On the spectrum of sizes of semiovals contained in the Hermitian curve
- Author
- Daniele Bartoli (UGent) , György Kiss, Stefano Marcugini and Fernanda Pambianco
- Organization
- Keywords
- MINIMAL BLOCKING SETS, PLANES
Downloads
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 400.80 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8033716
- MLA
- Bartoli, Daniele, et al. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” EUROPEAN JOURNAL OF COMBINATORICS, vol. 52, 2016, pp. 223–33, doi:10.1016/j.ejc.2015.10.005.
- APA
- Bartoli, D., Kiss, G., Marcugini, S., & Pambianco, F. (2016). On the spectrum of sizes of semiovals contained in the Hermitian curve. EUROPEAN JOURNAL OF COMBINATORICS, 52, 223–233. https://doi.org/10.1016/j.ejc.2015.10.005
- Chicago author-date
- Bartoli, Daniele, György Kiss, Stefano Marcugini, and Fernanda Pambianco. 2016. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” EUROPEAN JOURNAL OF COMBINATORICS 52: 223–33. https://doi.org/10.1016/j.ejc.2015.10.005.
- Chicago author-date (all authors)
- Bartoli, Daniele, György Kiss, Stefano Marcugini, and Fernanda Pambianco. 2016. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” EUROPEAN JOURNAL OF COMBINATORICS 52: 223–233. doi:10.1016/j.ejc.2015.10.005.
- Vancouver
- 1.Bartoli D, Kiss G, Marcugini S, Pambianco F. On the spectrum of sizes of semiovals contained in the Hermitian curve. EUROPEAN JOURNAL OF COMBINATORICS. 2016;52:223–33.
- IEEE
- [1]D. Bartoli, G. Kiss, S. Marcugini, and F. Pambianco, “On the spectrum of sizes of semiovals contained in the Hermitian curve,” EUROPEAN JOURNAL OF COMBINATORICS, vol. 52, pp. 223–233, 2016.
@article{8033716, author = {{Bartoli, Daniele and Kiss, György and Marcugini, Stefano and Pambianco, Fernanda}}, issn = {{0195-6698}}, journal = {{EUROPEAN JOURNAL OF COMBINATORICS}}, keywords = {{MINIMAL BLOCKING SETS,PLANES}}, language = {{eng}}, pages = {{223--233}}, title = {{On the spectrum of sizes of semiovals contained in the Hermitian curve}}, url = {{http://doi.org/10.1016/j.ejc.2015.10.005}}, volume = {{52}}, year = {{2016}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: