LIFETIME DETERMINATION
OF EXCITED STATES IN 106Cd

S.F. Ashleya, A. Linnemannb, J. Jolieb, P.H. Regana
K. Andgrena,c, A. Dewaldb, E.A. McCutchand, B. Melonb
O. Möllerb, N.V. Zamfird,e, L. Amond,f, N. Boelaertb,g
R.B. Cakırlid,f, R.F. Castend, R.M. Clarkh, C. Fransenb
W. Gelletlya, G. Gürdald, M. Heidemannb, K.L. Keyesj
M.N.- Erduranf, D.A. Meyerd, A. Papenbergj, C. Plettnerd
G. Rainovskik, R.V. Ribasl, N.J. Thomasa,c, J. Vinsond
D.D. Warnerm, V. Wernerd, E. Williamsd, K.O. Zellb

aDepartment of Physics, University of Surrey, Guildford GU2 7XH, UK
bInstitut für Kernphysik der Universität zu Köln, 50937 Köln, Germany
cDepartment of Physics, Royal Institute of Technology, Stockholm, Sweden
dWNSL, Yale University, New Haven, CT 06520, USA
eInstitutul Naţional de Fizică şi Inginerie Nucleară, Bucureşti, Romania
fDepartment of Physics, Istanbul University, Istanbul, Turkey
gUniversiteit Gent, Vakgroep Subatomaire en Stralingsfysica, Gent, Belgium
hLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
iClark University, Worcester, MA 01610-1477, USA
jInstitute of Physical Research, University of Paisley, Paisley PA1 2BE, UK
kDepartment of Physics and Astronomy, SUNY, Stony Brook, NY 11794, USA
lInstituto de Física, Universidade de São Paulo, C.P. 05315-970, Brazil
mCCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, UK

(Received November 11, 2006)

Two separate experiments using the Differential Decay Curve Method have been performed to extract mean lifetimes of excited states in 106Cd. The medium-spin states of interest were populated by the 98Mo(12C, 4n) 106Cd reaction performed at the Wright Nuclear Structure Lab., Yale University. From this experiment, two isomeric state mean lifetimes have been deduced. The low-lying states were populated by the 96Mo(13C, 3n)106Cd reaction performed at the Institut für Kernphysik, Universität zu Köln. The mean lifetime of the $I^\pi = 2^+_1$ state was deduced, tentatively, as 16.4(9) ps. This value differs from the previously accepted literature value from Coulomb excitation of 10.43(9) ps.

PACS numbers: 21.10.Tg, 23.20.Lv, 25.70.Gh, 27.60.+j

* Presented at the Zakopane Conference on Nuclear Physics, September 4–10, 2006, Zakopane, Poland.
1. Introduction

In terms of low-lying excitations, the cadmium nuclei are considered some of the best examples of quasi-vibrational nuclei (see reference [1] and references therein). However, from the systematics of the $B(E2)$ values of the $I^\pi = 2^+_1 \to 0^+_1$ and $I^\pi = 4^+_1 \to 2^+_1$ transitions in $^{104-110}$Cd [2], the $B(E2)$ values in 106Cd appear to be larger than the systematic trend of the light cadmium isotopes, whose $B(E2)$ values decrease, approaching 102Cd [3]. Within the medium-spin regime, it is evident that there are collective structures with occupation of at least one $\nu h_{11/2}$ orbital [4].

This paper summarises two experiments using the Recoil Distance Method (RDM) and Differential Decay Curve Method to determine $B(E2)$ values for various transitions in 106Cd.

2. Experimental details

2.1. DDCM experiment of the medium-spin states in 106Cd

For population and analysis of the medium-spin states in 106Cd, an experiment was performed at the Wright Nuclear Structure Laboratory, using the New Yale Plunger Device [5] and SPEEDY γ-ray array [6] consisting of seven HPGe clover detectors, four at 41.5° and three at 138.5°, with both angles relative to the beam axis. The 98Mo(12C, 4n)106Cd reaction channel was utilised, with $E^{(12)}C_{\text{LAB}} = 60$ MeV. Further details of the experiment can be found in [7].

2.2. Lifetime determination of isomeric states in 106Cd

The deduction of the $I^\pi = 9^-$ and 8^- isomeric state lifetimes was performed using the 330μm and 2008μm target-stopper distances from the Yale experiment. The lifetime of the $I^\pi = 9^-$ state at $E_x = 3678$ keV in 106Cd was deduced by gating on the shifted component of the 646 keV, $I^\pi = 11^- \to 9^-$ transition and projecting, fitting, deconvoluting and normalising the stopped and shifted components of the 269 keV, $I^\pi = 9^- \to 7^-$ transition, as detailed in [8]. The deduced mean lifetime, τ, of the $I^\pi = 9^-$ state at $E_x = 3678$ keV is 0.89(20) ns.

A similar procedure was performed for the mean lifetime of the $I^\pi = 8^-$ state at $E_x = 3507$ keV in 106Cd by gating on the shifted component of the 598 keV, $I^\pi = 10^- \to 8^-$ transition and projecting, fitting, deconvoluting and normalising the stopped and shifted peaks of the 188 keV, $I^\pi = 8^- \to 6^-$ transition. The deduced mean lifetime of the $I^\pi = 8^-$ state at $E_x = 3507$ keV is 1.7(5) ns.

2.3. DDCM experiment of the low-spin states in 106Cd

A second experiment was performed at the Institut für Kernphysik, Universität zu Köln, which utilised the Köln plunger and the 96Mo(13C, 3n)106Cd reaction at $E^{(13)}C_{\text{LAB}} = 43$ MeV. In this experiment, twenty distances
were measured, eight of which (6 µm, 8 µm, 13 µm, 16 µm, 18 µm, 21 µm, 25 µm and 37 µm) are used in the preliminary analysis presented here. The reaction γ rays were detected using seven individual segments of one germanium cluster detector (one segment was at an angle of 0° and the other six segments were at an angle of 34.5° relative to the beam axis) and five additional single crystal germanium detectors, each at an angle of 141.5° relative to the beam axis.

For both experiments, prompt coincidences were sorted into angle-dependent γ–γ matrices and were analysed with the TV matrix viewer [9]. The lifetimes were deduced by using the Differential Decay Curve Method (DDCM) [10].

2.4. Preliminary analysis of the $I^\pi = 2^+_1$ state lifetime

From the Köln experiment, three separate 1 keV wide energy coincidence gates were placed on the backward shifted component of the 861 keV, $I^\pi = 4^+_1 \rightarrow 2^+_1$ transition. Projecting, fitting, deconvoluting and normalising the stopped and backward shifted components of the 633 keV, $I^\pi = 2^+_1 \rightarrow 0^+_1$ transition.
transition yields mean lifetimes of 15.5(14) ps, 16.7(16) ps (see Fig. 1) and
17.4(19) ps. The weighted mean of these values yielded a mean lifetime of
the $I^\pi = 2^+_1$ state of 16.4(9) ps.

3. Discussion and conclusion

For the isomeric states, the $I^\pi = 9^-$ and $I^\pi = 8^-$ mean lifetimes of
0.89(20) ns and 1.7(5) ns compare well to the previously reported values of
1.0(+2,-4) ns and 1.7(6) ns deduced by the “centroid shift method” [11]. For
the $I^\pi = 2^+_1$ state, the mean lifetime of 16.4(9) ps, presented here, differs
from the literature value of 10.43(9) ps deduced from Coulomb excitation
[2].

S.F.A. would like to acknowledge financial support from EPSRC DTG
studentship. Work supported in part by the US DOE under grant nos
DE-FG02-91ER-40609 and DE-FG02-88ER-40417. P.H.R. would like to ac-
knowledge financial support from EPSRC and the Yale University Flint and
Science Development Funds. J.J. and A.L. would like to acknowledge finan-
cial support from the Deutsche Forschungsgemeinschaft.

REFERENCES

106Cd: M. T. Esat et al., Nucl. Phys. A274, 237 (1976);
108Cd: I. Thorshund et al., Nucl. Phys. A564, 285 (1993);
110Cd: S. Juutinen et al., Z. Phys. A336, 475 (1990);