PASSIVE COMPONENT EMBEDDING IN PRINTED CIRCUIT BOARDS FOR SPACE APPLICATIONS

ELECTRONICS MATERIALS & PROCESSES FOR SPACE (EMPS) WORKSHOP
13-14/04/2016, PORTSMOUTH, UK

MARTEN CAUWE¹, GERHARD SCHMID², STEVEN DE CUYPER³, DENIS LACOMBE⁴

1. Center for Microsystems Technology, IMEC, Zwijnaarde, Belgium, Maarten.Cauwe@imec.be
2. AT&S, Leoben, Austria
3. QinetiQ Space, Kruibeke, Belgium
4. ESA (TEC-QTC), ESTEC, Noordwijk, The Netherlands
CONTENTS

▸ PROJECT GOAL
▸ ECP TECHNOLOGY
▸ TEST BOARDS
▸ TEST PLAN
▸ TEST RESULTS
▸ SUMMARY
▸ OUTLOOK
PROJECT GOAL

Investigate the suitability of embedding passive components in printed circuit boards for space applications

▸ Overview of available technologies for component embedding
▸ Assessment of the AT&S ECP® technology
▸ Evaluation of reliability of passive component embedding
▸ Realization of a functional demonstrator
▸ Procedures for procurement and qualification of PCBs with embedded components for space applications
- Embedding of both active and passive components
- Component thickness and pad metallization compatibility
Embedded core can be integrated in various PCB build-ups
EMBEDDED COMPONENT PACKAGING TECHNOLOGY

Available components for embedding

- **Resistors**

<table>
<thead>
<tr>
<th>Size</th>
<th>Voltage (V)</th>
<th>Power (W)</th>
<th>Tolerance</th>
<th>Operating temperature</th>
<th>TCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>01005</td>
<td>??</td>
<td>0.03</td>
<td>1 %, 5 %</td>
<td>-55 °C to 125 °C</td>
<td>200-300 ppm/°C</td>
</tr>
<tr>
<td>0201</td>
<td>25</td>
<td>0.05</td>
<td>1 %, 5 %</td>
<td>-55 °C to 125 °C</td>
<td>200-300 ppm/°C</td>
</tr>
<tr>
<td>0402</td>
<td>50</td>
<td>0.06 – 0.1</td>
<td>1 %, 5 %</td>
<td>-55 °C to 125 °C</td>
<td>100-200 ppm/°C</td>
</tr>
</tbody>
</table>

- **Capacitors**

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Range</th>
<th>Voltage (V)</th>
<th>Tolerance</th>
<th>Thickness (μm)</th>
<th>TCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0G</td>
<td>0201</td>
<td>1 – 100 pF</td>
<td>10 – 50</td>
<td>5 %</td>
<td>150 – 330</td>
<td>30 ppm/°C</td>
</tr>
<tr>
<td>X5R</td>
<td>0201</td>
<td>0.1 – 100 nF</td>
<td>2.5 – 50</td>
<td>10 – 20 %</td>
<td>110 – 330</td>
<td>±15 %</td>
</tr>
<tr>
<td>X5R</td>
<td>0402</td>
<td>1 – 4700 nF</td>
<td>2.5 – 50</td>
<td>10 – 20 %</td>
<td>110 – 330</td>
<td>±15 %</td>
</tr>
<tr>
<td>X7R</td>
<td>0201</td>
<td>0.1 – 22 nF</td>
<td>2.5 – 50</td>
<td>10 %</td>
<td>150 – 330</td>
<td>±15 %</td>
</tr>
<tr>
<td>X7R</td>
<td>0402</td>
<td>1 – 10 nF</td>
<td>6.3 – 25</td>
<td>10 %</td>
<td>150 – 330</td>
<td>±15 %</td>
</tr>
</tbody>
</table>
TEST BOARDS

Board Type I

- Board level reliability and component characterization
- Components selection based on availability and BTII
 - 33 Ω, 0402 / 10 kΩ, 0402 / 10 kΩ, 0201 / 1 MΩ, 0201 from Panasonic
 - Murata 10 pF & 100 pF (0201, 150 µm), AVX 10 nF (0402, 300 µm, 16 V to 50 V and 150 µm, 6.3 V) and Murata 100 nF (150 µm, 6.3 V)

- Test structures
 - Probe pad test structure for electrical measurement of components
 - Disk, comb and tree test pattern for interlayer and intralayer insulation
 - Daisy chains (0-ohm resistors) for continuity and interconnect resistance
 - Interconnect stress test (IST) patterns on separate coupon
TEST BOARDS

Board Type II

- Spacecraft Interface Module (SIM) board from QinetiQ Space
 - Redesigned for the use of embedded passives by AT&S
- Twelve layer rigid-flex construction with two embedded cores
- Initial electrical tests, FPGA tests and functional tests passed
- Performance is on par with the standard SIM-FUMO board
EVALUATION TEST PLAN

Chart II: STRESS TESTING

INTERCONNECT LEVEL

BTI1-2
- Vibration
 - Continuity
 - Interconnection resistance
 - El. meas. at room temperature

BTI3-4
- Mechanical shock
 - Continuity
 - Interconnection resistance
 - El. meas. at room temperature

BTI5-6
- Bending
 - Continuity
 - Interconnection resistance
 - El. meas. at room temperature

BTI7-8
- Thermal cycling
 - Continuity
 - Interconnection resistance
 - El. meas. at room temperature

COMPONENT LEVEL

BTI9-11
- Resistor
 - Continuity
 - To Chart III

BTI12-14
- Capacitor
 - Continuity
 - To Chart III

BOARD LEVEL

BTI15-16
- Thermal stress
 - Insulation resistance
 - Dielectric withstanding voltage
 - Continuity
 - Interconnection resistance

BTI17-18
- Damp heat
 - Insulation resistance
 - Dielectric withstanding voltage
 - Continuity
 - Interconnection resistance

COUPON
- IST
 - Continuity
 - Interconnection resistance

ESCC 3009
ESCC 4001

ECCS-Q-ST-70-38C
AEC-Q200-005

ECCS-Q-ST-70-10C
EVALUATION TEST PLAN

Chart III: COMPONENT LEVEL

- **Resistor**
 - BTI9
 - Power step-stress testing
 - BTI10-11
 - Operational life (1000 h)
 - El. meas. at room temperature
 - Operational life (1000 h)
 - El. meas. at room temperature

- **Capacitor**
 - BTI12
 - Voltage step-stress testing
 - BTI13-14
 - Operational life (1000 h)
 - El. meas. at room temperature
 - Operational life (1000 h)
 - El. meas. at room temperature
TEST RESULTS

<table>
<thead>
<tr>
<th>Test</th>
<th>Type</th>
<th>Resistor</th>
<th>Capacitor</th>
<th>0-ohm resistor</th>
<th>Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component values</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Surface-mont</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Overload</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Surface-mont</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Board insulation resistance</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Board dielectric withstanding voltage</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Vibration</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Surface-mont</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Mechanical shock</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Surface-mont</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Bending (AEC-Q200)</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Thermal cycling</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Thermal stress</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Damp heat</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>IST</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Operating life</td>
<td>Embedded</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td></td>
<td>Surface-mont</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
TEST RESULTS

Component performance

▸ Resistors are within spec for 5 % tolerance, outside spec for 1 % tolerance

▸ Capacitors are within spec for capacitance, loss factor, insulation resistance and voltage proof testing
 - Multiple outliers below 1 GΩ on C0G capacitors

▸ Resistor operating life time
 - 0402 embedded resistors perform slightly worse than SMT resistors
 - 0201 embedded resistors started failing after 512 hours

▸ Capacitor operating life time
 - Decrease in capacitance is larger for the embedded components compared to their surface-mount equivalents
 - X5R capacitors out of spec after 1000 hours of testing
TEST RESULTS

Board-level insulation

- Insulation resistance ($3x < 1 \, \text{G} \Omega$) and dielectric withstand voltage failure ($4x < 1.5 \, \text{kV/mm}$) between component and PTH
 - Two additional failures after thermal stress testing
- Micro sections show glass fibers extending to component

- Failure mechanism: carbonized epoxy at fiber cut results in conductive path between PTH and component
TEST RESULTS

Mechanical testing

▸ No failures in interconnection or components after vibration, mechanical shock and three-point bending
 - Capacitor insulation resistance in spec after testing

▸ No differences observed between embedded components and surface-mount components

▸ Four-point bending down to a bending radius of 56.2 mm revealed slight advantage of embedded components
 - 0402 and 0201 sized components small compared to bending radius
TEST RESULTS

Interconnection stress testing

▸ 10 coupons with SuperHeat only and three sense circuits including embedded 0-ohm resistors
 - PTH daisy chain (S1)
 - Daisy chain with 0201 resistors (S2)
 - Daisy chain with 0402 resistors (S3)

▸ 180 connections per coupon
 (PTH chain: 268 vias)
 - microvia is ± 15 % of chain resistance

▸ Performed at PWB interconnect solution in Canada
TEST RESULTS

Interconnection stress testing (IST)

▸ Test protocol (ESA IST draft test procedure QT/2014/030/SHv2)
 - 6 times preconditioning to 230 °C
 - 1000 cycles at 150 °C (sense PTH, 0402)
 - 100 cycles at 190 °C (sense 0402, 0201)

▸ No failures after 1000 cycles at 150 °C

▸ Two chains with 0201 resistors failed during cycling to 190 °C
 - Failure mechanism: CTEz of adhesive ($T_{\text{max}} >> T_g$) causes microvia to lift
SUMMARY

Status of passive component embedding

- Performance of embedding technology is at high level
 - Board Type II performed on par with its SMT counterpart
 - No failure observed in interconnection to component (except for IST)

- Embedding has minor impact on components
 - Component performance is adequate, except for 0201 resistors
 - Operating life time does not match space requirements

- Available components are limitation for space applications
 - Range of available values is limited, no European supply chain, voltage and temperature ratings not sufficient for derating
 - Qualification testing and lot screening need to be upgraded to ESCC requirements and better matched with embedded technology

- General considerations
 - Testing of PCBs with embedded component is challenging
 - No automated design flow for space PCBs with design rule checks
 - No repair possible
WHAT’S NEXT?

Passive component embedding is in volume production for commercial applications
 ▸ Automotive qualification is ongoing

PCESA project demonstrated potential for space applications and identified remaining challenges
 ▸ Component availability
 ▸ Design rules for embedding
 ▸ Qualification and procurement
PRODUCTION FLOW PROPOSAL

Components for embedding

- ESCC guidelines
- Lot acceptance testing

Embedded core

- Design rules
- Test plan
- Inspection criteria

Qualified PCB

- ECSS-Q-ST-70-10/11/12C
- Manufacturing flow and logistics
Next steps

▸ Establish a European supply chain with an extension of the possible voltage, power and temperature ratings

▸ Implement qualification flow
 - Cooperation between AT&S and ESA qualified PCB supplier
 - Test methodology for PCBs with embedded components

▸ Define technology demonstrator with embedded passive components (GSTP IOD)
 - Verify design and procurement flow
 - Validate product reliability and performance

▸ Embedding active components
 - Diodes, MOSFETs
 - Small modules (PM, RF)
 - Power components (GAN)
 - More complex SIP modules
CONTACT

Maarten Cauwe
Imec-Cmst, Zwijnaarde, Belgium
Maarten.Cauwe@imec.be

Gerhard Schmid
AT&S, Leoben, Austria
G.Schmid@ats.net

Steven De Cuyper
QinetiQ Space, Kruibeke
Steven.DeCuyper@qinetiq.be