Advanced search
1 file | 652.23 KB

Spinor-valued -spaces and representations of Spin

Author
Organization
Keywords
Riesz transforms, CONFORMALLY INVARIANT POWERS, Representations, Hypercomplex analysis, Sobolev spaces, Spin groups, CLIFFORD ANALYSIS, INTERTWINING-OPERATORS, INEQUALITIES, SPHERE

Downloads

    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 652.23 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Van Lancker, Peter. 2015. “Spinor-valued -spaces and Representations of Spin.” Journal of Mathematical Analysis and Applications 423 (1): 253–282.
APA
Van Lancker, Peter. (2015). Spinor-valued -spaces and representations of Spin. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 423(1), 253–282.
Vancouver
1.
Van Lancker P. Spinor-valued -spaces and representations of Spin. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA: ACADEMIC PRESS INC ELSEVIER SCIENCE; 2015;423(1):253–82.
MLA
Van Lancker, Peter. “Spinor-valued -spaces and Representations of Spin.” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 423.1 (2015): 253–282. Print.
@article{7902457,
  author       = {Van Lancker, Peter},
  issn         = {0022-247X},
  journal      = {JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS},
  keyword      = {Riesz transforms,CONFORMALLY INVARIANT POWERS,Representations,Hypercomplex analysis,Sobolev spaces,Spin groups,CLIFFORD ANALYSIS,INTERTWINING-OPERATORS,INEQUALITIES,SPHERE},
  language     = {eng},
  number       = {1},
  pages        = {253--282},
  publisher    = {ACADEMIC PRESS INC ELSEVIER SCIENCE},
  title        = {Spinor-valued -spaces and representations of Spin},
  url          = {http://dx.doi.org/10.1016/j.jmaa.2014.09.066},
  volume       = {423},
  year         = {2015},
}

Altmetric
View in Altmetric
Web of Science
Times cited: