emergence of several new biotechnology companies that focus 

on the commercialization of ACT [50, 51]. In coming years, ACT has great potential to 

play a major role in the treatment of cancer patients, which addresses the need for its 

commercialization [52]. The current issues related to this are how to manufacture cell 

therapies in a cost-effective way and how to provide safe and sterile products while 

maintaining adherence to the Good Manufacturing Practices (GMP) guidelines. Of note, 

based on lessons learned from the production of the cellular product sipuleucel-T, the 

therapeutic efficacy needs to be high enough to justify the cost and complexity of the 

production. Therefore, pharmaceutical companies are currently investigating the 

automation of T cell manipulations in closed systems with the aim to reduce cost and the 

risk for contamination, while further improving the scalability of the manufacturing process. 

However, it depends on the therapeutic success of ACT whether commercialization in the 

future will be successful or not. Therefore, clinical trials proving the induction of long-term 

remissions in a high number of patients will be highly recommended. Furthermore, novel 

approaches, such as the use of allogeneic T cells, were proposed to lower the cost and to 

consequently augment the success rate. This allogeneic T cell approach consists of the 

isolation of T cells from healthy donors and the genetic engineering of the cells to replace 
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the endogenous TCR by a CAR or tumor-targeted TCR [50]. Although the allogeneic T cell 

concept for ACT aims to create again “off-the-shelf” products to reduce costs, the previously 

described benefit of targeting tumor-specific antigens further supports a personalized 

approach. In general, it is all about finding a balance between the personalization of the 

treatment to enhance the efficacy on the one hand and the use of off-the-shelf therapeutics 

to reduce costs on the other hand.  

Besides commercialization, the development of personalized immunotherapeutics and 

cell-based therapies for cancer may give rise to a number of additional regulatory 

challenges. In these therapies, not all of the general guidelines in current drug 

development can be applied. For example, assessment of the stability and shelf life of 

autologous cell-based products cannot be established for every batch due to the ‘on-

demand’ production and short time until administration. Regulatory agencies that control 

the pre-market testing and marketing approval are currently working to define optimal 

guidelines for the manufacturing of these cellular products [52, 53]. 

In summary, nowadays cancer immunotherapy is a hot topic, which is justified 

because of its superior effectiveness in patients refractory to conventional therapies. 

Unfortunately, still a major set of issues are crossing its path to ultimate success, for 

example the presence of exhausted T cells, the immunosuppressive tumor 

microenvironment, and tumor heterogeneity. Combining different types of cancer 

immunotherapies or the combination with other anti-cancer therapies may tackle these 

limitations. Several of these therapeutics benefit from the encapsulation in nanocarriers to 

protect them from degradation, modify their pharmacokinetics and/or enhance the 

intracellular delivery. However, targeting of these NPs to the tumor is still a major 

bottleneck in the field of anti-cancer nanomedicine. In this work, we have explored the 

possibility to utilize the tumor-migratory capacity of adoptively transferred T cells to deliver 

nanomedicines to the tumor, in order to develop a synergistic anti-tumor therapy. As 

highlighted in this chapter, our experimental data clearly show the potential of such a 

combination strategy as well as highlight a number of hurdles that need to be addressed in 

future research to translate such therapies from the laboratory to the patient.   
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Summary and conclusions 

Cancer remains one of the most devastating diseases worldwide, with every year 14 

million new cases and 8 million cancer-related deaths. Over the past few years, the search 

for new anti-cancer approaches has increased tremendously. Nowadays, conventional 

cancer therapies consist of surgery, radiotherapy, and chemotherapy. These methods, 

however, hold a potential risk for relapse, metastasis, and systemic toxicity. To reduce the 

risk of systemic toxicities, researchers have developed strategies to encapsulate 

chemotherapeutics in nanocarriers, aiming to improve the specific delivery of therapeutics 

to the tumor. Despite the success of anti-cancer nanomedicines in (pre)clinical trials, the 

number of commercially available therapeutics remains remarkably low. One of the main 

causes is their low targeting capacity and limited infiltration into the tumor after systemic 

injection. Therefore, this project aimed to investigate the cell-mediated delivery of 

nanomedicines to the tumor. For this purpose, cytotoxic T cells (CTLs) were selected as 

transport vehicles based on their spontaneous migration to the tumor and their potential to 

specifically kill tumor cells. In addition, we evaluated the delivery of small interfering RNA 

(siRNA) molecules to the cytosol of CTLs via a vapor nanobubble-mediated photoporation 

technique, aiming to improve T cell effector functions against the tumor.  

Chapter 1 provided a general overview of the two major research fields that were 

combined in this work; cancer nanomedicines and cancer immunotherapy. We provided a 

brief overview of the different types of nanocarriers and encapsulated therapeutics that are 

currently investigated for the treatment of cancer. One of the major drawbacks in the 

delivery of nanomedicines to the tumor is their limited infiltration and accumulation in the 

tumor tissue. Therefore, cell-mediated drug delivery via tumoritropic cells can be an 

interesting alternative. In this strategy, tumoritropic cells, such as mesenchymal stem cells, 

monocytes, macrophages, and T lymphocytes, are loaded with nanoparticles (NPs) to evade 

the various barriers NPs normally encounter on their way to the tumor. We described the 

different cell types and various coupling techniques that can be used in this cell-mediated 

drug delivery. In a second part, a summary is provided of the different types of cancer 

immunotherapies that are currently in (pre)clinical trials or on the market, including cancer 

vaccination, adoptive T cell therapy (ACT), immunostimulatory cytokines, checkpoint 

inhibitors, and immune adjuvants. In addition, this section highlighted the advantages of 

combining immunotherapy with non-immune therapies such as chemotherapy and RNA 

interference. In a final part, we described in vivo and ex vivo transfection methods for the 

genetic modification of T cells to express tumor-specific T cell receptors and to enhance 

their tumor infiltration, survival, and cytolytic effect. In addition, we focused on different 

techniques for the delivery of siRNA to T lymphocytes, including NP-mediated delivery, 

electroporation/nucleofection, and CellSqueeze microfluidics.  
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Chapter 2 described the development of a novel reversible coupling strategy to attach 

lipid-based NPs to the surface of both activated and non-activated CD8+ T cells. The 

incorporation of high amounts of pyridyldithiopropionate (PDP)-functionalized lipids (up to 

50 wt%) was shown to drastically improve the coupling efficiency. Importantly, the coupling 

of liposomes did not affect their in vitro proliferation and cytolytic activity. The release of 

liposomes from the surface by a tumor-related trigger offers advantages for the delivery of 

membrane-impermeable macromolecular drugs that require cytosolic delivery, for example 

siRNA. Triggered release of the liposomes that were attached to the cells via a disulfide 

bond can be obtained via the incubation with a reducing agent. Based on the literature that 

has described the presence of elevated levels of glutathione in the extracellular tumor 

microenvironment, glutathione was selected as trigger to evaluate the NP release. For both 

activated and non-activated T cells, up to 50-60% of the anchored liposomes were shown 

to detach from the surface. Notably, the liposomes did not tend to aggregate upon release, 

which is important for their subsequent uptake in tumor cells. As a proof-of-concept, siRNA 

molecules were encapsulated in a lipid-polymer nanocomposite, which efficiently 

encapsulated siRNA in the nanogel core and allowed coupling to CD8+ T cells via the PDP-

functionalized lipid shell. In addition, we demonstrated that the lipid shell improved the 

stability of siRNA in the nanoformulation when incubated with human serum. In addition to 

the coupling of NPs to CD8+ T cells, CD4+ T cells were shown to attach liposomes in similar 

amounts, which might be of interest for future research as CD4+ T cells have been described 

in the literature to augment the proliferation, survival and efficacy of CD8+ T cells. 

As the final aim of this research was to exploit the CTL’s capacity to deliver drug-

loaded NPs to the tumor, Chapter 3 examined the in vivo migration of NP-loaded CTLs to 

the tumor. Therefore, we used a melanoma mouse model and investigated the tumor 

infiltration of CTLs as a function of their NP-load. The reversible coupling was extended by 

a stable coupling strategy based on the incorporation of maleimide (MAL)-functionalized 

lipids in the liposome composition. Although the data revealed a lower infiltration of 

liposome-loaded CTLs in the tumor 48h after transfer, we could not observe a negative 

impact of the NP-load on the anti-tumor responses of the T cells. On the contrary, when 

loaded with NPs, the CTLs showed an enhanced control over the tumor growth. The in vitro 

observation that T cells loaded with PDP- and MAL-functionalized liposomes secreted 

significantly higher levels of interferon gamma (IFNγ) and tumor necrosis factor alpha 

(TNFα) might contribute to this enhanced anti-tumor effect. In a next step, the liposomes 

were loaded with monophosphoryl lipid A (MPLA), an immune adjuvant from which it has 

been shown in the literature to boost the immune system against cancer. First, it was 

demonstrated that MPLA incorporated in PDP and MAL liposomes had no influence on the T 

cell proliferation, viability, and coupling efficiency. In addition, these data also showed an 

increased secretion of IFNγ when T cells were loaded with liposomes. Moreover, this 

increased secretion could be uniquely attributed to the NP coupling because free MPLA did 
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not induce this effect. A co-culture of dendritic cells (DCs) and T cells loaded with MPLA 

liposomes demonstrated the upregulation of the co-stimulatory molecules CD40 and CD80 

and an increased secretion of the immunostimulatory cytokine IL-12, which all indicated 

successful maturation of DCs. In a final step, intratumoral delivery of T cells showed 

improved survival of mice injected with T cells coupled with MPLA liposomes via a reversible 

coupling. Future research will be needed to investigate the therapeutic benefit after 

systemic injection.  

Considering the observation that a reversible coupling by a disulfide linker 

encountered stability problems in serum-enriched medium and that half of the liposomes 

remained attached to the surface after triggered release, we searched for a more specific 

cleavable system. Therefore, in Chapter 4, we investigated the coupling of liposomes via 

an enzyme-sensitive coupling system in which the liposomes were attached to the T cells 

via a cleavable peptide linker. The peptide sequence is cleavable by the specific proteases 

matriptase, urokinase-type plasminogen activator (uPA), and legumain, from which 

elevated levels are present in several tumor types. In this chapter, we showed successful 

coupling of the peptide linker construct to the CTL surface with optimal stability in serum-

enriched medium. Although the cleavability of the construct was demonstrated when 

attached to magnetic beads, when coupled onto T cells, only a small fraction was cleaved 

from the surface by matriptase or uPA. Because incubation with the aspecific protease 

trypsin illustrated high cleavage of the construct from the T cells, we hypothesized that 

steric hindrance by the highly complex cell surface might contribute to the low specific 

cleavage.  

Besides the ability of CTLs to transport nanomedicines to the tumor, they also have 

the intrinsic capacity to kill tumor cells. However, a variety of immunosuppressive pathways 

can inhibit their anti-tumor responses. Downregulation of these pathways via siRNA is of 

interest to improve the therapeutic outcome of ACT. As T cells are hard-to-transfect cells, 

the conventional lipid/polymer-based NPs and nucleofection have been shown to induce a 

low transfection efficiency and high toxicity, respectively. Therefore, in Chapter 5 we 

proposed vapor nanobubble-mediated photoporation as an alternative approach. We 

demonstrated the delivery of siRNA molecules to the cytosol of T cells, leading to knockdown 

of the model target CD45. Compared to nucleofection, a similar silencing was obtained and 

the viability was drastically improved, resulting in three times more silenced T cells with 

the photoporation technique. 

In Chapter 6, we summarized the current challenges in the field of cancer 

immunotherapy. We highlighted the possibility to combine different therapeutic strategies, 

in particular nanomedicines, with cancer immunotherapy, to overcome the 

immunosuppressive tumor microenvironment and to elicit more potent anti-cancer immune 

responses in patients.  
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CONCLUSIONS 

We demonstrated the potential of combining nanomedicines with cancer 

immunotherapy, in particular ACT, for the treatment of cancer. We were the first to show 

the reversible coupling of lipid-based NPs to the surface of CTLs for tumor-targeted delivery 

of membrane-impermeable macromolecules such as siRNA. Further, preliminary in vitro 

and in vivo data illustrated promising results for the combination of CTLs with NPs that were 

loaded with immune adjuvants. Besides the use of CTLs as carriers for the delivery of drug-

loaded NPs to the tumor, they also have the ability to kill tumor cells, which has already 

been extensively exploited in ACT. However, a variety of immunosuppressive mediators, 

especially in the tumor microenvironment, was shown to hinder the T cell anti-tumor 

responses. To tackle this important challenge, we developed a technique based on vapor-

nanobubble photoporation for the efficient delivery of siRNA molecules to CTLs, inducing 

silencing of target genes. Consequently, the knockdown of important immunosuppressive 

pathways can give T cells more power to eradicate tumors.  
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Samenvatting en conclusies 

Kanker is één van de meest verwoestende ziektes van deze tijd, met wereldwijd per 

jaar ongeveer 14 miljoen nieuwe gevallen en 8 miljoen overlijdens als gevolg van de ziekte. 

Het is dan ook niet verwonderlijk dat wetenschappelijk onderzoek naar nieuwe 

therapeutische mogelijkheden om kanker te bestrijden hoogtij viert. Behandeling van 

kanker kan via chirurgische resectie, radiotherapie en/of het gebruik van 

chemotherapeutica. Het risico op remissie, metastase en systemische toxiciteit blijft echter 

groot. Nanoscopische dragers bieden mogelijkheden om het anti-kanker geneesmiddel 

selectiever naar het tumorweefsel te begeleiden. Hierbij bestaat de mogelijkheid om de 

dosis aan kankerbestrijdend geneesmiddel te verhogen ter hoogte van de tumor, terwijl 

systemische bijwerkingen gereduceerd worden. Ondanks de beloftevolle (pre-)klinische 

resultaten, blijft het aanbod aan commerciële kankerbestrijdende nanotherapeutica 

beperkt. Eén van de belangrijkste oorzaken is het te weinig gericht afleveren van de 

partikels in de tumor na intraveneuze toediening. Daarom werd in dit project onderzocht of 

de aflevering van nanopartikels (NP’s) in de tumor verhoogd kan worden door middel van 

cel-gemedieerde aflevering. Hierbij werden cytotoxische T-cellen (CTL’s) verkozen als 

drager omwille van hun spontane migratie naar de tumor en hun potentieel om heel gericht 

kankercellen af te doden. Verder werd ook ‘fotoporatie’ onderzocht als techniek voor de 

aflevering van small interfering RNA (siRNA) in het cytosol van de CTL’s met als doel de T-

cel responsen in de tumor te verhogen door het onderdrukken van welbepaalde pathways.  

Hoofdstuk 1 geeft een overzicht van de twee grote onderzoeksvelden die in deze 

thesis gecombineerd werden, namelijk kanker nanomedicijnen en kanker immunotherapie. 

Dit hoofdstuk beschrijft kort de verschillende types nanodragers en de geneesmiddelen die 

op dit moment onderzocht worden voor het behandelen van kanker. Op dit ogenblik zijn 

slechts een beperkt aantal van deze geneesmiddelen op de markt. De oorzaak van dit 

beperkt aantal succesvolle nanomedicijnen kan toegeschreven worden aan de lage infiltratie 

en accumulatie in de tumor na systemische toediening. Cel-gemedieerde aflevering werd 

reeds onderzocht om de aflevering van deze NP’s in de tumor te verhogen. Verschillende 

types van tumoritrope cellen zoals mesenchymale stamcellen, monocyten, macrofagen en 

T-lymfocyten werden daartoe beladen met NP’s via verschillende koppelingsstrategieën. 

Een tweede deel van deze introductie bevat een overzicht van de verschillende 

immunotherapieën die momenteel in (pre-)klinische studies onderzocht worden of die reeds 

commercieel beschikbaar zijn. Deze therapieën omvatten kanker vaccinatie, adoptieve T-

cel therapie (ACT) en de behandeling met immuun-stimulerende cytokines, 

imuunadjuvantia of de zogenaamde checkpoint inhibitoren. Daarnaast werd in dit hoofdstuk 

ook de combinatie van immunotherapie met andere niet-immuun-gerelateerde therapieën, 

zoals chemotherapie en RNA interference, aangehaald. Ten slotte werden verschillende in 
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vivo en ex vivo methoden besproken voor het transfecteren en het genetisch modificeren 

van T-cellen met als doel specifieke T-cel receptoren tot expressie te laten brengen en 

verder ook om hun infiltratie, overleving en cytotoxische functies te verbeteren. Daarnaast 

werden er ook verschillende methodes opgesomd die zorgen voor de aflevering van siRNA 

in het cytosol van T-cellen, zoals NP’s, electroporatie, nucleofectie en CellSqueeze 

microfluidica.  

In Hoofdstuk 2 werd de ontwikkeling van een nieuw reversibel koppelingssysteem 

beschreven voor het beladen van zowel geactiveerde als niet-geactiveerde CD8+ T-cellen 

met lipide NP’s. De koppeling werd sterk verhoogd wanneer een grote hoeveelheid van een 

pyridyldithiopropionaat (PDP)-gefunctionaliseerd lipide (tot 50 gewichtsprocent) werd 

geïncorporeerd in de liposoom compositie. Een belangrijke observatie was dat de 

proliferatie en het cytolytisch effect van de T-cellen niet verstoord werd door de belading 

met liposomen. Het loskoppelen van deze liposomen op basis van een trigger in de tumor 

omgeving kan gunstig zijn voor het afleveren van membraan-impermeabele 

macromoleculaire geneesmiddelen zoals siRNA. Aangezien de liposomen gekoppeld werden 

op de T-cellen via een disulfide binding kan door middel van een reducerende molecule deze 

binding verbroken worden. Op basis van literatuur waarin reeds beschreven werd dat de 

tumor omgeving een reducerend milieu is door de aanwezigheid van verhoogde 

hoeveelheden glutathion, werd deze laatste geselecteerd als trigger voor de vrijstelling van 

de liposomen. Voor zowel de geactiveerde als niet-geactiveerde cellen werd een vrijstelling 

van 50 tot 60% van de gekoppelde liposomen bekomen. Er werd aangetoond dat deze 

liposomen na loskoppeling niet geaggregeerd waren, wat van belang is voor hun verdere 

opname in targetcellen. Om dit ‘proof-of-concept’ verder uit te bouwen, werden siRNA 

moleculen geïncorporeerd in een hybride nanoformulatie. Hierbij werden de siRNA 

moleculen verpakt in een nanogel matrix en omhuld door lipiden die een membraan 

vormden rond de nanogel kern. Door de incorporatie van PDP-gefunctionaliseerde lipiden 

in dit membraan werd een goede aanhechting van de siRNA-beladen NP’s waargenomen. 

Verder werd ook aangetoond dat deze lipide omhulling bescherming bood tegen het 

vrijstellen van siRNA moleculen uit de formulatie wanneer deze geïncubeerd werd in serum. 

Naast de koppeling van NP’s aan CD8+ T-cellen, werd aangetoond dat ook CD4+ T-cellen 

gelijkaardige hoeveelheden aan partikels kunnen dragen. Aangezien onderzoek heeft 

aangetoond dat CD4+ T-cellen ook naar de tumor migreren en de proliferatie, overleving en 

anti-tumor effecten van CD8+ T-cellen kunnen verhogen, zijn deze ook interessant om in 

de toekomst verder te onderzoeken voor de cel-gemedieerde aflevering van NP’s.  

Het ultieme doel van deze studie is om CTL’s te gebruiken als dragers van NP’s naar 

de tumor. Daarom werd in Hoofdstuk 3 de in vivo migratie en de infiltratie van NP-beladen, 

geactiveerde CD8+ T-cellen onderzocht in een muis melanoom model. Naast de reeds 

besproken reversibele koppeling, werd hier ook een stabiele koppeling onderzocht. Voor 

het vormen van een stabiele koppeling werden er aan de liposoom samenstelling, in plaats 
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van PDP-gefunctionaliseerde lipiden, maleimide (MAL)-gefunctionaliseerde lipiden 

toegevoegd. Ondanks de observatie dat na 48 uur een kleinere hoeveelheid aan NP-beladen 

CTL’s de tumor bereikte in vergelijking met de niet-beladen cellen, werd geen negatieve 

invloed waargenomen van deze belading op het therapeutisch effect. In tegendeel, er werd 

zelfs een verminderde tumorgroei vastgesteld in de muizen die geïnjecteerd werden met 

de NP-beladen CTL’s. De observatie dat CTL’s, beladen met PDP en MAL liposomen, in vitro 

een verhoogde productie van interferon gamma (IFNγ) en tumor necrose factor alfa (TNFα) 

vertoonden, zou kunnen verklaren waarom een verhoogde anti-kanker immuunrespons in 

vivo werd waargenomen. In een volgende stap werden de liposomen beladen met het 

immuun adjuvans monofosforyl lipide A (MPLA), waarvan in literatuur reeds werd 

aangetoond dat deze het immuunsysteem kan boosten tegen kanker. Eerst werd er 

aangetoond dat het MPLA, wanneer verpakt in de PDP en MAL liposomen en gekoppeld op 

de T-cellen, geen invloed had op de T-cel proliferatie of viabiliteit en verder ook de koppeling 

zelf niet beïnvloedde. Daarnaast werd aangetoond dat de verhoogde productie aan IFNγ 

enkel afkomstig was van de NP’s en niet van het MPLA, aangezien vrij MPLA geen invloed 

vertoonde op de IFNγ secretie. Vervolgens werden dendritische cellen (DC’s) en T-cellen, 

die beladen werden met MPLA-liposomen, samen gecultiveerd. Er werd een toegenomen 

expressie van de co-stimulerende receptoren CD40 en CD80 en een verhoogde secretie van 

het immuun-stimulerende cytokine IL-12 waargenomen, wat een succesvolle inductie van 

de maturatie van DC’s aantoonde. Ten slotte werd in vivo een verbeterde overleving 

waargenomen bij muizen die intratumoraal geïnjecteerd werden met MPLA-beladen T-

cellen, en dit in het bijzonder voor het reversibele koppelingssysteem. Verder onderzoek is 

noodzakelijk om het therapeutisch potentieel van deze strategie na systemische injectie te 

evalueren.  

Op basis van de observatie dat 50% van de liposomen vastgehecht blijven aan de T-

cellen na een specifieke trigger en dat deze reversibele koppelingsstrategie mogelijkerwijs 

gehinderd kan worden door het vroegtijdig vrijstellen van de liposomen in serum, werd er 

gezocht naar een meer specifiek reversibel koppelingssysteem. Daarom werd in 

Hoofdstuk 4 de koppeling op basis van een splitsbare peptidebinding onderzocht. De 

gebruikte peptidesequentie kan gesplitst worden op basis van drie specifieke proteasen, 

namelijk matriptase, urokinase-type plasminogeen activator (uPA) en legumine, waarvan 

verhoogde concentraties aanwezig zijn in een groot aantal tumoren. Eerst werd aangetoond 

dat de koppeling van het peptideconstruct aan de CTL’s stabiel was wanneer het 

geïncubeerd werd in serum-bevattend medium. Ondanks de observatie dat het peptide 

gesplitst werd door matriptase en uPA wanneer het gekoppeld was op magnetische beads, 

werd slechts een kleine vrijstelling waargenomen wanneer het gekoppeld was op het 

oppervlak van de CTL’s. Aangezien na incubatie met het aspecifieke protease trypsine een 

hoge vrijstelling van het construct werd gemeten, werd verondersteld dat voornamelijk 
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sterische hinder ter hoogte van het complexe celmembraan verantwoordelijk was voor de 

lage activiteit van de specifieke proteasen.  

Naast het gebruik van CTL’s als dragers van NP’s, hebben deze ook de capaciteit om 

tumorcellen af te doden. Helaas bevat het tumorweefsel een grote variëteit aan 

onderdrukkende moleculen en cellen die de anti-tumor responsen van T-cellen kunnen 

inhiberen. Het onderdrukken van deze immunosuppressieve pathways in de T-cellen op 

basis van siRNA zou een verhoogd therapeutisch effect kunnen opleveren. Aangezien T-

cellen moeilijk te transfecteren zijn en omdat de conventionele strategieën voor het 

afleveren van siRNA zoals NP-gemedieerde aflevering en nucleofectie vaak tekortschieten, 

werd in Hoofdstuk 5 een alternatieve strategie voorgesteld op basis van vapor 

nanobubble-gemedieerde fotoporatie. Via deze techniek werd de efficiënte aflevering van 

siRNA molecule aangetoond, wat vervolgens resulteerde in de onderdrukking van de 

geselecteerde CD45 receptor. Wanneer deze strategie vergeleken werd met de standaard 

niet-virale methode om T-cellen te transfecteren, namelijk nucleofectie, werd een 

vergelijkbare onderdrukking waargenomen. Aangezien nucleofectie een veel hogere 

cellulaire toxiciteit vertoonde dan fotoporatie, werden er op basis van deze laatste techniek 

tot drie keer meer getransfecteerde cellen bekomen.  

Ten slotte werd in Hoofdstuk 6 een samenvatting gegeven van de huidige 

uitdagingen in het onderzoek naar kanker immunotherapieën. Hierbij werd vooral aandacht 

besteed aan hoe verschillende therapieën, nanomedicijnen in het bijzonder, gecombineerd 

kunnen worden met kanker immunotherapie om op deze manier de immunosuppressieve 

tumoromgeving te overwinnen en betere immuunresponsen op te leveren.  

CONCLUSIES 

In deze studie werd aangetoond dat het combineren van nanomedicijnen met 

immuuntherapie veelbelovend is voor het behandelen van kanker. Voor het eerst werd een 

reversibele koppeling van lipide NP’s op het oppervlak van CTL’s aangetoond met als doel 

membraan-impermeabele macromoleculen zoals siRNA specifiek in de tumor af te leveren. 

Verder werd er via preliminair in vitro en in vivo onderzoek vastgesteld dat CTL’s beladen 

met immuun adjuvantia een veelbelovende strategie is om anti-kanker immuunresponsen 

te verhogen. Naast de tumoritrope functie van CTL’s voor het afleveren van anti-kanker 

geneesmiddelen in de tumor, hebben deze ook de capaciteit om tumorcellen zelf af te 

doden, zoals reeds uitgebreid onderzocht werd in ACT. Daarbij dient wel rekening gehouden 

te worden met de aanwezigheid van welbepaalde immuuninhiberende moleculen en cellen 

in de tumoromgeving die deze T-cel immuunresponsen kunnen onderdrukken. Om de T-

cellen hier tegen te wapenen, werd in de context van ACT een techniek ontwikkeld om 

siRNA-moleculen efficiënt en veilig af te leveren in T-cellen, alvorens ze bij de patiënt te 
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injecteren. Via siRNA kunnen namelijk imuuninhiberende pathways in de CTL’s onderdrukt 

worden, wat tot krachtigere anti-kanker immuunresponsen zou kunnen leiden.  
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warm person. I really enjoyed our badminton games together. Heyang, thank you so much 

for your kind message on my desk before my internal defense. You are a sweet person and 

hopefully we can still meet to eat some Chinese dinner together…but maybe not the chicken 

legs ;). Molood, you are still at the beginning of your PhD, so I wish you all the best with 
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the coming experiments. Jelter, helaas heb ik de afgelopen weken niet veel tijd gehad om 

samen met jou te experimenteren of jou beter te leren kennen. Wat ik ondertussen wel 

weet is dat jij het T cel-project fantastisch zal verder zetten. Je hebt al heel wat ervaring 

en je bent heel gemotiveerd, daarom wil ik jou een heel mooie doctoraatsperiode toewensen 

met heel veel succesvolle resultaten!  

Katharine en Ilse, jullie rol om alles draaiende te houden in het labo is helemaal niet 

te onderschatten! Steeds bereid tot het oplossen van administratieve problemen, want we 

moeten daar eerlijk in zijn, wij hebben daar helaas weinig kaas van gegeten.  

Thomas, jij was voor mij altijd een vaste waarde in het labo. Steeds bereid om te 

helpen, steeds aanwezig op een feestje of bereid om mee te filmen of ideeën te bedenken 

voor de doctoraatsfilmpjes. Daarom deed het ook heel raar toen jij er niet meer was. Ik 

moet jou toch nog voor een aantal zaken bedanken. Eerst en vooral voor het opleggen van 

m’n ketting toen ik daar zelf niet zo goed meer in staat toe was, voor het wijzen van de 

weg van de Sioux naar de Charlatan, gelukkig was dat net om te hoek en om er op m’n 

verjaardag in de Oude Vismijn een topfeestje van te maken. Katrientje, ook al ben je 

ondertussen al even weg uit het labo, toch horen wij elkaar nog heel regelmatig. Je bent 

heel hulpvaardig en we konden altijd op jou rekenen, voor een leuke photoshop, voor hulp 

als de confocale microscoop even niet wou werken en voor een lesje hoe-werk-ik-met-mijn-

reflexcamera. Broes, ook al ben ik mijn doctoraat begonnen toen jij net het labo verliet, 

toch hebben wij elkaar goed leren kennen door jouw aanwezigheid op de vele labo-

activiteiten. Leuk dat je na al die jaren nog steeds zo verbonden bent met het labo! Oliwia, 

I still remember our very pleasant drive to the Biopharmacy day a couple of years ago in 

The Netherlands with sing along songs all drive long!  

Joanna, we had a very good collaboration during my master thesis through which I 

got very interested in doing research. Because of your motivating words I started this PhD 

adventure. You convinced me that I would be a good researcher and that I should think 

about starting a PhD. For this, I would really like to thank you.  

Karine, ook jou wil ik heel graag bedanken voor de heel leuke en vlotte 

samenwerking. Het was altijd heel fijn om naar Brussel te komen voor de in vivo 

experimenten. Niets is jou te veel, altijd bereid om te helpen. Ook al lukte het allemaal niet 

van de eerste keer, jij bekeek alles positief, een ingesteldheid waar ik nog heel veel aan zal 

terug denken. Ik wens jou het allerbeste voor de toekomst met heel veel succesvol 

onderzoekswerk in de strijd voor een wereld zonder kanker! 

I would also like to thank my four thesis students Claudia, Nele, Mónica, and Jana 

for the nice collaboration. We did a lot of experiments together and you were all very 

motivated to do a very good thesis.  
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Sara, je bent ongelofelijk hard bedankt voor het ontwerpen van de cover van m’n 

doctoraat. Ik was zo blij dat jij het zag zitten om jou hier mee bezig te houden tijdens jouw 

zwangerschapsverlof en ik ben heel erg blij met het resultaat! 

Ook al mijn lieve vrienden die er steeds waren om even voor wat afleiding te zorgen 

en om een aanmoedigingssmsje te sturen voor de belangrijke momenten tijdens het 

doctoraat, wil ik graag bedanken. Jullie hebben er geen idee van hoeveel deugd dit steeds 

deed.  

Mijn familie is ook in deze doctoraatsperiode heel belangrijk geweest. Eerst en vooral 

wil ik m’n grootouders bedanken die me steeds gesteund hebben tijdens m’n studies en 

ook tijdens dit doctoraat. Jullie waren steeds geïnteresseerd hoe het verliep met de studies 

en dan tijdens de laatste jaren ook met het onderzoek. Helaas heeft m’n peter dit 

doctoraatseinde niet meer mogen meemaken, maar ik ben zeker dat hij heel trots zou 

geweest zijn.  

Mama en papa, wat heb ik geluk met zo’n fantastische ouders. Elke keer kijk ik er 

naar uit om een weekendje in Galmaarden door te brengen! Jullie zijn er altijd voor mij en 

hebben me steeds heel hard gesteund. Ik ben soms wel eens een stresskonijntje, dus ik 

maakte het jullie tijdens m’n examens aan de unief en ook tijdens de voorbereidingen van 

m’n IWT niet makkelijk. Maar door jullie aanmoedigingen heb ik ook dit doctoraat tot een 

goed einde kunnen brengen. Mama, wij waren altijd samen op stap als een onafscheidelijk 

duo! Ik heb zo een mooie kindertijd en studententijd gehad. Voor en na school was je er 

steeds om te luisteren naar al m’n verhalen, me sterk te maken tegen de 

onrechtvaardigheid in de wereld en me te steunen door dik en dun. Papa, zoals ze wel 

vaker zeggen lijken we als twee druppels water op elkaar, maar toch denk ik dat jouw 

werkijver nooit te evenaren valt. Af en toe is het dan wel eens goed om tegen elkaar te 

zeggen dat het ook wel iets rustiger aan mag .  

En als laatste…allerliefste Karac…ik ken je nog maar anderhalf jaar, maar ik kan me 

niet voorstellen wat ik zou doen zonder jou. Door jou heb ik deze laatste periode van dit 

doctoraat overleefd. Ik heb het jou niet makkelijk gemaakt met onder andere het vele 

gezaag over het schrijven, de stress voor de interne verdediging, de bijna slapeloze nachten 

door gepieker over het doctoraat. Maar jij wist hoe me kalm te krijgen, me te motiveren 

om er toch nog heel even voor te gaan en er steeds te zijn als het even wat moeilijker ging. 

Wij zijn de afgelopen maanden heel wat samen aan het werk geweest in de weekends en 

op vakantiedagen, jij met de thesis en de examens en ik met het doctoraat. Maar nu zijn 

we er allebei klaar mee dus tijd om samen heel wat leuke dingen te plannen!  

 

Laura 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

  


