Advanced search
1 file | 400.80 KB Add to list

On the spectrum of sizes of semiovals contained in the Hermitian curve

Author
Organization
Keywords
MINIMAL BLOCKING SETS, PLANES

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 400.80 KB

Citation

Please use this url to cite or link to this publication:

MLA
Bartoli, Daniele et al. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” EUROPEAN JOURNAL OF COMBINATORICS 52 (2016): 223–233. Print.
APA
Bartoli, D., Kiss, G., Marcugini, S., & Pambianco, F. (2016). On the spectrum of sizes of semiovals contained in the Hermitian curve. EUROPEAN JOURNAL OF COMBINATORICS, 52, 223–233.
Chicago author-date
Bartoli, Daniele, György Kiss, Stefano Marcugini, and Fernanda Pambianco. 2016. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” European Journal of Combinatorics 52: 223–233.
Chicago author-date (all authors)
Bartoli, Daniele, György Kiss, Stefano Marcugini, and Fernanda Pambianco. 2016. “On the Spectrum of Sizes of Semiovals Contained in the Hermitian Curve.” European Journal of Combinatorics 52: 223–233.
Vancouver
1.
Bartoli D, Kiss G, Marcugini S, Pambianco F. On the spectrum of sizes of semiovals contained in the Hermitian curve. EUROPEAN JOURNAL OF COMBINATORICS. 2016;52:223–33.
IEEE
[1]
D. Bartoli, G. Kiss, S. Marcugini, and F. Pambianco, “On the spectrum of sizes of semiovals contained in the Hermitian curve,” EUROPEAN JOURNAL OF COMBINATORICS, vol. 52, pp. 223–233, 2016.
@article{8033716,
  author       = {{Bartoli, Daniele and Kiss, György and Marcugini, Stefano and Pambianco, Fernanda}},
  issn         = {{0195-6698}},
  journal      = {{EUROPEAN JOURNAL OF COMBINATORICS}},
  keywords     = {{MINIMAL BLOCKING SETS,PLANES}},
  language     = {{eng}},
  pages        = {{223--233}},
  title        = {{On the spectrum of sizes of semiovals contained in the Hermitian curve}},
  url          = {{http://dx.doi.org/10.1016/j.ejc.2015.10.005}},
  volume       = {{52}},
  year         = {{2016}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: