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Abstract— Hardware implementations of Spiking Neural Net-
works are numerous because they are well suited for imple-
mentation in digital and analog hardware, and outperform
classic neural networks. This work presents an application
driven digital hardware exploration where we implement real-
time, isolated digit speech recognition using a Liquid State
Machine (a recurrent neural network of spiking neurons where
only the output layer is trained). First we test two existing
hardware architectures, but they appear to be too fast and
thus area consuming for this application. Then we present
a scalable, serialised architecture that allows a very compact
implementation of spiking neural networks that is still fast
enough for real-time processing. This work shows that there
is actually a large hardware design space of Spiking Neural
Network hardware that can be explored. Existing architectures
only spanned part of it.

I. I NTRODUCTION

Many digital hardware architectures for the simulation of
Spiking Neural Networks (SNNs) have recently been pre-
sented in literature. The main reasons for this is that SNNs,
neural network models that use spikes to communicate, have
(1) been shown theoretically [1] and practically1 [2], [3] to
computationally outperform analog neural networks, (2) are
biologically more plausible, (3) have an intrinsic temporal
nature that can be used to solve temporal problems, and
(4) are well suited to be implemented on digital and analog
hardware. SNNs have been applied with success to several
application such as face detection [4], lipreading [2], speech
recognition [5], autonomous robot control [6], [7] and several
UCI benchmarks [8].

The main drawback of SNNs is that they are difficult
to train in a supervised fashion mainly because the hard
thresholding that is present in all simple spiking neuron
models, making the calculation of gradients very prone to
errors which deteriorate the learning rule’s performance [8],
[9], [3]. One way to circumvent this is by using fixed
parameters. This is what is embodied by the Liquid State
Machine (LSM) concept [10] (which is conceptually identical
to Echo State Networks [11] and which are generally termed
Reservoir Computing [12]). Here a recurrent network of spik-
ing neurons is constructed where all the network parameters
(interconnection, weights, delays, ...) are random items.This
network, the so called liquid or reservoir, typically exhibits
complex non-linear dynamics in its high-dimensional internal
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1The linearly non-separable XOR function can be representedby a single
spiking neuron.

state. This state is excited by the network input, and is
expected to capture and expose the relevant information
embedded in the latter. As is the case with kernel methods,
it is possible to extract this information by processing these
network states with simple linear techniques to obtain the
actual regression or classification output.

Digital, parallel hardware implementations of SNNs give
a large speed-up compared to sequential simulation on a
classic processor. Several architectures have already been
presented, ranging from large systems [13], [14], [15] able
to process very large networks (> 10, 000 of neurons) at
many times real-time speed, to compact designs where small
networks are directly mapped onto hardware [6], [16], [17],
[18] using small neuron processing elements (PEs). These
implementations span a small part of a larger design space
which allows to make a trade-off between area (chip area and
memory footprint) and calculation time. Given the constraints
of the application, which can be speed, chip area, memory
usage or power dissipation, we have to choose an architecture
that is best suited. Note that in this paper we focus on
hard real-time processing thus techniques as event-based
simulation are not well suited.

Recently a very convincing engineering application for
the Liquid State Machine was presented: isolated spoken
digit recognition [5]. When optimally tweaked [19], it can
outperform state-of-the-art hidden markov model based rec-
ognizers. The system is biologically motivated: a model of
the human inner ear is used to pre-process the audio data,
next an LSM is constructed with biologically correct settings
and interconnection [10], and a simple linear classifier is used
to perform the actual classification.

In this paper we present an application oriented design
flow for LSM-based hardware implementation. Real-time,
single channel speech recognition with the lowest hardware
cost is desired. To attain this goal we implement the speech
task on two existing hardware architectures for SNNs: a de-
sign that processes synapses serially and which uses parallel
arithmetic [6], [16] and a design that processes the synapses
in parallel, but does the arithmetic serially [17], [18]. Aswe
will show, these architectures are always much faster than
real-time, and thus waste chip area. We present a new ar-
chitecture that uses both serial synapse processing and serial
arithmetic. Using this option we are able to process just fast
enough for real-time with a very limited amount of hardware.
Without much extra hardware cost this design allows to
easily scale between a single PE which performs slow serial
processing of the neurons to multiple PEs that each process



part of the network at increased speed. The design space
for hardware SNNs has thus been drastically enlarged. The
LSM idea (but with threshold logic neurons) was previously
already implemented in analog VLSI hardware in [20].

Note that in this paper we will only look at the actual
reservoir in hardware, pre-processing the audio and doing
the actual classification is still done in software. However,
we did implement these blocks in hardware but did not add
them to focus this work on the reservoir implementation. All
presented designs were implemented at our lab and run on
actual hardware.

II. A PPLICATION: ISOLATED DIGIT SPEECH RECOGNITION

The isolated digit speech recognition application that will
be implemented in hardware is organized as follows: a much
used subset of the TI46 isolated digit corpus consisting of 10
digits uttered 10 different times by five female speakers was
preprocessed using Lyon’s passive ear model (a model of
the human inner ear)[21]. The multiple channel result of this
preprocessing step is converted to spikes using BSA [22], a
fast spike coding scheme with a good signal to noise ratio.
The resulting spike trains are fed into a randomly generated
network of spiking neurons, whose parameter settings are op-
timized using a Matlab toolbox for RC simulations designed
at our lab2. The responses of the network (the spikes emitted
by the neurons) are converted back to the analog domain
using an exponential low-pass filter to mimic the operation of
a neuron membrane as described in [23] and then resampled
using a time-step of 30 ms. The resulting time series are
used as input to 10 linear classifiers, one for each digit,
which are trained with a one-shot learning approach based on
a pseudo-inverse approach with regularization. Training and
testing is done in a 10-fold cross-validation setup. The output
of the classifiers is post-processed by taking the temporal
mean of each classifier’s output and applying winner-take-all
to the resulting class-vector. The effect of different weight
parameter settings were evaluated, where the performance is
measured using the word error rate (WER) , which is simply
the fraction of misclassified digits. A reservoir was selected
that attained a WER of around 5% when simulated with a
software implementation of the hardware model (which is
part of the toolbox) which takes the quantization effects into
account.

The reservoir consists of 200 spiking neurons, all with
the same threshold and reset values (255 and -255 respec-
tively) and both absolute and relative refractoriness. The
input weights are randomly chosen as either -0.1 or 0.1
and then scaled by the value of the neuron threshold. The
internal weights were normally distributed, multiplied by
the threshold and rescaled according to the spectral radius
(which is a parameter controlling the network dynamics, but
which was originally defined for sigmoidal neural networks).
The optimal spectral radius was determined to be 0.1. Each

2This is an open source research toolbox containing a
complete scala of reservoir based techniques. It is available at
http://www.elis.ugent.be/rct.

neuron receives 12 input connections, 8 from other neurons
in the reservoir and 4 from the input.

III. H ARDWARE ORIENTEDRC DESIGN FLOW: RC
MATLAB TOOLBOX

In the following section, we will present some rough
guidelines on how to generally tackle an engineering problem
using hardware Reservoir Computing. This was the same
flow we used to design the hardware speech application.
The RC toolbox offers a user-friendly environment to do
a thorough exploration of certain areas of the parameter
space, and to investigate some optimal parameter settings
in a software environment before making the transition to
hardware. The following steps are advisable:

Generic network and node settings.Reservoirs are
determined by a broad range of topology and neuron pa-
rameters that can influence the performance of the networks
significantly. Using the RC toolbox, optimal settings for a
given task can flexibly be determined and evaluated. Much
of the parameter tuning is as yet empirical and dependent on
experience with reservoir computing techniques. Experimen-
tal indications for good parameters are described in [12] for
many reservoir types, and in [24] for Echo State Networks
specifically.

Readout pipeline.Once an optimal reservoir is found, the
post-processing of the reservoir states can further improve
performance. The RC toolbox offers a number of nonlinear
and filter operations that can be applied to the output of
the regression step. These simple operations can also greatly
influence performance, especially for highly temporal regres-
sion tasks.

Evaluate node quantization effects.When the transition
is made from software to hardware, computation is changed
from floating-point arithmetic to fixed point arithmetic with
a tunable precision. This introduces a trade-off between
memory and hardware requirements on the one hand, and
quantization noise on the other hand. These quantization
effects can also be modeled and simulated using the RC
toolbox, which allows the user to take these effects into
account when designing the reservoir.

Generate network with hardware constraints. Most
hardware designs for SNNs take up less hardware area if
the neuron structure is as regular as possible (i.e. every
neuron has the same number of inputs) , because then only
a single controller for the entire network is needed instead
of one controller per PE. Using the RC toolbox, reservoirs
with a regular structure can be constructed a priori, so the
user can evaluate the influence of these constraints on the
performance. If necessary, an iterated approach of the first
four steps is possible.

Export to hardware. Once the optimal reservoir has been
determined, the RC toolbox offers helper functions that allow
the reservoir structure to be exported automatically to a
hardware description.
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Fig. 1. Overview of the overall speech recognition system.

TABLE I

SPPAHARDWARE RESULTS. THE PARAMETERS FOR THE GENERAL FORMULAS ARE: N NUMBER OF NEURONS, I NUMBER OF INPUTS PER NEURON, B

INTERNALLY USED WORD WIDTH, S THE NUMBER OF DISTINCT SYNAPSE TIME CONSTANTS, AND T THE NUMBER OF ’ STEPS’ USED IN

APPROXIMATING EXPONENTIAL DECAY OF THE SYNAPSES AND MEMBRANE (THIS IS USUALLY 1 OF 2).

4-LUTs FFs RAM Cycles
General N(I/2 + 2B + 10) N(1 + B(S + 1)) BN(ST + I) (T + 1)(S + 1) + I

Speech task 13,812 4,038 56×16,384 18

TABLE II

PPSAHARDWARE RESULTS

4-LUTs/SRL16s FFs RAM Cycles
General N(22 + 3I + 10S) N(2I + BS + B) 0 ⌈log

2
(I)⌉ + B(1 + T ) + 1

Speech task 13,426+2,401 21,743 0 35

IV. EXISTING COMPACT HARDWARE IMPLEMENTATIONS

FOR SNNS

The speech recognition application was first implemented
on two existing, compact hardware architectures. They will
now be briefly introduced and the hardware results for this
application will be presented.

A. Serial Processing, Parallel Arithmetic

This architecture [16], [6] processes the neurons as would
be done on a classic CPU: by serially processing all synapses
and membrane using parallel arithmetic (SPPA). But unlike
a classic CPU, each PE processes only one neuron (each
neuron is directly mapped on a PE) and the PEs are directly
interconnected. We added exponential synapses3 to this ar-
chitecture, optimized its size and implemented it on a Field
Programmable Gate Array (FPGA).

The SNN is simulated using time step based simulation.
Each time step consists of several operations, one per clock
tick. These operations are: adding weights to the membrane
or synapse accumulator, adding the synapse accumulators to
the membrane’s and decaying these accumulators. Threshold
detection and membrane reset is performed in parallel with

3Exponential synapses together with an exponential membrane model
result in second order membrane responses. It has been showntheoretically
[25] that these models outperform simple first order exponential membrane
models.

these operations. Weights are stored in memory which is
located in each PE, while the accumulators are stored in
a register bank. When a regular network structure is used
(all PEs have the same number of inputs, where some may
be unconnected), a single controller can be used to steer the
complete network.

When implementing this architecture in FPGA we can
derive general (but approximate) scaling formulas for area,
memory and time usage with respect to the main network
parameters. These are presented in the top row of Table I.
For the actual 200 neuron reservoir that is used for the
speech recognition application, the implementation results
are shown in the lower row (area optimization was turned
on for all designs). Note that 56 standard FPGA RAM block
of each 16 kbit are used, but they are only partially filled.
This design can be clocked at 100 MHz on state-of-the-art
FPGAs (Xilinx’s XC4VSX35). Given that the incomming
speech is sampled at 16 kHz (which is also the rate at which
the network operates) we get a network that is 347 times
faster than needed for real-time processing. The FPGA is
filled for 60 procent.

B. Parallel Processing, Serial Arithmetic

This architecture [17], [18] is based on a parallel synapse
processing scheme using serial arithmetic (PPSA) to limit
the total size of the PE. Each PE only computes one neuron



(direct mapping) and the different PEs are interconnected via
direct, fixed connections. Because of the parallel processing
scheme, all synaptic weights are stored in a parallel and
decentralized way by using many very small memories (we
actually use one memory per synapse). This is possible by
using FPGA specific features (we use the Xilinx specific
SRL16 memories which are 16 bit shift registers that can
be implemented in a single 4-LUT).

The parallel processing of the dendritic tree is performed
by a binary, direct mapped adder tree where each adder is
a one bit serial adder. To improve processing speed we use
pipelining4.

During each SNN time step, all inputs to the dendritic
trees are presented in parallel. It takes⌈log

2
(inputs)⌉ cycles

before the first bit is available at the end of the adder tree.
Serially adding this result to the membrane accumulator is
performed at one bit per cycle. After this, the membrane is
decayed which again is implemented serially and thus takes
one bit per clock cycle.

The hardware results for this architecture are presented in
Table II. The top row shows the general scaling properties,
while the bottom row gives the result specific for the 200
neuron network used for the speech recognition application.
This design can be clocked at 115 MHz on the same FPGA
and it is filled for 60 percent.. Each simulation time step
takes 35 cycles which results in an implementation that is
205 times faster than real-time (with 16 kHz input). Although
this design does parallel processing of the dendritic tree,it is
slower than SPPA due to the limited number of input. With
limited inputs the cost for doing serial arithmetic outweighs
the gain made by the parallel dendritic tree. When more
inputs are used (approximately 50) PPSA becomes faster than
SPPA.

V. M ULTIPLE PES, SERIAL PROCESSING, SERIAL

ARITHMETIC

Because both of the previously published architectures
give much faster than real-time performance on the speech
recognition task, they use more hardware than needed. We
will now present a novel architecture for the processing
of SNN that allow slower but scalable operations at a
highly reduced hardware cost. The architecture processes
all synapses serially as well as doing all arithmetic serially
(SPSA). This results in a very small implementation of the
PE (only 4 4-LUTs!) but in longer computing times. All
neuron information is stored in RAM and interconnection
between several neurons is also memory based. Due to this,
each PE can process several neurons serially, but this at the
cost of speed. Because the controller is much larger than the
actual PE, we will opt for using one controller and several
PEs. To do this, all PEs have to perform the same instructions
on different data. This is called a Single Instruction/Multiple
Data (SIMD) architecture (the SNN FPGA implementation

4After each tree operation, memory elements are added. This allows
higher clock speed, but requires multiple clock cycles before the result is
available at the output.

presented in [26] is also a SIMD processor but it uses parallel
arithmetic). Processing the network consists of two phases:
updating the neuron states and performing the interconnec-
tion. We chose to do both operations in parallel (unlike [26]
which uses two separate phases).

The general setup is that we use one controller, several PEs
and each PE processes several neurons per simulated time-
step. We will call the time needed to simulate a single neuron
a cycle. Each simulated time-step thus consists of several
cycles. A simplified control flow is shown in Figure 2. The
global cycle structure of weight adding, decay and threshold
testing is quite similar to the other architectures, but now
each of these command is processed serially, i.e. that they
consist of several clock cycles.

An overview of the system is given in Figure 3a. Several
processing elements connect parallelly to 4 memories where
each memory gets an address from the controller. The
synapse and membrane memory is the working memory of
the PEs holding the synapse and membrane accumulators
(and some constants). Note that for each PE this is actually a
one bit memory, but because all PEs get the same instructions
the addresses to these memories are the same and can thus be
implemented as one multi-bit memory. The second memory
is a circular buffer holding the weights. Note that the weight
a placed in serially with several weights in parallel for the
different PEs. The third and fourth memories are used for in-
put and output spikes to and from the PEs. These are actually
double buffered so that the interconnection PE can copy data
while the neuron PEs are running. The interconnection PE
is organized in such a way that receiver-oriented copying is
performed: at cycleT , the interconnection PE is copying the
input spikes for the neurons processed in cycleT +1 into the
second buffer of the input spike memory. At the next cycle,
these two memories are switched. Spike output memory is
switched after each complete simulated time-step. External
input and output is possible via a memory interface. Note
that all spike copying is done on a bit by bit basis. Both
the input and output spike memories are two-port memories
which have a one-bit and a multi-bit port.

The actual neuron PE data-pad can be seen in Figure 3b.
Although it might seem quite complex, it can fit in 4 4-LUTs.
The PE uses a 3-port memory5 which hold the membrane
and synapse model potential, and all constants such as decay
factors, threshold and absolute refractory. The data path of
the PE is centered around a one-bit adder. One port is directly
connected to the adder while the other adder input can be a
weight or one of the ports of the 3-port memory, which can
then be negated, forced to one or forced to zero. The output
of the adder is fed to a bypass multiplexer to allow the inputs
to bypass the adder. The result is written back to the 3-port
memory. Some of the control signals are directly generated
by the controller while others a mediated through a flip-flop

5Three-port memory is not a primitive component of FPGAs but can
easily be emulated thanks to the high speed memories (memories are 5
times faster than our actual design). This allows the memoryto run at
double speed and convert a two-port memory into a four-port memory by
time-multiplexing.



Fig. 2. SPSA timing
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Fig. 3. SPSA overview and PE internals

which has a clock enable and a synchronous set and reset.
The actual control signals and their timing behavior will not
be elaborated on for brevity.

An overview of the approximate size results for the
neuron PE, the controller and the interconnection is given
in Table III, whereP stands for the number of PEs. The
number of clock ticks per cycle is equal to(S + 3 + B(I +
2S +5))(⌈N/P ⌉+1) . The first part is the number of clock
ticks needed per cycle, while the second part is the number
of cycles. Notice that one cycle is added to allow pre-loading
by the interconnection block of the input spikes for the first
cycle.

The results for the speech application are summarized in
Table IV. Note that some of the memory is implemented in
LUTs using LUT-RAM, the column denoting ’clock cycles’
represents the number of clock cycle per simulated time-
step, and ’real-time’ denotes how much faster than real-time
processing that option is. We tested an increasing number of
PEs which results in a large final speed variation, however
with very little space variation. Optimal settings for real-time
processing are achieved with 5 PEs.

With the current hardware we can maximally and in real-
time process approximately 1600 neurons at 16 kHz and this
using 40 PEs. When processing larger networks at this speed,
the interconnect block becomes a bottleneck.

Note that adding more classes to the classification problem
(for example if going from isolated digits to phonemes), the
architecture stays exactly the same, only more readout func-
tions need to be calculated. The reservoir implementation
and the number of nodes that are read-out stay exactly the
same.

VI. CONCLUSIONS

In this work we showed that real-time speech recognition
is possible on limited FPGA hardware using an LSM. To
attain this we first explored existing hardware architectures
(which we reimplemented and improved) for compact im-
plementation of SNNs. These designs are however more
than 200 times faster than real-time which is not desired
because lots of hardware resources are spend on speed that
is not needed. We present a novel hardware architecture
based on serial processing of dendritic trees using serial



TABLE III

SPSAGENERAL SIZE RESULTS

Number LUTs FFs RAM
PE P 4 3 B(2S + 6) + 2IP + 2N

Controller 1 270 33 + 2 log
2
(⌈N/P ⌉BI) 0

Interconnect 1 170 log
2
(NSP ⌈N/P ⌉

2
) IN log

2
(N ⌈N/P ⌉)

TABLE IV

SPSASPEECH APPLICATION HARDWARE RESULTS

4-LUTs Clock Times
PEs LUT-RAMs FFs RAM cycles Mhz real-time
1 488+40 223 9×16,384 38994 145 0.23
5 489+40 223 9×16,384 7954 145 1.1
10 489+40 223 9×16,384 4074 143 2.2

arithmetic. It easily and compactly allows a scalable number
of PEs to process larger networks in parallel. Using a
hardware oriented RC design flow we were able to easily
port the existing speech recognition application to the actual
quantized hardware architecture.

For future work we plan to add the pre-processing (ear
model) and the actual classification to the hardware. Both
sub-blocks are already implemented at our lab.
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