Gastric Helicobacters in Domestic Animals and Nonhuman Primates: the
Agents and their Significance for Human Health

Running title: Gastric helicobacters in domestic animals and primates

Freddy Haesebrouck*, Frank Pasmans, Bram Flahou, Koen Chiers, Margo Baele, Tom
Meyns, Annemie Decostere, Richard Ducatelle

Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine,
Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium

* Corresponding author. Mailing address: Faculty of Veterinary Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium. Phone: +32 9 264 74 30. Fax: +32 9 264 74 94. E-mail: freddy.haesebrouck@ugent.be
TABLE OF CONTENTS

12 INTRODUCTION.. 3
15 GASTRIC NON-\textit{H. PYLORI HELICOBACTER} NOMENCLATURE: THE NEED FOR
16 CLARIFICATION ... 4
17 GASTRIC HELICOBACTERS IN DOMESTIC ANIMALS AND NONHUMAN
18 PRIMATES: AN OVERVIEW ... 7
 19 Gastric helicobacters associated with pigs... 7
 20 Gastric helicobacters associated with dogs and cats ... 11
 21 Gastric helicobacters associated with rabbits ... 12
 22 Gastric helicobacters associated with ferrets ... 13
 23 Gastric helicobacters associated with hamsters .. 14
 24 Gastric helicobacters associated with ruminants ... 15
 25 Gastric helicobacters associated with horses ... 15
 26 Gastric helicobacters associated with nonhuman primates 16
27 NON-\textit{H. PYLORI HELICOBACTER}-ASSOCIATED GASTRIC DISEASES IN HUMANS:
28 ZOONOSES? ... 18
29 GASTRIC DISEASE IN HUMANS INFECTED WITH NON-\textit{H. PYLORI HELICOBACTER}
30 SPECIES .. 21
31 TRANSMISSION OF GASTRIC NON-\textit{H. PYLORI HELICOBACTER} SPECIES 24
32 VIRULENCE FACTORS OF GASTRIC NON-\textit{H. PYLORI HELICOBACTER} SPECIES 26
33 STUDYING GASTRIC HELICOBACTER INFECTIONS IN DOMESTIC ANIMALS:
34 WHAT MIGHT IT TEACH US ABOUT THESE INFECTIONS IN HUMANS? 31
35 CONCLUSIONS .. 32
36 REFERENCES ... 33
37
INTRODUCTION

It was first reported in 1984 that gastric ulcer disease in humans is caused by a bacterial infection (141). The causative agent, *Helicobacter (H.) pylori*, has also been associated with gastritis, peptic ulcer disease, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma (132, 174, 215). This bacterium is very successful in the way that it colonizes the human stomach, since in developing countries, more than 80% of the population is infected with *H. pylori*, even at young age. In developed countries the prevalence rate of *H. pylori* generally remains under 40% and is considerably lower in children and adolescents than in adults and elderly people (132, 181).

Various tests have been developed for the diagnosis of *H. pylori* infections (reviewed in 132). For routine diagnostic purposes, histology or culture of biopsies from patients who have undergone endoscopy and urea breath testing are most often used. On histology, *H. pylori* bacteria are identified on the basis of their typical localization and their characteristic, slightly curve-shaped morphology. In 0.2 to 6% (depending on the literature source and the geographical region) of these biopsies, however, bacteria with a different, typically long spiral-shaped morphology are found. These spiral-shaped non-*H. pylori* helicobacters were first described in 1987 (46). They were originally referred to as “*Gastrospirillum hominis*” (143). Analysis of the 16S rRNA gene of these uncultivated organisms resulted in their classification in the genus *Helicobacter*. They were provisionally named “*H. heilmannii*” after the German pathologist Konrad Heilmann, who first studied the pathology associated with these microorganisms (101). “*H. heilmannii*” has also been associated with gastritis (40), gastric ulcers (41) and gastric MALT lymphoma (153), but not with gastric adenocarcinoma. Further research on “*H. heilmannii*” has been seriously hampered by the very fastidious nature of these microorganisms. Even today, to our knowledge, only two “*H. heilmannii*” strains have been cultured from human tissue (2, 127).
Long spiral-shaped helicobacters have also been demonstrated in the stomach of different animal species. A summary of these helicobacters is given in Table 1.

This article aims to provide an overview of *Helicobacter* species naturally colonizing the stomach of food producing animals, pet animals and nonhuman primates. First, the very complex and confusing nomenclature used to designate non-*H. pylori* *Helicobacter* species colonizing the human stomach is considered. Thereafter, an overview of helicobacters colonizing the stomach of domestic animals and nonhuman primates is presented and their possible pathogenic significance for their animal hosts is discussed. The main aim of this article, however, is to have a closer look at the significance of these microorganisms for human health: should they be considered as zoonotic agents, what are the disease signs in infected humans, how are they transmitted and what is known about their virulence factors? The article ends with some thoughts on what the study of gastric *Helicobacter* infections in animals might teach us about these infections in humans.

GASTRIC NON-*H. PYLORI* HELICOBACTER NOMENCLATURE: THE NEED FOR CLARIFICATION

Since the description of *H. pylori*, the number of species in the genus *Helicobacter* has rapidly expanded. Today, a large number of non-*H. pylori* *Helicobacter* species have been described in a wide variety of animals and humans and the genus *Helicobacter* contains at least 32 species with validly published names (http://www.bacterio.cict.fr/h/helicobacter.html). The frequent changes in nomenclature of non-*H. pylori* helicobacters colonizing the stomach of humans have caused quite a lot of confusion, not only among clinicians, but also among bacteriologists. Today, there is a serious problem in trying to reach international agreement on this complex and expanding group of
microorganisms, all of which have in common their tightly coiled morphology and their difficulty to culture in vitro.

Subsequent to the renaming of “Gastrospirillum hominis” as “H. heilmannii”, further genetic analysis of the 16S rRNA gene revealed two types that differed by more than 3% in their nucleotide sequence, which prompted the subclassification of the non-\textit{H. pylori} helicobacters into “\textit{H. heilmannii}” type 1 and “\textit{H. heilmannii}” type 2. Sequencing of the 23S ribosomal RNA encoding genes also makes it possible to distinguish between the two types (48).

“\textit{H. heilmannii}” type 1 is both morphologically and genetically identical to a bacterium colonizing the stomach of pigs (43, 166) that was first designated “\textit{Gastrospirillum suis}” (146, 184). Almost ten years later, sequencing of the 16S rRNA gene, fluorescent in-situ hybridization (FISH) and electron microscopy showed that these organisms belong to the genus \textit{Helicobacter} and are sufficiently different from all existing species to constitute a new taxon. Because at that time this species could not be thoroughly characterized due to the lack of pure in vitro isolates, the organism was described as “\textit{Candidatus Helicobacter suis}” (43). Only recently have in vitro cultures been obtained, resulting in the description of \textit{H. suis} as a species (14).

The situation with regard to “\textit{H. heilmannii}” type 2 is even more complex. This type does not represent a single \textit{Helicobacter} species but rather a group of species, including three helicobacters that have been isolated from the stomachs of cats and dogs, namely \textit{H. felis}, \textit{H. bizzozeronii} and \textit{H. salomonis}. To add to the confusion, one uncultivable species detected in the stomachs of humans, wild felids, dogs and cats was named “\textit{Candidatus Helicobacter heilmannii}” (166). Two other closely related species, one of which was isolated from a dog and the other from a cat, have been described as \textit{H. cynogastricus} and \textit{H. baculiformis},
respectively (15, 233). However, up till now no information is available about the presence of these bacteria in humans.

Differences in morphology between different gastric non-*H. pylori Helicobacter* species have been described (Table 2), but this is not an accurate method for species identification. It has been stated that periplasmic fibrils wrapped around the cell body are a typical feature of *H. felis* (134). However, *H. cynogastricus* also possesses a periplasmic fibril running along the external side of the helix and both species are tightly coiled organisms (233). *H. salomonis* is less tightly coiled and does not have periplasmic fibrils (115). *H. baculiformis* is a large, slender to slightly spiral rod with periplasmic fibrils (15). “*Candidatus* H. heilmannii”, *H. bizzozeronii* and *H. suis* are morphologically very similar. These microorganisms do not possess periplasmic fibrils and show very tight coils (14, 92, 166).

Sequencing of the 16S and 23S ribosomal RNA encoding genes allows differentiation of *H. suis* from the other gastric non-*H. pylori Helicobacter* species mentioned above, but it can not distinguish between *H. felis, H. bizzozeronii, H. salomonis, H. cynogastricus, H. baculiformis* and “*Candidatus* H. heilmannii” (15, 48, 233). For differentiation between these species sequencing of the *hsp60* gene (149), the urease A and B genes (161, 166) and *gyrB* gene (95) is useful, as well as whole cell protein profiling (228) if pure *in vitro* cultures are available.

Phylogenetic trees for the gastric helicobacters discussed in this review are shown in Figures 1 and 2. Fig. 1 is based on 16S rRNA gene sequence similarity data, and Fig. 2 on the partial *ureA* and *ureB* gene sequences. The sequences that have been detected in human stomachs are also indicated.

In literature, gastric infections with spiral-shaped bacteria in humans are often referred to as “*H. heilmanni*” or “*H. heilmannii*-like organism” infections. However, at present, the name “*H. heilmannii*” can not be used as a species name, according to taxonomical rules. To avoid
confusion, we propose to use the term “gastric non-\textit{H. pylori} helicobacters” to designate these spiral-shaped bacteria when only results of histopathology or crude taxonomic data are available and to reserve true species designations for those situations in which the species is defined.

To non-bacteriologists, the changes in “\textit{H. heilmannii}” nomenclature may appear unwieldy and unnecessary. However, it should be kept in mind that several important traits, including pathogenicity and antimicrobial susceptibility, may vary, depending on the bacterial species. At the present time it is not known whether certain non-\textit{H. pylori} \textit{Helicobacter} species are more often associated with a certain disease outcome in humans than others.

\section*{GASTRIC HELICOBACTERS IN DOMESTIC ANIMALS AND NONHUMAN PRIMATES: AN OVERVIEW}

A summary of gastric lesions described in domestic animals and nonhuman primates naturally or experimentally infected with helicobacters is presented in Table 3. Below, infections with gastric helicobacters in pigs, dogs, cats, rabbits, ferrets, hamsters, ruminants, horses and nonhuman primates are considered. Guinea pigs and Mongolian gerbils are also often kept as pets, but natural infections with gastric helicobacters have not been described in these animal species.

\subsection*{Gastric helicobacters associated with pigs}

The main \textit{Helicobacter} species colonizing the stomach of pigs is \textit{H. suis}. Its prevalence at slaughter age in most reports is 60\% or more. \textit{H. suis} causes gastritis in experimentally and naturally infected pigs (87, 104, 147, 173, 185). It has also been associated with ulcers of the non-glandular part of the stomach (18, 28, 185, 190), although the exact role of \textit{H. suis} in
porcine gastric pathology remains to be elucidated. Indeed, Grasso et al. (87), Melnichouk et al. (145), Park et al. (173) and Szeredi et al. (222) did not find this association. These discrepancies might be due to differences in laboratory techniques for demonstration of *Helicobacter*, different sampling practices or differences in virulence between different *H. suis* strains. In any case, in a recent study carried out by our research group, gastric ulcers were induced in pigs experimentally infected with *H. suis* (T. Meyns, R. Ducatelle, B. Flahou, K. Chiers, F. Pasmans and F. Haesebrouck, submitted for publication). In this study, 6-week-old piglets that were free of *H. suis* were used. Nine piglets were intragastrically inoculated with a pure culture of *H. suis*, while 5 sham-inoculated piglets were used as controls. All piglets were fed a finely ground diet. Hyperkeratosis and ulcer formation were clearly present in the gastric non-glandular mucosa of all *H. suis* inoculated pigs, while none of the sham-inoculated piglets developed gastric lesions.

Hyperkeratosis and ulceration of the non-glandular part of the stomach have been reported in many countries. Up to 80% of the market pigs in Australia (189) and 60% of the sows (106) in the Netherlands showed gastric lesions. Hessing et al. (106) found gastric ulcers in 10-15% of the sows.

The stomach mucosa of pigs can be divided into a glandular part (cardiac gland zone, fundic gland zone and antrum with pyloric glands) and a non-glandular part, the latter being a small rectangular area around the esophageal opening. It is also called the pars esophagea of the stomach and is covered by a stratified squamous epithelium (Fig. 3). After experimental infection, *H. suis* mainly colonizes the antrum and the fundic gland zone and, to a lesser extent, the cardiac gland zone (103). *H. suis* DNA was also detected in the pars esophagea by PCR (190), but bacteria were not detected in the non-glandular part of the stomach by microscopic examination (103). Ulceration of the porcine gastric non-glandular mucosa may result in decreased feed intake, a decrease in daily weight gain, and even sudden death (10).
thus leading to significant economic losses. There is little doubt that this disease can cause pain and discomfort.

The non-glandular region and the cardiac gland zone, together representing almost 50% of the stomach, have a pH range between 5 and 7 due to the presence of saliva and cardiac gland bicarbonate secretions (109). The distal compartment, composed of the fundic and pyloric glands, ensures postprandial pepsin digestive enzymatic activity through acid secretion. Pepsin activity is only possible at the low pH of the distal compartment. It has been suggested that no mixing of luminal content is taking place between the proximal and the distal stomach compartments, and that the porcine stomach normally maintains these two compartments with distinct pH and enzymatic conditions (58). Anything contributing to a breakdown in the segregation of the proximal and distal compartments may allow the stratified squamous epithelium of the non-glandular region to come into contact with the luminal content of the distal part with acid, bile (refluxed from the duodenum) and pepsin. Chronic insult of the non-glandular region will eventually lead to ulceration (Fig. 4).

Ulceration in the non-glandular stomach of pigs is a disease of complex etiology in which multiple factors are involved, including dietary and stress factors. Small particle size of feed, interruption of feed intake and presence of highly fermentable carbohydrates in the diet promote ulcer (10). In general, all conditions increasing the fluidity of the stomach contents may cause a breakdown of the pH gradient between the proximal and the distal parts of the stomach and may play a role in ulcer development (77). An infection with *H. suis* may result in secretion of excessive amounts of gastric acid, leading to increased contact of the non-glandular part of the stomach with hydrochloric acid. In the fundic gland region of pigs experimentally or naturally infected with *H. suis*, these micro-organisms were found in close contact with parietal cells, which might indicate that the bacterium may have an impact on these hydrochloric acid-producing cells (103). An *H. suis* infection results in gastritis, which
is mainly localized in the antrum (103, 147). In *H. pylori* infections in humans, increased acid production has been associated with antral predominant gastritis (132). In a recent study, Sapierzynski et al. (192) demonstrated that an *H. suis* infection in pigs results in an increased number of gastrin producing cells and a decreased number of somatostatin producing cells. Since gastrin stimulates and somatostatin inhibits the secretion of hydrochloric acid by parietal cells, this may also result in excessive acid production. However, Silva et al. (202) did not find increased postprandial serum gastrin concentrations in pigs with ulceration of the pars esophagea.

Krakowka et al. (129) isolated a curve-shaped *Helicobacter* species from naturally infected young piglets different from the tightly coiled *H. suis*. This microorganism is morphologically similar to but antigenically different from *H. pylori*. As far as we know, no genomic data of this *H. pylori*-like bacterium have been published yet. Gnotobiotic piglets experimentally inoculated with this microorganism developed ulcers of the pars esophagea (130).

Hänninen et al. (93, 94) demonstrated that spindle-shaped microorganisms that had been isolated from the stomach and feces of pigs and that had tufts of sheated flagella at both ends and external fibrils outside the cell, belonged to the species *H. bilis* and *H. trogontum*. These are enterohepatic helicobacters that were originally isolated from mice and rats, respectively, and were provisionally called “flexispira”. The pathogenicity of these microorganisms for pigs is unknown and their main site of colonization is most probably the lower intestinal tract. They are urease-positive, which may help them to survive during passage through the stomach. It remains to be determined whether they are able to colonize the porcine stomach, as has been shown for some other urease-positive enterohepatic helicobacters in other animals, such as *H. aurati* in Syrian hamsters (177) and *H. muridarum* in mice (183).
Gastric helicobacters associated with dogs and cats

The majority of *Helicobacter* infections of the canine and feline gastric mucosa are mixed infections of various *Helicobacter* species, including *H. felis, H. bizzozeronii, H. salomonis* and "*Candidatus* H. heilmannii". Recently, one additional species was isolated from the stomach of a dog, namely *H. cynogastricus* (233), and one additional species was isolated from the stomach of a cat, namely *H. baculiformis* (15).

In dogs, spiral shaped bacteria are commonly found in the stomach. They are present in 67 to 86% of clinically healthy dogs and in 61 to 100% of dogs presenting chronic vomiting (105, 112). In cats, spiral-shaped organisms have been detected in 41 to 100% of the animals investigated, with a slightly higher rate in animals presenting chronic vomiting (62, 80, 105, 112, 161, 171, 172, 237, 243). Bridgeford et al. (23) hypothesized that gastric *Helicobacter* species may be a cause of feline gastric lymphoma.

The pathogenic significance of gastric *Helicobacter* species in dogs and cats remains enigmatic and may be *Helicobacter* species- or even strain-dependent.

Cats experimentally infected with *H. felis* presented a pangastric mononuclear infiltration throughout the gastric mucosa, which was equivalent to the inflammatory response in uninfected animals. However, follicular organization of the inflammatory cells was restricted to the infected animals (193, 204).

The only spiral organism which has been identified in dogs with chronic active gastritis, and not in dogs with a normal gastric histology, is *H. felis* (51). Also, young gnotobiotic dogs experimentally infected with *H. felis* presented marked lymphoid hyperplasia in the fundus and the body of the stomach (137). These observations suggest a cytopathogenic effect in the canine stomach for at least *H. felis*, which may be enhanced due to a possible synergistic effect with *H. bizzozeronii*. However, Simpson and others (204) found a similar degree of inflammation both in mature SPF dogs experimentally infected with *H. felis* and in uninfected
control dogs. These conflicting observations may be due to differences in virulence between
different \textit{H. felis} isolates, as has also been described for \textit{H. pylori} (59, 132). Very little is
known, however, about differences in pathogenicity between different strains within the same
species of non-\textit{H. pylori} helicobacters. De Bock et al. (36) reported significant differences in
inflammation scores in the gastric mucosa of SJL mice at 3 weeks following experimental
infection with two different \textit{H. felis} strains, but it is unclear whether this difference in
inflammation score persists in time. Inflammation is considered only one aspect of
pathogenicity and it is not known whether these strains differ in other aspects of pathogenicity
as well, or whether this observation also holds in other animal species.

Gastric and duodenal ulcers are reported infrequently in dogs and cats, and no clear
association has been made with \textit{Helicobacter} infections (25).

Several research groups concluded on the basis of a species-specific \textit{ureB} PCR (13, 161)
that \textit{H. bizzozeronii} is the predominant \textit{Helicobacter} species in the canine stomach (182, 230,
241). Using a multiplex PCR, it was found that more than 50\% of the Belgian dogs and cats
investigated were harboring \textit{H. felis} (230). The prevalence of “\textit{Candidatus H. heilmannii}”
(designated “\textit{H. heilmannii}”, or “HLO135” at that time) was found to vary from between 20
and 100\% in both cats and dogs (112, 161, 218, 230, 241). According to Van den Bulck et al.
(230), \textit{H. felis} and “\textit{Candidatus H. heilmannii}” (designated “HLO135”) are the predominant
\textit{Helicobacter} species in cats. \textit{H. salomonis} has only sporadically been detected in both dogs
and cats. The prevalence of \textit{H. cynogastricus} and \textit{H. baculiformis} in these animal species is
presently unknown.

\textbf{Gastric helicobacters associated with rabbits}

To the authors’ knowledge, only two reports describe the detection of \textit{Helicobacter} DNA
in the stomach of rabbits (231, 234). This concerned \textit{H. felis} and \textit{H. salomonis}. No attempts
were made to cultivate these organisms from rabbits, nor is there anything known about their pathogenicity towards this animal species. Further research is recommended, especially since rabbits are gaining importance as pet animals, often living in intimate contact with their adoptive family.

Gastric helicobacters associated with ferrets

Shortly after the discovery of *H. pylori* in humans, spiral organisms were isolated from a gastric ulcer of a ferret and from the gastric mucosa of two healthy ferrets (66). These organisms were first described as *Campylobacter (C.) pylori* subsp. *mustelae* (68). Later on, they were designated *C. mustelae* (69) and finally *H. mustelae* (85). Only a minority of ferrets younger than 6 weeks are colonized by this bacterium, in contrast to approximately 100 % of the adult ferrets (67). This indicates that widespread colonization occurs after weaning and it seems to persist throughout the adult life of the ferret (71).

In ferrets naturally infected with *H. mustelae*, often only a superficial gastritis is present in the corpus region, where these bacteria colonize the mucosal surface (140). In the antrum, however, a diffuse mononuclear gastritis is observed with inflammatory cells often occupying the full thickness of the mucosa (72). In this stomach region, *H. mustelae* colonizes the surface, gastric pits and the superficial portion of the glands (72). A retrospective study revealed that persistent colonization with *H. mustelae* over time increases the severity of gastric disease (71).

Gastric and, to a lesser extent, duodenal ulcers have been reported in ferrets infected with *H. mustelae* (66, 70) and the incidence of gastric ulceration in this animal species varies between 1.4 and 35% (3, 4). However, since the prevalence of *H. mustelae* is very high in adult ferrets, long-term observations of experimentally infected pathogen-free ferrets are
needed to elucidate the exact role of *H. mustelae* infection in the development of peptic ulcer disease (211).

Fox and coworkers (75) reported on the presence of *H. mustelae* in the pyloric mucosa of two ferrets suffering from pyloric adenocarcinoma. In both cases, the invasion of neoplastic tubules into the deep submucosa is described. An increased epithelial cell proliferation has also been detected in the gastric mucosa of ferrets infected with *H. mustelae*. This may play a role in the development of gastric tumours (247). Gastric MALT lymphoma has also been described in ferrets infected with *H. mustelae* (63). Replacement of normal epithelium by uniform populations of lymphoid cells was seen, with invasion and destruction of the gastric glands. These lymphomas arose in the antrum, where *H. mustelae*-induced gastritis is most severe. However, for both types of gastric malignancy, evidence remains circumstantial and the role of *H. mustelae* in the development of gastric tumours needs to be confirmed (211).

Gastric helicobacters associated with hamsters

H. aurati has been isolated from the stomachs of hamsters. Several not further characterized *Helicobacter* spp. have also been reported to be present in the stomach of these animals (159, 176) but no further information is available on these species.

H. aurati has been isolated from the inflamed stomachs and caeca of adult Syrian hamsters. Various features, such as the fusiform shape and the presence of periplasmic fibrils, allow morphologic discrimination between *H. aurati* and the three other helicobacters that have thus far been identified in hamsters, namely *H. cholecystus* (76), *H. mesocricetorum* (203) and *H. cinaedi* (26, 236). The presence of urease activity also distinguishes it from these three enterohepatic *Helicobacter* species. The preferential colonisation site of *H. aurati* in hamsters is probably the intestinal tract, particularly the caecum with subsequent spreading of this bacterial agent to the stomach in selected animals. The coprophagic behaviour of
hamsters may play a role in this gastric colonisation by *H. aurati*. At present, the exact role of *H. aurati* in gastric disease of hamsters has not yet been fully clarified, although the organism has been identified in hamsters suffering from chronic gastric inflammation and intestinal metaplasia (176, 177). The same authors reported the presence of another helical, urease-negative *Helicobacter* species, as well as a smaller, urease-negative *Campylobacter* sp. in the stomachs of these hamsters. Likewise, Nambiar et al. (159) reported a case of gastritis-associated adenocarcinoma and intestinal metaplasia in a Syrian hamster naturally infected with different *Helicobacter* species, including *H. aurati*. They suggested that chronic *Helicobacter*-associated gastritis in hamsters may develop into an infiltrative gastric adenocarcinoma, similar to what has been described in chronic *H. pylori* infections in humans. There are no indications that *H. aurati* is of zoonotic significance.

Gastric helicobacters associated with ruminants

Gastric ulcers regularly occur in calves and adult cattle with an incidence varying between 2 and 87% (52, 96, 117, 163, 206, 240). “*Candidatus Helicobacter bovis*” has been demonstrated in the pyloric part of the abomasum of calves and adult cattle but has not yet been cultivated *in vitro* (44). Although it is highly prevalent in bovines (88, non-published results), its involvement in gastric disease in cattle is presently unknown. In contrast, *Helicobacter* DNA was not detected in the abomasum of 70 goats, using a genus specific PCR (88).

Gastric helicobacters associated with horses

Gastric ulcers are common in horses and their incidence in racehorses in active training may exceed 90% (20, 156). Various stress factors, diet, management and training practices are
regarded as potential risk factors (31, 156). The proximal half of a horse’s stomach is entirely
lined with a stratified squamous epithelium resembling the pars esophagea of the porcine
stomach. The more distal portion is the glandular part. Ulcers are most frequently seen close
to the junction between the non-glandular and the glandular part of the stomach (31). In some
studies, *Helicobacter*-like organisms or their DNA have been detected in the stomach of
horses but their role in development of gastric ulcers remains speculative. Contreras et al. (31)
detected *Helicobacter*-like DNA in the gastric mucosa of 11 thoroughbred racehorses.
Sequencing of the 16S rRNA gene revealed 99% similarity with *H. pylori*, but all samples
were negative when tested with *H. pylori*-specific PCR assays targeting the *cagA* and *glmM*
genes which might indicate that the DNA was from a *Helicobacter* species different from *H.
pylori. It remains to be determined whether horses may indeed be infected with a gastric
Helicobacter species specifically associated with this animal host. Attempts should be made
to try and isolate these microorganisms from the horse’s stomach, both *in vitro* and *in vivo* by
intragastic inoculation of specific pathogen free mice (166).

Gastric helicobacters associated with nonhuman primates

In several studies, nonhuman primates were used as models for human *H. pylori*
infections (111, 128, 209, 210, 212). Captive rhesus monkeys (*Macaca mulatta*) are
commonly infected with *H. pylori* (54). The rhesus monkey model, therefore, provides an
opportunity to examine natural acquisition of *H. pylori* using an experimental set up that
closely resembles human infection. Socially housed rhesus monkeys rapidly acquire *H. pylori*
infection. Newborns from infected dams are more commonly infected than those from
uninfected dams, particularly during the peripartum period, suggesting that close contact
during this time facilitates oral-oral transmission (213, 214). Once acquired, infection is
associated with chronic gastritis that resembles that seen in humans.
The number of reports dealing with natural infections with gastric non-\textit{H. pylori} helicobacters in nonhuman primates is limited and at present, a gastric \textit{helicobacter} species specifically associated with these animals has not yet been described. Bronsdon et al. (24) isolated and described \textit{H. nemestrinae} from the stomach of a pigtailed macaque (\textit{Macaca nemestrina}). This microorganism is able to grow at 42°C and possesses bipolar flagella, which is different from \textit{H. pylori} strains isolated from humans. Based on the sequencing of 7 housekeeping genes and 2 flagellin genes, \textit{H. nemestrinae} was later shown to be an atypical \textit{H. pylori} strain (219). \textit{H. nemestrinae} should therefore be considered a later heterotypic synonym of \textit{H. pylori}.

In the stomach of rhesus monkeys (\textit{Macaca mulatta}), gastric non-\textit{H. pylori} helicobacters which were not identified to the species level, have been observed in the mucus covering the surface epithelial cells, in the lumina of the gastric glands and in close contact with parietal cells (57). These micro-organisms were able to invade and on occasion to damage parietal cells, while apparently causing hyperchlorhydria. This is in contrast to \textit{H. pylori}, which caused gastritis in these animals without modifying the acid output (57). Long, spiral-shaped bacteria have also been reported in the stomach of baboons (\textit{Popio hamadryas}). This was associated with gastritis by Mackie and O’Rourcke (138), but not by others (34, 35). Non-\textit{H. pylori} helicobacters, without clarification about the species, have been described to be naturally present in the stomach of up to 100% of cynomolgus monkeys from many different geographic regions (55, 187). These micro-organisms were found in the superficial portions of the gastric epithelium, most frequently in the fundic region. The bacteria were located in the gastric pits, superficial glands or on the surface epithelium. However, no correlation was observed between the presence of these bacteria and the infiltration of lymphoplasmacytic cells and inflammatory lesions in these gastric tissues (55).
H. suis has been demonstrated in the stomach of two mandrill monkeys (*Papio Sphinx*), two cynomolgus monkeys (*Macaca fasicularis*) and one Rhesus macaque (*Macaca mulatta*) from a zoo (167). One isolate, first described as “*H. heilmannii*” (114) and later identified as “*Candidatus H. heilmannii*” (158), was obtained by intragastric inoculation of mice with gastric tissue from a cynomolgus monkey (*Macaca fascicularis*). No information on the pathogenic significance of these *Helicobacter* species for nonhuman primates is available and the source of infection remains to be determined.

Although it is clear that nonhuman primates may be infected with different types of gastric helicobacters, little information on these bacteria and their interactions with these hosts is available. Since these animals are closely related to humans, further research is wanted. Monkeys might serve as a possible reservoir for human infections.

NON-*H. PYLORI* HELICOBACTER-ASSOCIATED GASTRIC DISEASES IN HUMANS: ZOOSES?

Although some data in the literature indicate that animals, including cats, dogs and sheep, occasionally may be infected with *H. pylori* (53, 74, 226), it is unlikely that animals play an important role in the transmission of this microorganism to humans. Moreover, it cannot be excluded that in some of these cases *H. pylori*-like organisms – but not *H. pylori* itself – were involved. *H. pylori* has been demonstrated by culture and PCR methods in the gastric mucosa of SPF laboratory cats in one study (90). This observation may concern an anecdotic anthroponosis, especially since these bacteria have not been identified in stray cats (62).

Human infections with non-*H. pylori* *Helicobacter* organisms, however, most likely originate from animals, although the fingerprinting of *Helicobacter* species present in the human and animal gastric mucosa should be considered in order to fully understand the zoonotic hazard originating from different animal species.
O’Rourke et al. (166) demonstrated that 16S rRNA gene sequences and partial *ureA* and *ureB* gene sequences from 3 human and 4 porcine non-*H. pylori* Helicobacter strains isolated *in vivo* by inoculation in specific pathogen free mice showed a very high degree of homology, >99.3%. This led to the conclusion that they represent the same species, later described as *H. suis* (14, 166).

Another human non-*H. pylori* Helicobacter strain, also isolated *in vivo* in specific pathogen free mice, could be easily differentiated from *H. suis*. Urease gene sequence analysis demonstrated that it clustered with helicobacters from domestic and exotic feline species. These microorganisms were designated “*Candidatus* H. heilmannii” (166).

Two urease-based PCRs, one developed by O’Rourke et al. (166) and another one by Neiger et al. (161), detected only “*Candidatus* H. heilmannii” DNA and not DNA from pure *in vitro* cultures of *H. suis*, *H. felis*, *H. salomonis*, *H. bizzozeronii*, *H. baculiformis* and *H. cynogastricus* strains (non-published results), and can therefore be considered species-specific. Using the test described by Neiger et al. (161), Chisholm and Owen (27) demonstrated the presence of *Candidatus* H. heilmannii DNA in one of 113 gastric biopsies from human patients with dyspeptic symptoms.

Trebesius et al. (227) used fluorescent in situ hybridization (FISH) and partial 16S ribosomal sequencing for analyzing 89 gastric biopsy samples from humans in Germany with histological evidence of non-*H. pylori* helicobacters. Five short 16S rRNA directed probes of about 20 nucleotides were used in FISH. In total, 71 (80%) of these samples hybridized with a probe designated Hhe-1, which recognizes fragments of the 16S rRNA gene of *H. suis*. The 16S ribosomal gene sequences of the former “*H. heilmannii*” type 2 are highly related, and results obtained with the other probes are therefore more difficult to interpret. Two probes (Hhe2 and Hhe4) are identical to fragments of the 16S rRNA gene of “*Candidatus* H. heilmannii”, leading to the conclusion that DNA of this helicobacter was detected in 17 (19%)
of the samples. Probe Hhe5 recognizes the 16S rRNA gene of *H. felis*, *H. bizzozeronii* and *H. salomonis*. Five samples (6%) hybridized with this probe. Finally, one sample hybridized with probe Hhe3. It is possible that this probe recognizes a not yet described *Helicobacter* species, since the sequence obtained from HHLO-3 (Genbank accession N° AY014859) shows less than 97% similarity with any of the known *Helicobacter* species. More research is needed to confirm this, however.

De Groote et al. (45) used three PCR assays targeting the 16S rRNA gene for screening of paraffin-embedded gastric biopsy specimens of 101 patients with chronic active gastritis and histological evidence of a non- *H. pylori* *Helicobacter* infection. Fourteen samples tested positive in a PCR assay that specifically detected *H. suis* DNA. DNA of *Candidatus* *H. bovis* was detected in one sample. Samples of 49 patients tested positive in a third assay that simultaneously detected *H. felis*, *H. bizzozeronii*, *H. salomonis*, *Candidatus* *H. heilmannii*, *H. bacculiformis* and *H. cynogastricus*.

Van den Bulck et al. (230) studied the presence of *Helicobacter* species in 123 gastric biopsies of humans from Belgium and Germany with histological evidence of a non- *H. pylori* *Helicobacter* infection, using a multiplex PCR based on the tRNA intergenic spacers, the urease gene and the 16S rRNA gene (13). In 37% of the samples, *H. suis* was detected. In descending order, *H. salomonis* (21%), *H. felis* (15%), *Candidatus* *H. heilmannii* (8%, designated HLO135 by the authors) and *H. bizzozeronii* (4%) were found.

The data presented above show that *H. suis* is the most prevalent gastric non- *H. pylori* *Helicobacter* species in humans and there are strong indications that pigs may be a source of infection for humans. Apart from the stomachs of pigs and humans, *H. suis* has also been detected in the stomachs of macaques and mandrill monkeys, as has been demonstrated by 16S rRNA gene and urease gene sequencing (167), and in one cat (230).
Dogs, cats and perhaps also pet rabbits may serve as a source of infection in humans with *H. felis*, *Candidatus* *H. heilmannii* and *H. bizzozeronii*. Anecdotal reports of the presence of the same *Helicobacter* species in the stomach of a person and his favorite pet animal further point in the same direction. Several reports indeed suggest the transmission of gastric non-*H. pylori* spiral bacteria from dogs to humans (39, 116, 226) or from cats to humans (50, 107, 133, 217, 235). In 1999, Andersen et al. (2) succeeded in the isolation of a non-*H. pylori* helicobacter strain from human gastric mucosa. Later, phenotypic analysis, sequencing of the 16S rRNA gene, DNA-DNA hybridization analysis and whole-cell protein profiling revealed that this isolate belongs to the species *H. bizzozeronii* (116). Recently, another *in vitro* isolate was obtained from a human gastric non-*H. pylori* Helicobacter infection. Despite the low prevalence of *H. bizzozeronii* in human biopsies, polyphasic identification analysis revealed that this isolate also belonged to this species (127). In the study of Van den Bulck et al. (230), *H. salomonis* represented 21% of the human samples. The frequent identification of *H. salomonis* in human gastric biopsies, however, is in contrast to its rare identification in pet carnivore samples, thus inclining us to suspect additional sources of infection. In none of the studies described above were tests included that specifically detect *H. baculiformis* and *H. cynogastricus*, and it is presently not known whether these recently described species are able to colonize the human stomach.

GASTRIC DISEASE IN HUMANS INFECTED WITH NON-*H. PYLORI* HELICOBACTER SPECIES

Studying the effects of non-*H. pylori* helicobacters in humans is complicated by the fact that these infections are uncommon and it seems likely that there may be variation among non-*H. pylori* helicobacters in their ability to cause inflammation or disease in humans. In addition, the presence of *H. pylori* must be excluded in order to assess the effects of the
species under consideration. De Groote et al. (45) detected *H. pylori* DNA in 7 of 64 and Van den Bulck et al. (230) in 6 of 89 human gastric biopsy specimens that were positive for non-*H. pylori* helicobacters. Human *H. pylori* and non-*H. pylori* *Helicobacter* co-infections have also been identified by histology (113), but the possible significance of this in terms of disease development has not been determined.

Non-*H. pylori* *Helicobacter* infections of the human stomach are consistently accompanied by active chronic gastritis. The lesions, however, appear less severe than those associated with *H. pylori* (216). Acute gastritis is also occasionally observed (246). There may be glandular atrophy or intestinal metaplasia of the fundic mucosa, but these lesions are less common with non-*H. pylori* *Helicobacter* than with *H. pylori* infections (216). Gastric erosions mainly located in the antrum (22, 41, 50, 199, 221, 246) and duodenal ulcers (21, 81, 118, 194) have also been reported in association with non-*H. pylori* *Helicobacter* infections. Furthermore, these infections have been associated with low grade MALT lymphoma of the stomach, and the risk of developing MALT lymphoma is higher with non-*H. pylori* helicobacters than with *H. pylori* (153, 154). Both the gastritis and the MALT lymphomas have been reported to resolve after clearance of the non-*H. pylori* *Helicobacter* infections, further underlining the causal relationship (154).

Clinical symptoms associated with non-*H. pylori* helicobacters in man can be characterized by atypical complaints such as acute or chronic epigastric pain and nausea. Other aspecific symptoms include hematemesis, recurrent dyspepsia, irregular defecation frequency and consistency, vomiting, heartburn and dysphagia, often accompanied by a decreased appetite (50, 81, 101, 123, 148, 164, 194, 199, 221, 235, 239, 245, 246). Some people infected with non-*H. pylori* helicobacters do not present obvious clinical signs (142). Inspection of the gastric mucosa of people infected with long spiral bacteria through endoscopy reveals a variety of lesions, ranging from a normal to slightly hyperemic mucosa,
to mucosal edema, and to multiple erosions and ulcerations in the antrum or in the duodenum (50, 81, 194, 199, 221, 235, 244, 246).

Histologically, the inflammation induced by non-\textit{H. pylori} helicobacters in the gastric tissue is generally characterized by lymphocytic exudation into gastric foveolae, sometimes admixed with plasma cells. In some cases, lymphocytes are organized into lymphoid aggregates. Epithelial mucus is occasionally depleted (64, 113, 123, 154, 164, 194).

In human patients presenting severe pathology and clinical symptoms associated with the presence of non-\textit{H. pylori} helicobacters, treatment is indicated, although the efficacy of such treatment is not always easy to determine due to the lack of randomized trials. Such trials are difficult to organize in view of the low frequency of these infections in humans. In practice, identical treatment regimens as used for \textit{H. pylori} have been prescribed. Triple therapy using combinations of a proton pump inhibitor and two antimicrobial agents selected from clarithromycin, metronidazole, amoxicillin and tetracycline may be effective (39, 81, 123, 221, 235).

Because of the low number of in vitro isolates available, very little data exists on the antimicrobial susceptibility and acquired resistance of gastric non-\textit{H. pylori Helicobacter} species. Determination of minimal inhibitory concentrations of various antimicrobials against in vitro isolates indicated that acquired resistance to metronidazole may occur in \textit{H. bizzozeronii} and \textit{H. felis} strains of animal origin (232). Experimental \textit{H. felis} infections in mice showed that several therapies using only one antimicrobial were only effective in 25 to 70\% of the animals tested, while triple therapy using metronidazole, tetracycline and bismuth subcitrate eradicated \textit{H. felis} from all the animals (49). In a BALB/c mouse model it was shown that treatment with ampicillin/omeprazole results in the suppression of \textit{H. suis}. Differences in sensitivity were seen between different \textit{H. suis} isolates, which might indicate acquired antimicrobial resistance (102).
TRANSMISSION OF GASTRIC NON-*H. PYLORI* HELICOBACTER SPECIES

Little data is available on how non-*H. pylori* Helicobacter species are transmitted among their hosts. Hellemans et al. (104) screened stomach samples of pigs of different ages from different herds for the presence of *H. suis*. The prevalence of the infection was very low in suckling piglets, increased rapidly after weaning and reached 90 per cent in the adult boars and sows. The low degree of infection before weaning despite the high prevalence in adult pigs and thus most probably in the dams of the suckling piglets, may indicate maternal protection through antibodies or other antibacterial factors present in sow milk (89), which disappears at weaning. The regrouping of animals at the time of weaning most probably favors the spread of the microorganism from the few piglets infected before weaning to non-infected animals. Another factor that may enhance *H. suis* colonization in weaned pigs is that after weaning the lactobacilli disappear temporarily from the stomach. An antagonistic effect of lactobacilli against *H. pylori* (1, 119, 200) and *H. felis* (30) infection has been demonstrated in a murine model. The fact that the *H. suis* infection persisted in the adult boars and sows indicates that any natural immune response against this microorganism did not lead to its clearance. Despite numerous attempts, we were not able to detect *H. suis* in feces of infected pigs, which may indicate that fecal-oral spread between pigs and from pigs to humans is limited. Transmission of *H. suis* may be oral-oral via saliva, or gastric-oral via vomitus, but this remains to be investigated. Persistent stomach colonization with *H. suis* can be achieved in laboratory mice (102), and it may be worthwhile to determine whether wild mice can act as vectors or even as reservoirs of the infection.

Hardly any data on the transmission of non-*H. pylori* Helicobacter infections in dogs and cats is available in the literature. Hänninen et al. (91) described the transmission of *H.*
salomonis from a dam to her puppies, as well as between infected and non-infected pups, which was proved by the similar pattern found for all cultured isolates using pulsed field gel electrophoresis. Transmission is suspected to be through oral-oral or gastric-oral contact, as nursing dogs have very intimate contact with their offspring and puppies eat material vomited by the dam. *Helicobacter* DNA was detected in the oral cavity of dogs (186). Lee et al. (135) found that gastric mucus derived from *Helicobacter*-infected cats was highly infectious for mice, while rectal contents were not. Moreover, the isolation procedure starting from fecal material was unsuccessful (91). These observations may indicate that fecal-oral transmission is less important.

Fecal-oral transmission has, however, been suggested for *H. mustelae* (73). In a group of 36 ferrets, *H. mustelae* was isolated from the feces of 11 animals. A correlation was found with periods of transient hypochlorhydria, also seen in experimentally infected animals (72), which may allow larger numbers of *H. mustelae* to exit the stomach. Keeping in mind the ease by which ferrets vomit, oral-oral and gastric-oral contact may also play a role in transmission of this bacterium (71).

It is not exactly known how gastric helicobacters are transmitted from animals to humans, but most likely it occurs through direct contact. Living in close proximity to dogs, cats and especially swine has indeed been identified as a significant risk factor for these infections (108, 144, 220). The intensity of contact with animals is thought to be important as well, since a higher incidence of these infections has been noted in pig farmers, the staff of pig slaughterhouses and people having intensive contact with pet animals (217, 221, 235, 246). It is remarkable that *H. suis* is the most prevalent gastric non-*H. pylori Helicobacter* species in humans (27, 227, 230). This might indicate that the infectivity in humans of cat or dog related strains is less than that of *H. suis.*
It is not known whether, besides direct contact with animals, other routes of transmission of non-\textit{H. pylori} helicobacters are of importance. Recently, it was shown that gastric helicobacters can survive in water for more than 4 days, a fact which may suggest a possible role for water in the transmission of \textit{Helicobacter} species between hosts (11). There is no data available on the survival of \textit{H. suis} on carcasses of slaughtered pigs, and it remains to be determined whether raw or undercooked pork meat might be a source of infection for humans. It is also not known how frequently transmission of non-\textit{H. pylori} helicobacters from animals to humans occurs. Only in a low percentage of human patients with severe gastric complaints long spiral shaped bacteria are found at microscopic examination of gastric biopsies. However, it is possible that this represents only the tip of the iceberg and it can not be excluded that infections with these bacteria often pass inapparent or result in mild disease signs which are not further examined (142).

\textbf{VIRULENCE FACTORS OF GASTRIC NON-\textit{H. PYLORI} HELICOBACTER SPECIES}

Most of the research concerning \textit{Helicobacter} virulence factors and the evoked host response has been done with \textit{H. pylori} and much less information is available about the virulence mechanisms of non-\textit{H. pylori} helicobacters. Although some virulence factors of these bacteria may indeed be similar to those described for \textit{H. pylori}, there may also be differences. \textit{H. pylori} is a diverse pathogen and several bacterial virulence factors are considered to play a role in pathogenesis of infections with this agent. The key enzymes and proteins found in \textit{H. pylori} that are important for colonization include the urease system, alpha carbonic anhydrase, sheathed flagella, pH taxis \textit{tlpB} gene, arginase and several adhesins. Key virulence factors also include the \textit{cag} pathogenicity island (\textit{cag} PAI) and the vacuolating toxin VacA.
Describing these virulence factors in detail goes beyond the scope of this article and readers are referred to recent reviews dealing with this subject (100, 132, 152, 160, 179, 196).

All gastric *Helicobacter* species require a family of genes involved in the production of urease. This enzyme consists of two subunits, UreA and UreB. It hydrolizes urea to ammonia and carbon dioxide and is an important mechanism of survival required to colonize the stomach. The ammonia produced neutralizes the hydrochloric acid of the stomach, creating a neutral microenvironment around the bacterium. Urease is mainly localised in the cytoplasm but also becomes associated with the surface of the viable bacteria after autolysis of surrounding bacteria (131, 139, 178). *In vitro*, this autolysis occurs at the culture stage when the growth of *H. pylori* ceases (78). Although urease has been associated with the outer membrane (16), the concentration of surface-bound urease is probably too low to contribute to acid resistance (197). The proton-gated urea channel UreI regulates the rate of the urea entry into the cytoplasm and is required for acid survival and gastric infection (151, 205, 238).

When UreI is activated by an acidic pH of the medium, urease moves from the inner portion to the outer portion of *H. pylori*, closer to the source of urea. So presumably, ammonia production occurs at or near the inner membrane (110). In *H. felis*, a second urease system, ureA2B2, has been detected (180), but its function and regulation is currently unknown. One study showed that an *H. pylori* strain unable to produce functional urease was able to colonize and damage the gastric mucosa of Mongolian gerbils (150). This seems to contrast with results from many other studies stating that urease is essential for colonization of the stomach of several animals, including gnotobiotic piglets (61). An isogenic urease-negative mutant of *H. mustelae* (208) produced no detectable urease and failed to colonize the ferret stomach (5).

In any case, the role of urease seems not to be limited to colonization. Ammonia is probably also used as a nitrogen source (242) and is thought to assist in damaging the mucosal barrier, thereby releasing nutrients for the bacterium and maintaining the inflammation process (180,
In vitro experiments have shown that *H. pylori* urease is capable of activating peripheral blood mononuclear leukocytes and mucosal macrophages, resulting in production of proinflammatory cytokines (98, 99). Moreover, the *H. pylori* urease B subunit is able to induce NF-κB activation and IL-8 production (19). Urease may also play a role in chemotaxis (157).

Motility is essential for stomach colonization by helicobacters, allowing them to move towards the gastric mucosa (122, 170), which has a neutral pH. Gastric helicobacters possess monopolar, bipolar or peritrichous bundles of 2-23 flagella. The flagella consist of a body, hook and flagellar filament. The latter is composed of two flagellin subunits namely the predominant FlaA and the minor FlaB. It works as a propeller and is covered by a sheath which is suspected to play a role in acid protection, masking of antigens and maybe adhesion (120). The basal body of the flagella is embedded in the bacterial cell wall and contains proteins required for rotation and chemotaxis. The hook links the body and the filament. *H. mustelae* mutants defective in hook production are nonmotile and devoid of flagellar filaments (169). Double mutants of *H. mustelae* in *flaA* and *flaB* genes are completely nonmotile and unable to colonize the ferret whereas single-gene *flaA* and *flaB* mutants have decreased motility (6, 121). These single-gene mutant strains were still able to initially colonize the ferret’s stomach at a low level and establish persistent infection with increasing numbers of organisms over time (6).

Using a microscope slide-based pH gradient assay, it has been shown that *H. pylori* displays pH-tactic behavior. In response to hydrochloric acid, the microorganism moves away from the strong acid. Chemotaxis receptor TlpB is required for this pH taxis and *tlpB* mutants are defective for mouse colonization (33). Homologous genes have not yet been described in gastric non-*H. pylori* helicobacters, although it seems likely that similar mechanisms exist, allowing them to escape from the highly acidic stomach lumen.
Once highly motile *H. pylori* bacteria have escaped pH stress, motility decreases or ceases. The ability of *H. pylori* to stop swimming in response to a neutral pH environment might optimize attachment to gastric epithelial cells (33). While the bacteria can persist deep in the mucus layer, they also attach tightly to gastric epithelial cells via a number of adhesins (162). Nothing is known about the adhesins of non-*H. pylori* helicobacters and information about specific localizations in the stomach of these microorganisms is limited. Gerbils have been experimentally infected with *H. felis* and *H. bizzozeronii* as a model for the study of pathogenesis and virulence mechanisms. Transmission electron microscopy revealed *H. felis* bacteria often in close proximity of parietal cells in contrast to what was found for *H. bizzozeronii* (38). A close apposition between the microvilli membrane of parietal cells and the outer membrane of the bacteria at the level of the periplasmic fibrils was regularly seen. Bacteria were also found surrounded by necrotic debris of parietal cells. *H. suis* cells were found in close proximity of mucus-producing epithelial cells and parietal cells of the stomach of experimentally infected pigs. This has also been seen in naturally infected pigs and in these animals the bacteria were also found inside the canaliculi of the parietal cells (103). *H. mustelae* adheres firmly to the gastric epithelium and only few bacteria are seen lying in the mucus (165). The exact mechanisms promoting its adhesion remain unknown. Most strains of *H. mustelae* agglutinate red blood cells from various hosts (223). Probably, more than one receptor is involved. In *H. mustelae* infected ferrets, the gastric mucosal hydrophobicity is reduced, which is correlated with the degree of mucosal inflammation (84). This may promote the attachment of *H. mustelae*, which is thought to be mainly hydrophilic. *H. mustelae* binds to the same receptor lipids as *H. pylori*, particularly phosphatidylethanolamine (82). Adhesion to eukaryotic cells in vitro correlates with the amount of phosphatidylethanolamine present (83). Clyne et al. (29) showed that flagella do not play a direct role in promoting adherence of *H. mustelae* to gastric epithelial cells.
Several virulence factors and genes are thought to be important in the pathogenesis of *H. pylori* infections once contact with the host cell epithelium is established, including VacA and the *cag* PAI (17, 100, 132, 160, 179, 196, 229). The *cag* PAI encodes a type IV secretion system, which forms a syringe-like structure capable of penetrating gastric epithelial cells and delivering CagA into the host cells. Once delivered inside the cell, CagA becomes phosphorylated on tyrosine residues, which are present in EPIYA motifs, resulting in morphological epithelial cell changes (162, 198). *H. pylori* strains that deliver CagA with more phosphorylation motifs are able to induce more severe cytoskeletal changes and are most often associated with gastric cancer (7, 12). The vacuolating toxin VacA plays a role in the development of vacuoles in epithelial cells and in the induction of apoptosis of these cells (32, 132). It is involved in the osmotic swelling of endosomes into vacuoles (79) and is encoded by the *vacA* gene, possessing several polymorphic sites, namely the signal region, the midregion and the intermediate region. For the first two regions, *H. pylori* strains with *vacA* type s1/m1 have been shown to be associated with duodenal and gastric ulceration and gastric adenocarcinoma, whereas the intermediate region is an important marker for *H. pylori* strains associated with gastric adenocarcinoma (188). Recombinant strains with altered toxicity can emerge during human infection, both for *vacA* and *cag* PAI (9, 124). Moreover, these two genes are thought to downregulate each other’s effects on epithelial cells, raising the possibility of avoiding excessive cellular damage (8). Although homologous genes have not been found in gastric non-*H. pylori* helicobacters, *H. felis*, in particular, induces extensive apoptosis and necrosis of parietal cells in experimentally infected gerbils (37). *H. felis* and *H. suis* induce apoptosis in the murine gastric epithelial cell line GSM06 and in the human gastric adenocarcinoma cell line AGS (non-published results). Gamma-glutamyl-transpeptidase which has been associated with the induction of apoptosis in gastric epithelial
cells and the inhibition of T-cell proliferation by *H. pylori* (125, 195, 201), is also produced by gastral non-*H. pylori* Helicobacter species (Table 2).

H. mustelae produces an array of surface rings which have not yet been described in other *Helicobacter* species. These rings are composed of the *Helicobacter* surface ring (Hsr) protein, comprising approximately 25% of the total envelope protein of *H. mustelae* (168). An Hsr-deficient mutant strain was able to colonize the ferret stomach, but cultures from mutant-dosed ferrets showed reduced levels of bacteria (175). Moreover, animals inoculated with the Hsr-negative strain showed reduced gastric inflammation compared to ferrets infected with the wild-type strain. This underlines the impact of these surface rings on the long-term survival of *H. mustelae* in the ferret stomach.

STUDYING GASTRIC HELICOBACTER INFECTIONS IN DOMESTIC ANIMALS:

WHAT MIGHT IT TEACH US ABOUT THESE INFECTIONS IN HUMANS?

One of the main reasons for the lack of knowledge of the main characteristics and bacterium-host interactions for non-*H. pylori* helicobacters colonizing the human stomach is that these bacteria are infrequently cultured *in vitro*, if at all, from gastric biopsies taken from infected humans. Hence, there are two major drawbacks to this approach: the difficulty of obtaining fresh human non-*H. pylori* spiral bacteria positive stomach biopsies, and the small size of these samples. Tackling this problem from a veterinary perspective may be helpful. Indeed, all known gastric non-*H. pylori* Helicobacter species infecting humans, except "*Candidatus* Helicobacter heilmannii" and "*Candidatus* Helicobacter bovis", have now been isolated from the stomach of animals and can be cultivated *in vitro* (14, 92, 115, 134). This will facilitate the study of bacterium-host interactions and will make it possible to determine the antimicrobial susceptibility of these microorganisms. Whole genome sequencing of non-*H. pylori* helicobacters may be used for detecting genes homologous to *H. pylori* virulence
genes. The *H. mustelae* and *H. suis* genome have recently been completed but results have not yet been published. Studying the genetic diversity of different isolates belonging to a single species may make it possible to determine whether certain genotypes are more often associated with disease in animals and humans than other genotypes. The availability of pure isolates should also enable the development of typing methods, such as multilocus sequence typing, which can be directly applied on gastric tissue. These techniques can then be used to determine whether animal and human strains are clonally related. It can indeed not be excluded at this time that gastric non-*H. pylori* Helicobacter strains infecting humans may possibly be somewhat different from those found in animals.

CONCLUSIONS

There are clear indications that gastric helicobacters other than *H. pylori* can cause disease in humans. These tightly coiled microorganisms comprise at least five different *Helicobacter* species. Diagnostic methods enabling the identification of these bacteria to the species level are needed to help clarify the epidemiology and pathology of these infections in humans. Evidence is accumulating that especially pigs, dogs and cats constitute reservoir hosts for gastric *Helicobacter* species with zoonotic potential. The recent successes with *in vitro* isolation of these fastidious microorganisms from domestic animals open new perspectives for developing typing techniques that can be directly applied on gastric biopsies from humans. These techniques should make it possible to determine whether animal and human strains belonging to the same *Helicobacter* species are clonally related. The availability of *in vitro* isolates also opens new perspectives for better understanding the pathogenesis of non-*H. pylori* Helicobacter associated gastric pathology and for developing treatment and prevention measures.
REFERENCES

 Helicobacter pylori: possible involvement of peptidergic substances. Helicobacter 10:
 567-576.

79. Genisset, C., A. Puhar, F. Calore, M. de Bernard, P. Dell'Antone, and C.
 Montecucco. 2007. The concerted action of the *Helicobacter pylori* cytotoxin VacA and
 of the v-ATPase proton pump induces swelling of isolated endosomes. Cell.
 Microbiol. 9:1481-1490.

 Healing of duodenal ulcer after eradication of *Helicobacter heilmannii*. Lancet.
 349:1815-1816.

 mustelae* and *Helicobacter pylori* bind to common lipid receptors in vitro. Infect.
 Immun. 61:2632-2638.

 Lingwood, and P. M. Sherman. 1995. Comparison of *Helicobacter mustelae* and
 Helicobacter pylori adhesion to eukaryotic cells in vitro. Gastroenterology 109:
 692-700.

 1996. Surface properties of *Helicobacter mustelae* and ferret gastrointestinal mucosa.

 McConnel, and W. E. S. Harper. 1989. Transfer of *Campylobacter pylori* and

121. **Josenhans, C., A. Labigne, and S. Suerbaum.** 1995. Comparative ultrastructural and functional studies of *Helicobacter pylori* and *Helicobacter*
mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol. 177:3010-3020.

147. Mendes, E. N., D. M. Queiroz, G. A. Rocha, A. M. Nogueira, A. C.
Carvalho, A. P. Lage, and A. J. Barbosa. 1991. Histopathological study of porcine
gastric mucosa with and without a spiral bacterium ("Gastrospirillum suis "). J. Med.
Microbiol. 35:345-348.
148. Mention, K., L. Michaud, D. Guimber, E. Martin De Lasalle, P. Vincent,
heilmannii infection in children undergoing upper gastrointestinal endoscopy. J.
analysis of gastric and enterohepatic Helicobacter species based on partial HSP60
a clinical isolate of urease-negative Helicobacter pylori and its ability to induce gastric
ulcers in Mongolian gerbils. Helicobacter 10:125-133.
2002. Expression of UreI is required for intragastric transit and colonization of gerbil
466.

Author bios.

Freddy Haesebrouck is a veterinarian and PhD from Ghent University, Belgium. In 1988, he became professor in veterinary bacteriology and mycology and since 1993, he is head of the Department of Pathology, Bacteriology and Avian Diseases at the Faculty of Veterinary Medicine, Ghent University. His expertise relates primarily to the study of bacterium-host interactions, taxonomy and antimicrobial resistance. The taxonomic line of research is used as an auxiliary to the study of bacterium-host interactions: characterization of zoonotic bacteria and bacteria that cause disease in animals. The study of Helicobacter spp was started in 1995 and was initially focussed on porcine gastric disease. Other studies focussed on canine and feline gastric Helicobacter species and enterohepatic helicobacters of poultry and horses. The cultivation method for these bacteria was optimized. This resulted in the isolation and description of new Helicobacter species: H. cynogastricus, H. baculiformis, H. suis and H. equorum.

Frank Pasmans obtained his degree in veterinary medicine in 1998 and a PhD in veterinary sciences in 2002 at Ghent University, Belgium. After three years of post-doc positions at the department of Pathology, Bacteriology and Avian Diseases, Ghent University, he was appointed professor at the same department in the disciplines of veterinary bacteriology and mycology and diseases of reptiles and amphibians. His research focuses on host–pathogen interactions of bacteria and fungi with animals. In this respect, gastric non-Helicobacter pylori Helicobacter infections in animals are of special interest because they provide an exciting new area in which nearly all aspects of the pathogenesis await discovery. Recent findings confirm the suspected role of H. suis in gastric disease in swine, rendering this research highly relevant for both animal and human health.

Bram Flahou is a veterinarian who graduated at the Faculty of Veterinary Medicine, Ghent University, Belgium. In 2005 he started his PhD studies on animal-associated gastric
helicobacters at the Department of Pathology, Bacteriology and Avian Diseases of the same faculty. His research focuses on the interactions of these microorganisms with their hosts, with emphasis on *H. suis*.

Koen Chiers is a veterinarian and PhD from Ghent University, Belgium. In 1995, he became assistant and later assistant-professor at the Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University. Currently, he is employed as a professor in veterinary pathology at the same department. In 2006, he became diplomate of the European College of Veterinary Pathologists (ECVP) and the European College of Porcine Health Management (ECPHM). Since 2001, he has been involved in several studies dealing with animal-associated helicobacters.

Margo Baele studied Bioscience Engineering at Ghent University and graduated in 1997. After her studies, she joined the Department of Pathology, Bacteriology and Avian Diseases at the Faculty of Veterinary Medicine of the same university and obtained her PhD in 2001. During this period, she performed taxonomical research, developed PCR-based methods for the identification and typing of bacteria and described several new bacterial species. After obtaining her PhD degree, she joined the *Helicobacter* team of the same department and studied the taxonomy of *Helicobacter* species from dogs, cats and pigs. This research resulted in the description of several new *Helicobacter* species and the first cultivation of and taxonomical studies on *Helicobacter suis*. Since 2008, Margo Baele has joined the Department of Research Affairs of Ghent University, advising researchers in applying for and managing European Research projects in the European Framework Programme.

Tom Meyns graduated as a veterinarian in 2002 at the faculty of Veterinary Medicine, Ghent University, Belgium. In 2007, he obtained a PhD degree for his research on *Mycoplasma hyopneumoniae* infections in pigs and thereafter, he became a post-doctoral researcher at the Department of Pathology, Bacteriology and Avian Diseases, Ghent.
University. His current research focuses on the role of *Helicobacter suis* in the development of gastric ulcers in pigs.

Annemie Decostere received her education at the Faculty of Veterinary Medicine, Ghent University, Belgium. She obtained a Master of Science degree in Aquatic Veterinary Studies at the Institute of Aquaculture, Stirling University, Scotland. Up until December 2006, she was full-time employed as a professor in veterinary bacteriology and mycology. Since the beginning of 2007, she is working at pharma.be (the Belgian association of the pharmaceutical industry) as Advisor in Public Health and Regulatory Affairs Manager. She is currently still involved as a visiting professor in teaching and supervising scientific research at the above Faculty. Her active involvement in research on helicobacters in domestic animals started in 2001. This resulted in her being promoter of various defended doctoral dissertations on helicobacters in domestic animals mainly focussing on taxonomy and clinical significance both in animals and human beings.

Richard Ducatelle is a veterinarian and PhD from Ghent University, Belgium. After a few years working for a Belgian research granting organization as a research grant evaluator, he joined Ghent University where he became professor in avian pathology, general and special animal pathology and animal hygiene. Currently, he is full professor in general and special animal pathology and animal hygiene. Main focus of his research is on interactions between bacteria and the animal host. For many years he has been interested in the problem of gastric ulcers in domestic animals. A major breakthrough in this field was the recent isolation of *Helicobacter suis* which, together with a number of other animal helicobacters, appears to play a role in human gastric pathology as well.
Figure legends.

Fig. 1. Phylogenetic tree based on the near-complete 16S rRNA gene sequences from gastric *Helicobacter* species and other closely related bacteria. The sequences were aligned using the CLUSTAL W program (225) and a phylogenetic tree was constructed using the neighbour-joining method (191) via the PHYLIP package (65). DNADIST was used for distance analysis (126). Bootstrap values (for branches present in more than 50 out of 100 resamplings of the data) are indicated at the nodes. Original names found at the Entrez Nucleotide database (NCBI) are shown between brackets. Sequences marked with an * are derived from bacteria demonstrated in the stomach of humans.

Fig. 2. Phylogenetic tree based on the partial *ureA* and *ureB* gene sequences from gastric *Helicobacter* species and other closely related bacteria. The sequences were aligned using the CLUSTAL W program (225) and a phylogenetic tree was constructed using the neighbour-joining method (191) via the PHYLIP package (65). DNADIST was used for distance analysis (126). Bootstrap values (for branches present in more than 50 out of 100 resamplings of the data) are indicated at the nodes. Original names found at the Entrez Nucleotide database (NCBI) are shown between brackets. Sequences marked with an * are derived from bacteria demonstrated in the stomach of humans.

Fig. 3. In the normal porcine stomach there is a small rectangular area around the cardia which is covered by a slightly keratinized squamous epithelium presenting as a white, slightly irregular surface on visual inspection. This area is named the pars esophagea, since the epithelium is similar to that of the esophagus.

Figure 4. As opposed to most other animal species and to humans, pigs do not usually develop stomach ulcers in the pyloric antrum, but rather in the pars esophagea. These lesions are characterized by hyperkeratosis, which typically presents as a bile-stained thickening of the mucosa (small arrow). This can evolve to clefts, erosions and ulcerations (large arrow).
ABSTRACT

Helicobacters other than *Helicobacter (H.) pylori* have been associated with gastritis, gastric ulcers and gastric MALT lymphoma in humans. These very fastidious microorganisms with typical large spiral shaped morphology were provisionally designated “*H. heilmannii*”, but in fact they comprise at least five different *Helicobacter* species, all of them known to colonize the gastric mucosa of animals. *H. suis*, which has been isolated from the stomach of pigs, is the most prevalent gastric non-*H. pylori* *Helicobacter* species in humans. Other gastric non-*H. pylori* helicobacters colonizing the human stomach are *H. felis*, *H. salomonis*, *H. bizzozeronii* and the until now uncultivable *Candidatus* *H. heilmannii*. These microorganisms are often detected in the stomach of dogs and cats. *Candidatus* *H. bovis* is highly prevalent in the abomasum of cattle, but has only occasionally been detected in the stomach of humans. There are clear indications that gastric non-*H. pylori* *Helicobacter* infections in humans originate from animals, and it is likely that transmission to humans occurs through direct contact. Little is known about the virulence factors of these microorganisms. The recent successes with *in vitro* isolation of non-*H. pylori* helicobacters from domestic animals open new perspectives for studying these microorganisms and their interactions with the host.
Table 1. *Helicobacter* species naturally colonizing the stomach of animals and their pathogenic significance for humans

<table>
<thead>
<tr>
<th>Helicobacter species</th>
<th>Natural host (prevalence)</th>
<th>Associated with gastric disease in humans</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. suis</td>
<td>Pig (60 -> 80% in slaughter pigs), macaque (NA**), mandrill monkey (NA)</td>
<td>Yes</td>
<td>14, 42, 45, 167, 227, 230</td>
</tr>
<tr>
<td>H. felis</td>
<td>Dog (47%), cat (63%), rabbit (2-9%), cheetah (NA***))</td>
<td>Yes</td>
<td>45, 134, 166, 227, 230, 231, 234</td>
</tr>
<tr>
<td>H. bizzozeronii</td>
<td>Dog (70%), cat (35%)</td>
<td>Yes</td>
<td>45, 92, 227, 230</td>
</tr>
<tr>
<td>H. salomonis</td>
<td>Dog (9%), cat (2%), rabbit (0-4%)</td>
<td>Yes</td>
<td>45, 115, 227, 230</td>
</tr>
<tr>
<td>Cand. H. heilmannii</td>
<td>Dog (20-100%), cat (20-100%), wild felidae (NA***), nonhuman primates (66%)</td>
<td>Yes</td>
<td>166, 227, 230</td>
</tr>
<tr>
<td>H. baculiformis</td>
<td>Cat (NA)</td>
<td>No</td>
<td>15</td>
</tr>
<tr>
<td>H. cynogastricus</td>
<td>Dog (NA)</td>
<td>No</td>
<td>233</td>
</tr>
<tr>
<td>Cand. H. bovis</td>
<td>Cattle (NA)</td>
<td>Yes</td>
<td>44, 45</td>
</tr>
<tr>
<td>H. mustelae</td>
<td>Ferret (0-100%)</td>
<td>No</td>
<td>66, 67, 68, 69, 70, 71, 85</td>
</tr>
<tr>
<td>H. aurati</td>
<td>Syrian hamster (50-100%)</td>
<td>No</td>
<td>177</td>
</tr>
<tr>
<td>H. nemestrinnae</td>
<td>Macaque (NA)</td>
<td>No</td>
<td>24</td>
</tr>
<tr>
<td>H. acinonychis</td>
<td>Cheetah (low), tiger (NA)</td>
<td>No</td>
<td>60, 224</td>
</tr>
<tr>
<td>H. cetorum</td>
<td>Whales (NA), dolphins (NA)</td>
<td>No</td>
<td>97</td>
</tr>
<tr>
<td>H. muridarum</td>
<td>Mice (0-62%)</td>
<td>No</td>
<td>86, 136, 183</td>
</tr>
</tbody>
</table>

* Later heterotypic synonym of *H. pylori* (219)
** Not available
*** Terio et al. (224) and Mörner et al. (155) found the gastric mucosa of 75% of cheetahs and 68% of free-ranging lynx to be colonized with “pet carnivore associated” helicobacters. These studies do not allow differentiation between *H. felis, H. bizzozeronii, H. salomonis, H. baculiformis, H. cynogastricus* and Cand. H. heilmannii.
Table 2. Differential characteristics of gastric *Helicobacter* species associated with domestic animals and nonhuman primates. Data were obtained from Baele et al. (14, 15), De Groote et al. (44), Dewhirst et al. (47), Fox et al. (68), Hänninen et al. (92, 93), Jalava et al. (115), Lee et al. (134), O’Rourke et al. (166), Patterson et al. (177) and Van den Bulck et al. (233). All taxa are positive for catalase production and possess sheathed flagella.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>H. baculiformis</th>
<th>H. cynogastricus</th>
<th>H. bizzozeronii</th>
<th>H. felis</th>
<th>H. salomonis</th>
<th>H. pylori</th>
<th>H. suis</th>
<th>Cand. H. heilmannii</th>
<th>H. mustelae</th>
<th>H. nemestrinae</th>
<th>Cand. H. bovis</th>
<th>H. aurati</th>
</tr>
</thead>
<tbody>
<tr>
<td>length (µm)</td>
<td>10</td>
<td>10–18</td>
<td>5–10</td>
<td>5–7.5</td>
<td>5–7</td>
<td>2.5–5</td>
<td>2.3–6.7</td>
<td>5–10</td>
<td>2</td>
<td>ND</td>
<td>1.5–2.5</td>
<td>4–8</td>
</tr>
<tr>
<td>Cell width (µm)</td>
<td>1</td>
<td>0.8–1.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8–1.2</td>
<td>0.5–1.0</td>
<td>0.9–1.2</td>
<td>0.5–0.6</td>
<td>0.5</td>
<td>ND</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Nitrate reduction</td>
<td>+**</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Urease</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Alkaline phosphate hydrolysis</td>
<td>+</td>
<td>+</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>7-Glutamyl transpeptidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Indoxyl acetate hydrolysis</td>
<td>–</td>
<td>–</td>
<td>(–)</td>
<td>(–)</td>
<td>(–)</td>
<td>(–)</td>
<td>ND</td>
<td>+</td>
<td>–</td>
<td>ND</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth at 42 °C</td>
<td>–</td>
<td>–</td>
<td>V</td>
<td>V</td>
<td>–</td>
<td>(–)</td>
<td>ND</td>
<td>V</td>
<td>+</td>
<td>ND</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Growth on 1 % glycine</td>
<td>–</td>
<td>–</td>
<td>(–)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Periplasmic fibril</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Distribution of flagella</td>
<td>BP***</td>
<td>BP</td>
<td>BP</td>
<td>BP</td>
<td>MP</td>
<td>BP</td>
<td>BP</td>
<td>BP</td>
<td>LP</td>
<td>BP</td>
<td>ND</td>
<td>BP</td>
</tr>
</tbody>
</table>

* Later heterotypic synonym of *H. pylori* (219)

** +, 100% of strains positive; –, 0% strains positive; (+), 80–94% strains positive; (–), 7–33% strains positive; v, 42–66% strains positive; ND, not determined

*** BP, bipolar; MP, monopolar; LP, lateral polar.
Table 3. Summary of gastric lesions in different animal species naturally or experimentally infected with helicobacters

<table>
<thead>
<tr>
<th>Animal species</th>
<th>Helicobacter</th>
<th>Infection</th>
<th>Gastric gross lesions</th>
<th>Gastric histological lesions</th>
<th>Localization of Helicobacter spp</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig</td>
<td>H. suis</td>
<td>Natural</td>
<td>Surface redness</td>
<td>ND</td>
<td>Antrum, fundus</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>none</td>
<td>ND</td>
<td>Antrum, fundus</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mucosa redness and edema, occasional erosions and hemorrhage</td>
<td>Antrum, fundus: diffuse mononuclear cell infiltration with occasional neutrophilic infiltrate and lymphoid follicles</td>
<td>Antrum, fundus: in mucous layer, in lumen of the pits, in mucosal surface; positive correlation between presence of bacteria and pyloric gastritis</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fundus: proliferation of gastric folds with occasional necrosis, severe mucosal congestion Pars esophaga: hyperkeratosis</td>
<td>Diffuse lymphocytic infiltration and lymphoid follicles in lamina propria</td>
<td>Antrum: in mucous layer, in gastric pits and lumen of gastric glands</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pars esophaga: hyperkeratosis with yellow discoloration or chronic ulcers</td>
<td>Pars esophaga: increased thickness of epithelium, elongation of papillae, parakeratosis, balloon cells or chronic peptic ulcers (layers of necrosis, numerous inflammatory cells, and granulation tissue and fibrosis) Antrum: mild diffuse mononuclear cell infiltration in lamina propria with multiple lymphocytic aggregates or lymphoid follicles</td>
<td>Antrum, fundus, cardia; positive correlation between presence of bacteria and lesions in pars esophaga</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pars esophaga ulcerative gastritis</td>
<td>Pars esophaga: erosion of surface epithelium, necrosis, mixed inflammatory infiltrate and granulation tissue</td>
<td>Antrum, fundus: in mucous layer and foveolae, occasionally in lumen of gastric glands; positive correlation between presence of bacteria and lesions in pars esophaga</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pars esophaga ulcerative gastritis</td>
<td>ND</td>
<td>Pars esophaga: positive correlation between presence of bacteria and lesions in pars esophaga</td>
<td>28</td>
</tr>
<tr>
<td>Experimental</td>
<td>Pars esophagea ulcerative gastritis</td>
<td>Diffuse mononuclear cell infiltration in propria mucosa</td>
<td>Antrum: positive correlation between presence of bacteria and lesions in pars esophagea</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>None</td>
<td>Antrum: mild diffuse mononuclear infiltration in lamina propria with multiple lymphocytic aggregates or lymphoid follicles</td>
<td>Antrum: in mucus overlying the surface epithelium and in the surface foveola Fundus: in glandular foveola extending half way down the gastric pits, and often in close association with mucus-producing cells and parietal cells</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curve-shaped bacteria morphologically similar to H. pylori</td>
<td>Gastroesophageal ulceration, glandular mucosal ulcers, lymphoid follicles, excess luminal mucus, and mucosal edema</td>
<td>Pars esophagea: peptic ulceration Antrum, cardia, fundus: diffuse mononuclear cell infiltration in lamina propria with multiple lymphoid follicles</td>
<td>Cardia, antrum: extracellularly</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>ND</td>
<td>Chronic active gastritis: diffuse lymphoplasmic infiltration, lymphocytic aggregates and occasional neutrophilic infiltration</td>
<td>Fundus, corpus, antrum: in mucus adjacent to surface epithelium, glandular lamina adjacent to parietal cells and gastric pits</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. felis</td>
<td>No lesions</td>
<td>Fundus, antrum: diffuse mononuclear cell infiltration in lamina propria with multiple variable-sized lymphoid follicles</td>
<td>Fundus, corpus, antrum: in mucous layer on mucosal surface within gastric pits and glandular lumen, occasional intracellular in glandular epithelial cells</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>No lesions</td>
<td>Antrum: mild diffuse lymphoplasmacytic inflammation of lamina propria</td>
<td>Fundus, corpus, antrum: in superficial gastric mucous layer, in gastric glands and parietal cells</td>
<td>204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHPH</td>
<td>Mucosal redening, edema, erosions and ulcerations</td>
<td>Fundus: glandular degeneration with accumulation of lymphocytes and neutrophilic granulocytes, edema, fibrosis, diffuse lymphoplasmacytic infiltrates and lymphoid follicles in lamina propria</td>
<td>Fundus: in mucus covering the surface epithelium, the gastric pits, the glandular lumina and the parietal cells; presence of very high numbers of bacteria was directly related to the number of lymphoid follicles</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NHPH</td>
<td>Natural</td>
<td>Mucosal redening, edema, erosions and ulcerations</td>
<td>Fundus: glandular degeneration with accumulation of lymphocytes and neutrophilic granulocytes, edema, fibrosis, diffuse lymphoplasmacytic infiltrates and lymphoid follicles in lamina propria</td>
<td>Antrum: diffuse, mixed subglandular leukocytic infiltrates and multiple lymphoid nodules in the lamina propria</td>
<td>Antrum: in the canalici or cytoplasm of viable parietal cells</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cat</td>
<td>NHPH</td>
<td>Natural</td>
<td>ND</td>
<td>Antrum: moderate lymphoid follicles in lamina propria</td>
<td>Antrum and fundus: moderate mononuclear infiltrates in lamina propria</td>
<td>Antrum, fundus: at the mucosal surface, in the lumina of gastric glands, and in cytoplasm of parietal cells of the fundus</td>
</tr>
<tr>
<td></td>
<td>H. felis</td>
<td>Experimental</td>
<td>ND</td>
<td>Antrum: mild diffuse lymphoplasmacytic and eosinophilic infiltration, lymphoid follicular hyperplasia and mild fibrosis of lamina propria</td>
<td>Antrum, fundus: at the mucosal surface, in the lumina of gastric glands, and in cytoplasm of parietal cells of the fundus</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>H. pylori</td>
<td>Experimental</td>
<td>ND</td>
<td>Antrum: mild diffuse lymphoplasmacytic and granulocytic infiltration, severe lymphoid follicular hyperplasia and mild fibrosis of lamina propria</td>
<td>Antrum, fundus: at the mucosal surface, in the lumina of gastric glands, and in cytoplasm of parietal cells of the fundus</td>
<td>193</td>
</tr>
<tr>
<td>Ferret</td>
<td>H. mustelae</td>
<td>Natural</td>
<td>Gastritis, peptic ulcer</td>
<td>Proximal antrum: mononuclear cell infiltrates in superficial layer of lamina propria, mucus depletion and occasional neutrophilic infiltrate, gland necrosis and regeneration</td>
<td>Distal antrum: diffuse mononuclear cell infiltration and mucus depletion</td>
<td>Proximal antrum: at surface and lumen of foveola and occasionally in deep glandular lumen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fundus: mononuclear cell infiltrates in superficial layer of lamina propria, mucus depletion and occasional neutrophilic infiltrate</td>
<td>Fundus: at surface and lumen of foveola and occasionally in superficial glandular lumen</td>
<td>Distal antrum: at surface and lumen of foveola and occasionally in superficial glandular lumen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pyloric adenocarcinoma</td>
<td>Antrum: multifocal segmental glandular proliferation and surface erosion, multifocal mucosal lymphoid aggregates, mixed inflammatory cell infiltration, and multifocal fibrosis</td>
<td>Antrum: in the lumen of gastric pits, adherent to apical surface of the mucous epithelium</td>
</tr>
<tr>
<td>Species</td>
<td>Gastric lymphoma</td>
<td>High and low grade B-cell lymphoma</td>
<td>Antrum, fundus: within the mucosal glands</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>Experimental</td>
<td>ND</td>
<td>Antrum: focal minimal lymphocytic infiltrates with moderate numbers of eosinophils and neutrophils</td>
<td>Antrum, fundus: on the surface of the gastric epithelium within the mucous layer and within gastric pits</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>H. mustelae + MMNPG</td>
<td>Experimental</td>
<td>Pyloric adenocarcinoma</td>
<td>Antrum: epithelial surfaces of the neck glands</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td>H. aurati</td>
<td>ND</td>
<td>Distal antrum: diffuse lymphoplasmacytic inflammation, scattered heterophils and eosinophils, and goblet cell hyperplasia</td>
<td>Antrum: within gastric pits or glands</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>Cand. Helicobacter bovis</td>
<td>ND</td>
<td>Distal antrum: locally extensive chronic gastritis with intestinal metaplasia, and occasional well-differentiated and moderately pleomorphic tubular to tortuous gastric glands</td>
<td>Antrum: within gastric glands</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>NHPH</td>
<td>No lesions, gastritis or gastric ulcers</td>
<td>Distal antrum: in mucus layer and proximal gastric crypts</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-human primates</td>
<td>H. pylori</td>
<td>No lesions, superficial gastritis</td>
<td>Gastric mucosa: loss of continuity with submucosa exposure and edema; parakeratotic hyperkeratosis; lymphoplasmacytic mononuclear infiltrate</td>
<td>Glandular and non-glandular stomach near margo plicatus</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td>Cand. Helicobacter bovis</td>
<td>ND</td>
<td>Distal fundus, antrum: superficial erosions, marked mononuclear and polynuclear infiltration</td>
<td>Antrum: proximity to the mucosal epithelial cells or in the lumen of the gastric pits</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>NHPH</td>
<td>No lesions or diffuse lymphoplasmacytic infiltration of the lamina propria, occasional neutrophilic infiltrates and lymphoid follicles</td>
<td>Antrum: superficial mucosa</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-human primates</td>
<td>H. pylori</td>
<td>ND</td>
<td>Antrum: diffuse lymphoplasmacytic infiltrator in lamina propria, prominent lymphoid follicles, and occasional glandular epithelial hyperplasia, patchy necrosis, attenuation of glandular epithelium, and neutrophilic infiltrates</td>
<td>Antrum: gastric pits and the upper portions of gastric glands, often in intimate association with the epithelial cell surface</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Localization</td>
<td>Description</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Localized to multifocal reddening of mucosa</td>
<td>Antrum, cardia: lymphoplasmacytic infiltrates, gastric gland epithelial hyperplasia, reduction in mucin content of surface and gland epithelia, increased lymphoid follicles, minor infiltrates of neutrophils in superficial lamina propria and gastric glands, and occasional erosions</td>
<td>Antrum, cardia: mucosal regions of inflammation; located in gastric pits and upper portions of gastric glands, often associated with epithelial cell surface</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental</td>
<td>ND</td>
<td>Antrum: chronic-active gastritis, marked atrophy of the mucosae, microerosions and loss of mucus from superficial epithelial cells</td>
<td>Antrum</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHPH</td>
<td>Natural</td>
<td>No lesions, superficial gastritis</td>
<td>No lesions to occasional mononuclear and polymuclear infiltration</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHPH</td>
<td>Natural</td>
<td>None</td>
<td>No lesions or diffuse lymphoplasmacytic infiltration of the lamina propria, occasional neutrophilic infiltrates and lymphoid follicles</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>Fundus: minor scattered aggregates of lymphocytes, low numbers of plasma cells and occasional lymphoid follicles</td>
<td>Fundus: gastric pits, superficial glands or on the surface epithelium,</td>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Localized to multifocal reddening of mucosa</td>
<td>Fundus: no lesions</td>
<td>Fundus: in gland lumens, sometimes attached to the epithelial cell surface, and within the cytoplasm of parietal cells</td>
<td>187</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: not described; NHPH: Non-\textit{H. pylori} Helicobacter species; MNNG: N-methyl-N-nitro-N’-nitrosoguanidine