Advanced search
1 file | 632.55 KB

Optimization of large-scale rigidified inflatable structures for housing using physical programming

Author
Organization
Abstract
This paper makes important initial steps in the application of large-scale structural optimization to Rigidified Inflatable Structures (RIS) for cost competitive residential construction, and does so within the realistic framework of multiobjective optimization using the effective physical programming approach. Over the past two decades, structural optimization has proved to be an invaluable tool in numerous arenas. Its faint beginnings in civil engineering have given way to important applications in the aerospace industry, and more recently, in the automotive industry and many other areas. Importantly, structural optimization has given way to the broader field of Multidisciplinary Design Optimization (MDO). Within this context, this paper explores the feasibility of RIS design for residential construction with respect to cost, structural integrity (e.g., buckling, deformation), and other practical issues. A cylindrical structure is considered, and is subjected to code-specified snow and wind loads. Within a multiobjective framework, a physical-programming-based optimization approach is developed to examine the behavior and feasibility of reinforced and non-reinforced polymers as primary RIS materials. Using a finite element model of approximately 72000 degrees of freedom, we illustrate how the physical programming method effectively addresses the multiobjective and multiscale nature of the problem. Initial results indicate favorable feasibility of RIS use in housing. Further studies of broader scope are suggested.
Keywords
multiobjective optimization, rigidified inflatable structures, structural optimization, physical programming, housing, DESIGN OPTIMIZATION

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 632.55 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Messac, Achille, Steven Van Dessel, Anoop A Muller, and A Maria. 2004. “Optimization of Large-scale Rigidified Inflatable Structures for Housing Using Physical Programming.” Structural and Multidisciplinary Optimization 26 (1-2): 139–151.
APA
Messac, A., Van Dessel, S., Muller, A. A., & Maria, A. (2004). Optimization of large-scale rigidified inflatable structures for housing using physical programming. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 26(1-2), 139–151.
Vancouver
1.
Messac A, Van Dessel S, Muller AA, Maria A. Optimization of large-scale rigidified inflatable structures for housing using physical programming. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION. 2004;26(1-2):139–51.
MLA
Messac, Achille et al. “Optimization of Large-scale Rigidified Inflatable Structures for Housing Using Physical Programming.” STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 26.1-2 (2004): 139–151. Print.
@article{763000,
  abstract     = {This paper makes important initial steps in the application of large-scale structural optimization to Rigidified Inflatable Structures (RIS) for cost competitive residential construction, and does so within the realistic framework of multiobjective optimization using the effective physical programming approach. Over the past two decades, structural optimization has proved to be an invaluable tool in numerous arenas. Its faint beginnings in civil engineering have given way to important applications in the aerospace industry, and more recently, in the automotive industry and many other areas. Importantly, structural optimization has given way to the broader field of Multidisciplinary Design Optimization (MDO). Within this context, this paper explores the feasibility of RIS design for residential construction with respect to cost, structural integrity (e.g., buckling, deformation), and other practical issues. A cylindrical structure is considered, and is subjected to code-specified snow and wind loads. Within a multiobjective framework, a physical-programming-based optimization approach is developed to examine the behavior and feasibility of reinforced and non-reinforced polymers as primary RIS materials. Using a finite element model of approximately 72000 degrees of freedom, we illustrate how the physical programming method effectively addresses the multiobjective and multiscale nature of the problem. Initial results indicate favorable feasibility of RIS use in housing. Further studies of broader scope are suggested.},
  author       = {Messac, Achille and Van Dessel, Steven and Muller, Anoop A and Maria, A},
  issn         = {1615-147X},
  journal      = {STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION},
  keywords     = {multiobjective optimization,rigidified inflatable structures,structural optimization,physical programming,housing,DESIGN OPTIMIZATION},
  language     = {eng},
  number       = {1-2},
  pages        = {139--151},
  title        = {Optimization of large-scale rigidified inflatable structures for housing using physical programming},
  url          = {http://dx.doi.org/10.1007/s00158-003-0317-4},
  volume       = {26},
  year         = {2004},
}

Altmetric
View in Altmetric
Web of Science
Times cited: