Advanced search
1 file | 475.74 KB Add to list

Representation learning for very short texts using weighted word embedding aggregation

Cedric De Boom (UGent) , Steven Van Canneyt (UGent) , Thomas Demeester (UGent) and Bart Dhoedt (UGent)
Author
Organization
Keywords
IBCN, Natural language processing, Information storage and retrieval, Artificial intelligence, Word embeddings, Representation learning

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 475.74 KB

Citation

Please use this url to cite or link to this publication:

MLA
De Boom, Cedric et al. “Representation Learning for Very Short Texts Using Weighted Word Embedding Aggregation.” PATTERN RECOGNITION LETTERS 80 (2016): 150–156. Print.
APA
De Boom, C., Van Canneyt, S., Demeester, T., & Dhoedt, B. (2016). Representation learning for very short texts using weighted word embedding aggregation. PATTERN RECOGNITION LETTERS, 80, 150–156.
Chicago author-date
De Boom, Cedric, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. 2016. “Representation Learning for Very Short Texts Using Weighted Word Embedding Aggregation.” Pattern Recognition Letters 80: 150–156.
Chicago author-date (all authors)
De Boom, Cedric, Steven Van Canneyt, Thomas Demeester, and Bart Dhoedt. 2016. “Representation Learning for Very Short Texts Using Weighted Word Embedding Aggregation.” Pattern Recognition Letters 80: 150–156.
Vancouver
1.
De Boom C, Van Canneyt S, Demeester T, Dhoedt B. Representation learning for very short texts using weighted word embedding aggregation. PATTERN RECOGNITION LETTERS. Elsevier; 2016;80:150–6.
IEEE
[1]
C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt, “Representation learning for very short texts using weighted word embedding aggregation,” PATTERN RECOGNITION LETTERS, vol. 80, pp. 150–156, 2016.
@article{8023857,
  author       = {De Boom, Cedric and Van Canneyt, Steven and Demeester, Thomas and Dhoedt, Bart},
  issn         = {0167-8655},
  journal      = {PATTERN RECOGNITION LETTERS},
  keywords     = {IBCN,Natural language processing,Information storage and retrieval,Artificial intelligence,Word embeddings,Representation learning},
  language     = {eng},
  pages        = {150--156},
  publisher    = {Elsevier},
  title        = {Representation learning for very short texts using weighted word embedding aggregation},
  url          = {http://dx.doi.org/10.1016/j.patrec.2016.06.012},
  volume       = {80},
  year         = {2016},
}

Altmetric
View in Altmetric
Web of Science
Times cited: