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Summary 

The Mediterranean regions are currently experiencing increasing salt stress problems. 

Because of its economic importance, the negative impact of salty water on plant productivity 

has been investigated in many crops. Until now, studies on salt tolerance in eggplant are 

limited and have been focused on growth parameters and horticultural performances as a 

selection criterion. However screening salt tolerance of genotypes based on agronomic 

parameters has many inherent disadvantages such as differential growth and developmental 

patterns between genotypes if no stress is present, and logistical and time constraints with 

long-term growth comparisons.  

Facing salt stress, the plant uses different morphological and cellular responses to adapt. 

Thus, the search for traits related to salt tolerance is an important step for the selection of 

eggplant genotypes to improve their performance under these conditions. In this respect, this 

work invests the main eco-physiological and biochemical mechanisms concerned in tolerance 

phenomena to salinity in four eggplant cultivars: water status, osmoregulation, chlorophyll 

fluorescence, gas exchanges, accumulation of osmolytes as well as the accumulation of 

malonaldehyde as a result of oxidative damage caused by salt stress. Also accumulation 

patterns of Na and Cl in leaves and roots are studied.  

The effects of salinity were investigated under in vitro controlled conditions on germination, 

seedling growth and biochemical parameters in four eggplant (Solanum melongena L.) 

cultivars. Seeds and subsequent seedling growth were exposed to increasing salt stress (0, 20, 

40, 80 and 160 mM NaCl). Germination was strongly reduced at 160 mM for all cultivars. 

The decline in seed germination parameters, fresh weigh, dry weigh, height and leaf number 

were more pronounced with the increase of NaCl concentration in the cultivars ‘Adriatica’ 

and ‘Black Beauty’ than in the cultivars ‘Bonica’ and ‘Galine’. The water content decreased 

markedly in ‘Adriatica’ and ‘Black Beauty’ and remained quite stable in the other cultivars. 

Higher levels of MDA and proline were detected in the leaves of ‘Adriatica’ and ‘Black 

Beauty’. The responses of the germination, seedling growth and biochemical parameters to 

salt stress indicated two groups with contrasting sensitivity responses. ‘Adriatica’ and ‘Black 

Beauty’ were more sensitive to the applied salt stresses than ‘Bonica’ and ‘Galine’.  

The relative salt tolerance of four eggplant cultivars (Solanum melongena L.) was also 

assessed by chlorophyll fluorescence during the vegetative growth stage under increasing 

salinity levels. In a pot experiment plants were subjected to saline stress ranging from 0 
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(control), 20, 40, 80 and 160 mM NaCl for 25 days. The results showed that increasing NaCl 

concentration hardly affected the maximum quantum yield of PSII (Fv/Fm). The quantum 

yield of PSII (ΦPSII) decreased significantly in ‘Adriatica’ and ‘Black Beauty’ under saline 

stress. Photochemical quenching (qP) decreased for ‘Black Beauty’ and non-photochemical 

quenching (NPQ) increased for ‘Adriatica’ under salt stress. For ‘Bonica’ and ‘Galine’ 

chlorophyll fluorescence parameters did not significantly change under salt stress, revealing 

their photochemical tolerance to salinity. At the end of the experiment plant growth decline 

under salt stress was more pronounced for ‘Adriatica’ and ‘Black Beauty’. Additionally, a 

significant correlation between biomass and ΦPSII was observed for ‘Adriatica’ and ‘Black 

Beauty’. ‘Bonica’ and ‘Galine’ tolerated better the applied salt stress and limited effect on 

primary photochemistry as compared to ‘Adriatica’ and ‘Black Beauty’ was observed.  

The effect of NaCl stress on plant water status and biochemical parameters was also 

investigated in this experiment for all eggplant cultivars (Solanum melongena L.). Increasing 

NaCl concentration increased strongly proline, malondialdehyde and carbohydrate leaf 

contents in the sensitive cultivars ‘Adriatica’ and ‘Black Beauty’. However, the tolerant 

cultivars ‘Bonica’ and ‘Galine’ showed a decrease in carbohydrate accumulation and a 

significant increase in starch levels under saline stress. The midday leaf water potential (ψ) 

and leaf osmotic potential (ψπ) were significantly affected in sensitive cultivars and remained 

quite stable in tolerant cultivars under salt stress. Leaf Na and Cl
-
 content were higher in 

sensitive than in tolerant cultivars. Leaf K, Ca and Mg contents were reduced under salt stress 

in sensitive cultivars. Increasing salinity did not change Ca and Mg content in tolerant 

cultivars. The growth responses were integrated in a plant tolerance index which could 

clearly discriminate sensitive and tolerant cultivars as well for a low salinity level (20 mM) as 

higher salinity levels.  

The application of salt stress also limited photosynthetic efficiency. This has been studied in 

the third experiment through the assessment of CO2 assimilation rates, photosynthetic 

electron flow and photorespiration in two eggplant cultivars, ‘Bonica’ and ‘Black Beauty’, 

differing in their tolerance to salt stress. We used again a pot experiment and four salt stress 

levels namely 0 (control), 40, 80 and 160 mM of NaCl. A significant decrease in net 

photosynthesis (An) was noticed in both cultivars under increasing salt stress though 

respiration rates (Rn and Rd) were not affected. The ratio An/At decreased under increasing 

salinity while Rd/At increased under increasing salt stress in both cultivars. High respiration 

rates are linked to higher ATP production; therefore both cultivars could maintain sufficient 



 

ix 

energy levels under increasing salt stress levels. However, this energy is probably used for 

different purposes such as osmotic adjustment in ‘Black Beauty’ or for sodium exclusion and 

tissue tolerance in ‘Bonica’. The ratio Jc/Jt was not affected by increasing salt levels except 

for ‘Black Beauty’ at 160 mM NaCl. Under 160 mM NaCl level less than 40% of the total 

electron flow was used for oxygenation of RuBP in ‘Black Beauty’ and ‘Bonica’. 

Photorespiration (Rl) is an alternative electron sink and this pathway is more pronounced in 

‘Bonica’ at 160 mM NaCl. 

A concentration of 40 mM NaCl already significantly reduced gs in ‘Black Beauty’, this for 

both 13 and 21 DSS. Significant lower gs was only found for 160 mM NaCl in ‘Bonica’. 

Transpiration rate (E) reduction induced by salinity was more pronounced in ‘Black Beauty’ 

than in ‘Bonica’. Biochemical analysis confirmed the results of the other experiments. Proline 

and MDA accumulation were pronounced in the sensitive cultivar. While ‘Black Beauty’ 

accumulated considerable amount of sugars (sucrose, glucose and fructose) in the leaves and 

lower amount of starch under saline conditions, tolerant cultivar showed a decline of sugar 

content accompanied by a starch accumulation increase. On the other hand leaves of ‘Bonica’ 

accumulated lower concentration of Na and Cl than ‘Black Beauty’. Moreover at 160 mM 

NaCl while sodium accumulation was higher in the roots than in the leaves of ‘Bonica’, 

Black Beauty’ accumulated lower Na in roots than in leaves. Leaf and root K contents 

reduction were higher in ‘Black Beauty’ than in ‘Bonica’ at 160 mM NaCl. Besides 

significant differences for the Na/K ratio were only observed in ‘Black Beauty’.  

This study showed that different salt tolerance levels are present among commercial cultivars 

of eggplant. Most parameters could differentiate between the cultivars, sometimes even at 

low salt levels yet combined physiological and biochemical traits should be considered in 

screening salt tolerance of eggplant genotypes rather than only one specific trait.  
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Samenvatting 

De Mediterrane regio’s zijn gekenmerkt door een verhoogd risico op verzilting van de 

bodems. De negatieve impact van irrigatie met zout-belast water op de productiviteit werd 

daarom in verschillende landbouwgewassen onderzocht. Tot heden zijn studies betreffende 

zouttolerantie bij aubergine beperkt en lag de focus hoofdzakelijk op agronomische aspecten 

als selectiecriterium. Nochtans heeft een screening op agronomische parameters een aantal 

inherente nadelen zoals het verschillend groeipatroon van genotypes wanneer geen stress 

aanwezig is, naast logistieke en tijdsbehoeften bij productiebepalingen in veldproeven.  

Onder zoutstress gebruiken planten verschillende morfologische en cellulaire reacties om 

zich aan deze stress aan te passen. Daarom is onderzoek naar parameters, die zoutstress 

kunnen vaststellen, een belangrijke stap voor selectie van meer zout tolerante aubergine 

cultivars. Deze thesis focust op een karakterisering van de belangrijkste fysiologische en 

biochemische mechanismen, die tussenkomen in de tolerantie voor zoutstress bij vier 

aubergine cultivars: de plant water status, osmoregulatie, chlorofyl fluorescentie, gas 

uitwisselingspatronen, en de accumulatie van malonaldehyde als gevolg van oxidatieve 

schade veroorzaakt door zoutstress. Ook accumulatiepatronen van Na en Cl in blad en wortel 

zijn bestudeerd.  

Zoutstress effecten werden eerst bestudeerd onder gecontroleerde in vitro proeven, op de 

kieming van zaden, de groei van de zaailingen en twee biochemische parameters bij vier 

aubergine cultivars (Solanum melongena L.). Zaden en de hierop volgende jeugdgroei 

werden onderworpen aan toenemende zoutstress (0, 20, 40, 80 en 160 mM NaCl). 

Zaadkieming was sterk gereduceerd bij 160 mM NaCl bij alle cultivars. Het negatief effect 

van toenemende zoutstress op zaadkiemingsparameters, lengte, aantal bladeren, vers- en 

drooggewicht was sterker bij de cultivars ‘Adriatica’ en ‘Black Beauty’ dan bij cultivars 

‘Bonica’ en ‘Galine’. De waterinhoud verlaagde sterk bij ‘Adriatica’ en ‘Black Beauty’ en 

bleef ongewijzigd bij de andere cultivars. Hogere concentraties MDA en proline werden 

vastgesteld in de bladeren van ‘Adriatica’ en ‘Black Beauty’. De reacties op de bestudeerde 

parameters toonde aan dat twee groepen met contrasterende gevoeligheid warden gevormd. 

‘Adriatica’ en ‘Black Beauty’ waren eerder gevoelig voor zoutstress, terwijl ‘Bonica’ en 

‘Galine’ eerder tolerant waren voor de zoutstress.  

De relatief verschillende tolerantiepatronen van de vier aubergine cultivars werd verder 

onderzocht met chlorofylfluorescentie tijdens de vegetatieve groei. Hiervoor werd een pot 
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experiment uitgevoerd waarbij planten werden onderworpen aan zoutstres, die toenam van 0 

(control), 20, 40, 80 tot 160 mM NaCl, gedurende 25 dagen. Toenemende zoutstress had 

nauwelijks invloed op de maximum kwantum opbrengst van PSII (Fv/Fm). De kwantum 

opbrengst van PSII (ΦPSII) nam significant af bij ‘Adriatica’ en ‘Black Beauty’ onder 

zoutstress. De fotochemische quenching (qP) nam af bij ‘Black Beauty’ en de niet-

fotochemische quenching (NPQ) steeg bij ‘Adriatica’ onder zoutstress. Chlorofyl-

fluorescentie parameters werden niet beïnvloed bij ‘Bonica’ en ‘Galine’ onder zoutstress, wat 

hun hogere tolerantie voor zoutstress aantoonde. Op het einde van het experiment was de 

vegetatieve groei sterker onderdrukt bij ‘Adriatica’ en ‘Black Beauty’. Bijkomend werd een 

significante correlatie tussen biomassa en ΦPSII vastgesteld bij ‘Adriatica’ en ‘Black Beauty’.  

Het effect van NaCl stress op de plant waterstatus en biochemische parameters werd 

eveneens in dit experiment onderzocht bij de 4 aubergine cultivars. Toenemende zoutstress 

verhoogde sterk proline, malondialdehyde en oplosbare koolhydraten in de bladeren van de 

gevoelige cultivars ‘Adriatica’ en ‘Black Beauty’. Echter bij de tolerante cultivars ‘Bonica’ 

and ‘Galine’ was een afname van de oplosbare koolhydraten merkbaar maar werd een 

belangrijke toename van zetmeel vastgesteld. De middag plant waterpotentiaal (ψ) en blad 

osmotische potentiaal (ψπ) werd significant negatiever bij de gevoelige cultivars maar bleef 

vrij stabiel bij de tolerante cultivars bij toenemende zoutstress. Blad Na en Cl
-
 gehalte was 

hoger bij de gevoelige dan bij de tolerante cultivars. Blad K, Ca en Mg gehaltes namen af bij 

toenemende zoutstress in de gevoelige cultivars. Toenemende zoutstress beïnvloedde niet de 

Ca
 
en Mg gehaltes bij tolerante cultivars. De groeirespons werd geïntegreerd in een plant 

tolerantie index en deze kon duidelijk een onderscheid maken tussen gevoelige en tolerante 

cultivars, zowel bij lage als hoge zoutstress.  

De toepassing van zoutstress reduceerde eveneens de fotosynthetische efficientie. Dit werd 

bestudeerd in een derde experiment waarbij zowel gasuitwisseling, chlorofylfluorescentie, 

lineair elektronen transport en fotorespiratie werd bepaald bij 2 cultivars, ‘Bonica’ en ‘Black 

Beauty’, verschillend in hun tolerantie voor zoutstress. Er werd opnieuw een potexperiment 

opgezet en vier zoutniveaus werden toegepast nl. 0 (controle), 40, 80 en 160 mM NaCl. 

Zoutstress reduceerde significant de netto-fotosynthese (An) bij beide cultivars maar de 

ademhalingssnelheden (Rn en Rd) werden niet beïnvloed. De verhouding An/At nam af bij 

toenemende zoutstress terwijl Rd/At toenam bij beide cultivars. Hoge ademhalingsnelheden 

resulteren in hogere ATP productie, beide cultivars konden hierdoor een voldoende 

energieniveau behouden onder toenemende zoutstress. Echter, deze energie werd 
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waarschijnlijk op een verschillende manier aangewend zoals voor osmotische aanpassing in 

‘Black Beauty’ en natrium exclusie en weefseltolerantie bij ‘Bonica’. De verhouding Jc/Jt 

werd niet beïnvloed door toenemende zoutstress met uitzondering voor ‘Black Beauty’ bij 

160 mM NaCl. Gemiddeld werd minder dan 40% van de totale elektronen stroom gebruikt 

voor de oxygenatie van RuBP in ‘Black Beauty’ en ‘Bonica’. Fotorespiratie (Rl) is een 

alternatieve elektronen sink en deze pathway was sterker uitgesproken bij ‘Bonica’ onder 160 

mM NaCl. 

De stomatale geleidbaarheid daalde al bij 40 mM NaCl bij ‘Black Beauty’, dit zowel 13 als 

21 dagen na de start van het experiment, terwijl bij ‘Bonica’ dit slechts vanaf 160 mM NaCl 

optrad. De afname van de verdamping (E) was sterker bij ‘Black Beauty’ dan bij ‘Bonica’ 

onder zoutstress. De biochemische analyses bevestigden de vorige experimenten. Proline en 

MDA accumuleerden sterk bij de gevoelige cultivar. Eveneens namen de concentraties 

oplosbare koolhydraten (sucrose, glucose en fructose) sterk toe bij de gevoelige cultivar en 

werd zetmeel afgebroken bij zoutstress. Bij de tolerante cultivar daalden de concentraties 

oplosbare koolhydraten en accumuleerde zetmeel in de bladeren. Ook in dit experiment was 

de zoutaccumulatie in de bladeren lager bij ‘Bonica’ dan bij ‘Black Beauty’. Bijkomend 

werden bij ‘Bonica’ hogere concentraties zout weerhouden in de wortels dan in de bladeren, 

terwijl bij ‘Black Beauty’ de sterkste accumulatie voorkwam in de bladeren. Ook de 

kaliumopname, zoals bleek uit blad en wortelsamenstelling verliep moeilijker bij ‘Black 

Beauty’ dan bij ‘Bonica’ bij 160 mM NaCl. Dit resulteerde in een significante toename van 

de Na/K ratio bij ‘Black Beauty’.  

Dit onderzoek toonde aan dat verschillende zouttolerantie niveaus aanwezig zijn in 

commerciële aubergine cultivars. De meeste parameters konden de tolerantie verschillen 

tussen de cultivars aantonen, dit soms bij vrij lage dosissen zoutstress. Toch is een 

karakterisering van meerdere fysiologische en biochemische karakteristieken aangewezen 

voor het screenen van zouttolerantie bij aubergine. 
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List of abbreviations 

Abbreviation Description Unit 

An Net photosynthetic assimilation rate [µmol CO2 m
-2

 s
-1

] 

At Total assimilation rate [µmol CO2 m
-2

 s
-1

] 

ATP Adenosine triphosphate  

BA Benzylaminopurine  

Ca Calcium  

CE Carboxylation efficiency [mol mol
-1

) 

Chla Chlorophyll a [µg g
-1

 FW] 

Chlb Chlorophyll b [µg g
-1

 FW] 

Chla+b Total chlorophyll µg g
-1

 FW 

DSS Day of salt stress  

DW Dry weight [g] 

E Transpiration rate [mmol H2O m
-2

 s
-1

] 

ETR Electron transport rate [-] 

F0 Minimum fluorescence [-] 

F’0 Minimum fluorescence in light adapted leaf [-] 

Fm Maximum fluorescence [-] 

F’m Maximum fluorescence in light adapted leaf [-] 

Fs Steady-state fluorescence [-] 

Fv/Fm Maximum quantum efficiency of PSII 

photochemistry measured in dark-adapted 

leaves 

[-] 

Fv’/F’m Efficiency of energy captured by open PSII 
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Scope of the thesis 

The Tunisian climate is characterized by an irregular inter-regional and inter-annual rainfall. 

This implies the use of irrigation for agricultural lands but water resources are limited and of 

low quality as 30% of these resources have a salt content higher than 3g/l (≈ 51.3 mM of 

NaCl) (Boutiti, 1995). In regions lacking good water quality supplies, the mobilization of all 

available water resources (underground, surface, treated wastewater and salty water) is found 

to be highly important for agricultural uses (Chaabouni, 1995). Also, the identification of 

crops able to valorise this constraining water quality has become very important. 

Furthermore, the irrigation and inputs of chemical fertilizers usually exceeding the needs of 

the crop further increases the salinity of the soils after cultivation. For saline soils and 

irrigation waters, two complementary strategies can be implemented to limit the depressive 

effects of salt on crop yields. First, we should apply farming techniques to reduce soil salinity 

and secondly, we could select varieties or species able to minimize the depressive effects of 

salinity on their performance. 

Vegetables have a high cash value and for each vegetable crop there is a wide germplasm 

available. The vegetable sector has become one of the strategic sectors of the Tunisian 

economy. The three main solanaceous crops, potato, tomato and pepper are the economically 

most important vegetables in terms of local consumption and export. The cultivation of 

eggplant (Solanum melongena L.) could be a potentially promising crop for this sector in 

addition to potatoes, tomato and pepper. This vegetable is also an important greenhouse crop 

for out of season production, however, secondary salinization due to non-sustainable irrigated 

horticulture results in a decline in eggplant productivity and as a result growers are reticent to 

start the cultivation of this crop.  

Few comparative studies concerning salt stress have been published on eggplant. These 

studies focused on growth parameters and horticultural performances as a selection criterion 

for salinity tolerance (Savvas and Lenz, 2000; Akinci et al., 2004). In other crops research on 

the effect of salt stress on the growth and yield combined with insight in the various 

physiological processes that control the productivity led to a strategy to improve yields 

through increasing productivity. In all this, the obvious question is: how does the 

understanding of the mechanisms of salt tolerance or sensitivity allows us to use it in 

improvement programs for the search of genotypes tolerant to salinity in order to preserve our 

horticultural production with a focus on an economic and ecological sustainability? 
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Consequently to revive the cultivation of eggplant and operate simultaneously salty water in 

coastal areas of Tunisia, we investigated the relative salt tolerance of eggplant cultivars. The 

main aims of this research focus at understanding the physiological adaptation of salt 

tolerance in eggplant with as final goal the development of selection criteria for salt tolerant 

genotypes. Both an in vitro (started in Tunisia) and in vivo approach were undertaken to reach 

these objectives. 

In vitro techniques, with their potential to induce somaclonal variation might indeed be a 

promising way to improve salt tolerance in the Solanaceae family as it has been successfully 

used in the selection of salt tolerant tobacco (Nabors et al., 1980) and tomato genotypes 

(Messai, 2002). Yet, eggplant is a recalcitrant plant species that cannot be easily reproduced 

through in vitro therefore first a protocol for eggplant multiplication is needed. 

Salt stress is not only an osmotic stress but also an ionic stress due to accumulation of sodium 

and chloride at cellular level. Yet, the knowledge of the physiological adaptations of eggplant 

to salt stress is very limited. This study focuses on the identification of varieties that maintain 

an adequate growth under irrigation with poor quality water and to investigate the 

mechanisms involved to counteract the effect of salt stress at a physiological level.  

The doctoral thesis is structured into six separate chapters. 

The first chapter is devoted to a general introduction of the Tunisian horticulture, a 

description of eggplant and an introduction to factors associated with saline soils and the 

behaviour of plants under salinity stress. 

In the second chapter we will present our work concerning in vitro regeneration of eggplant 

seedlings from different somatic tissues such as the cotyledons, fragments of leaves, 

hypocotyl segments and segments of internodes. Effects of increasing concentrations of the 

hormone (TDZ) and three types of light quality (white fluorescent light, blue light and red 

light) were tested to develop a reliable regeneration protocol. 

The third chapter focuses on the in vitro seedling stage. In this chapter we studied the seed 

germination ability of S. melongena (the rate and germination period) in response to salt 

stress. Seed germination is an important sensitive and critical phase of the plant life cycle. 

Morphological traits, membrane damage as determined by lipid peroxidation and 

accumulation of proline are quantified.  
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The fourth chapter focuses on the application of chlorophyll fluorescence for diagnosis of 

salinity tolerance in four varieties of eggplant. The functioning of the photosynthetic 

apparatus (chlorophyll fluorescence) can be considered as a specific intrinsic indicator of the 

first steps of the photosynthesis and its intensity is directly related by an inverse relationship 

to the photosynthetic efficiency of the plant. 

The fifth chapter compares and discusses the effects of salt stress on plant water relations, 

osmotic adaptation and foliar accumulation of sodium and chloride on two relative sensitive 

and two more tolerant cultivars based on chlorophyll fluorescence screening. This knowledge 

might be of further advantage to screen eggplant cultivars tolerant to salt stress. 

The sixth chapter focuses on effects of salt stress on photosynthesis and respiration. Salt-

induced photosynthetic dysfunction is investigated by chlorophyll fluorescence, pigment 

concentration and Na content of the leaves. The variation in salt uptake mechanisms is also 

studied by analysis of the mineral content of both roots and leaves. Differential responses of a 

relative sensitive and a more tolerant cultivar (see Chapter 5) are interpreted. 

Finally, a general conclusion that summarises all findings and provides perspectives for 

future research is presented in Chapter 7. 
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Chapter 1 General introduction 

 

1.1 The vegetable sector in Tunisia 

In Tunisia the vegetable crops have a considerable economic importance and therefore they 

are considered as one of the strategic cultures of the country. Vegetable crops in open fields 

and in greenhouses occupy an average of 140,000 ha. The areas of protected vegetable crops 

(greenhouses, small tunnels and multi-tunnels greenhouses) represent only 6.2% of this area, 

so 8,650 hectares divided into: 

 1,250 ha non-heated greenhouses: Peppers are the main crop in unheated greenhouses 

with 56% of the area, followed by tomato which occupies on average 26% of the area 

and melon with only 6% of the area. The governorate of Monastir has about 39% of 

the cultivated vegetable area under non-heated greenhouses (572 ha), followed by the 

governorates of Sidi Bouzid, Mahdia and Sfax with respectively 14.3%, 13.2% and 

12.7% of the total area. 

 7,300 ha under small tunnels: The main crops grown under small tunnels are 

watermelon and pepper. They occupy 4,178 hectares or 57% of the total area of small 

tunnels. The governorate of Sfax is the largest producer of vegetables in small 

tunnels. 

 100 ha in heated greenhouses: Vegetable crops in greenhouses heated by geothermal 

water are spread over 3 governorates. The governorate of Gabes (37 ha) is specialized 

in the cultivation of tomato mainly for export. The governorate of Kebili (41 ha) is 

specialized in the production of cucumber (40% of the area) followed by tomato 

(28.5%) and melon (22%). The governorate of Tozeur with 22 ha, is dominated by 

melon production (30% of the area), followed by cucumbers (19%) and okra (18%). 

The strategic vegetable crops for the country are potato, tomato and peppers. The production 

of potato averages about 370,000 tonnes grown on an average area of 25,000 hectares. For 

the last five years the potato export averages 11,000 tonnes per year. They result mainly of 

the early season and out of season crop. The tomato cultivation covers an average area of 

29,000 ha per year, with an average production of 1.2 million tonnes. This production is 
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based on field crops (both late season and season crop) and protected cultivation. Exports of 

fresh tomatoes increased from 2,481 tonnes in 2004/2005 to 13,981 tonnes in the 2013/2014 

agricultural year. The pepper cultivation in term of sown area occupies the 3
rd

 place with an 

area of 20,000 ha and an average production of 346,000 tonnes in the last five years. Pepper 

exports are increasing during the past decade from 53 tonnes in 2005 to 471 tonnes in 2014. 

The main importers are Libya, France and the Gulf countries. 

The cultivation of eggplant is considered as a secondary vegetable crop with a production 

area of 67 ha in 2015 (Table 1.1). Although eggplant is mainly a summer vegetable, all-year 

round production exists by producing also under cold greenhouses and geothermal 

greenhouses in the southern regions. Ten varieties are listed on the Tunisian official 

catalogue, the best known are the elongated dark purple or black and ovoid eggplants while 

yellow and white eggplants are mainly for export. Thus, eggplant contributes to the 

diversification of vegetables crops and constitutes a new product requested by foreign 

markets: The average quantity exported in the last five years is around 187 tonnes. France 

and the Gulf countries are the main destinations of this product. Thus the cultivation of 

eggplant could constitute a potential niche to be adopted by farmers because it is a promising 

crop in terms of local demand and attractive fruit prices. 

1.2 The importance of eggplant production 

An overview of the major eggplant producing countries is given in Table 1.2, China is by far 

the main producing country followed by India and Iran. The Netherlands with an average 

production of 46.38 tonnes/ha (average of 2012-2013), have the highest yield of this crop in 

greenhouse growing conditions, followed by Belgium (38.61 tonnes/ha). For 25 years the 

area of greenhouse production increased by more than 2,000 ha per year (FAOSTAT, 2015), 

and this increase was mainly responsible for the dramatic increase in yield (Greer and Driver, 

2000). The Mediterranean countries of Europe are one of the largest concentrations of 

protected crops in the world with about 100,000 hectares dedicated to the production of 

vegetables grown in greenhouses, and 300,000 ha grown under small tunnels and mulching, 

which contributed to the increased production of the eggplant. The eggplant with tomato, 

pepper, cucumber, melon and watermelon are the main protected crops in this region 

(Cantliffe and Vansickle, 2003). 
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Table 1.1: Repartition by governorate of area and production of eggplant in the last five years: 2010-2015 (Anonym, 2015). 

 2010 2011 2012 2013 2014 2015 

Area 

(ha) 

Production 

(tonnes) 

Area 

(ha) 

Production 

(tonnes) 

Area 

(ha) 

Production 

(tonnes) 

Area 

(ha) 

Production 

(tonnes) 

Area 

(ha) 

Production 

(tonnes) 

Area 

(ha) 

Production 

(tonnes) 

Nabeul 10 600 20 300 20 400 20 200 25 400 32 480 

Sousse 1 0 0 0 4 80 0 0 0 0 0 0 

Gafsa 40 1,200 50 800 40 1,000 0 0 4 80 35 500 

Gabes 10 100 8.5 127.5 4 60 2 20 0 0 0 0 

Total 61 1,900 78.5 1,227.5 68 1,540 22 220 29 480 67 980 
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Table 1.2: Major eggplant producing countries in the world (FAOSTAT, 2015) 

 2012 2013 

Countries ha tonnes tonnes/ha ha tonnes tonnes/ha 

China 775,436 27,698,600 35,72 786,977 28,433,500 36,13 

India 692,272 12,634,000 18,25 722,019 13,444,000 18,62 

Iran 39,501 1,300,000 32,91 42,182 1,345,185 31,89 

Egypt 45,256 1,193,854 26,38 41,534 1,194,115 28,75 

Turkey 26,001 799,285 30,74 26,598 826,941 31,09 

Indonesia 50,567 518,827 10,26 46,433 509,380 10,97 

Iraq 21,106 422,336 20,01 23,566 510,918 21,68 

Japan 9,861 327,400 33,20 9,700 321,200 33,11 

Spain 3,900 245,900 63,05 3,700 206,300 55,75 

Netherlands 1,050 47,000 44,76 1,000 48,000 48.00 

USA 2,000 65,000 32,50 2,034 67,784 33,32 

 

 

In Europe, there is a trend towards diversification of eggplant on the market. Consumers 

show interest in "exotic" varieties with colours, shapes, sizes and flavours from those 

traditionally marketed (dark purple or lilac oblong berries). For now, however, the most 

common varieties on the European market are high-yielding varieties with oblong shaped 

dark purple fruits.  

Eggplant production is of considerable economic importance in Europe (Table 1.2, Table 

1.3), this includes breeders and seed companies, growers and phytochemists, all concerned 

with a better use of genetic resources of eggplants. The consumption of eggplant in the 

European Union is increasing but the trade balance remains positive (Table 1.3).  

The production of eggplant in the EU provides thus a source of income for the producers of 

the region. At the same time, it ensures that the consumer receives a fresh product with good 

quality, which is locally produced, and therefore prices are relatively fair. The Netherlands 

produce eggplants in greenhouses on substrates. Spain and Italy obtain most of their eggplant 

production through the protected-culture system (tunnels, mulching). Greenhouses and 

protected cultivation generally ensure a better quality and stability of the harvest (Bougoul et 

al., 2005). 
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Table 1.3: Trade of eggplant within the European Union (FAOSTAT, 2015) 

Year 2010 2011 2012 2013 

Import (1,000 tonnes) 175,749 178,686 193,685 196,560 

Export (1,000 tonnes) 190,505 205,663 216,276 221,681 

 

1.3 Description of eggplant 

1.3.1 Origin 

Solanum melongena, the common or brinjal eggplant, occurs in wild or semi-wild form in 

India. Various data indicate that the species that evolved in Africa, S. incanum, gave rise to a 

distinct species which spread to South-East Asia as the wild ancestor of S. melongena (Lester, 

1998). India or Indochina is recognized as the centre of the eggplant diversity. Primitive 

eggplant characteristics are tall plants with large, piny leaves, flowering in clusters with 

andromonoecy. Their fruits are small, green and bitter in taste, with a thick skin and hard 

flesh.  

Eggplant was described in India in 3
rd

 century B.C, production started in 4
th

 century in China 

and in 9
th

 century in Africa. Although cultivated from prehistorical times, eggplant appears to 

have been unknown to the Western World for many centuries. Melongena was an Arabic 

name for one eggplant cultivar and Avicenna mentioned it as a medicinal and vegetable plant. 

Domestication, mutation, natural intercrossing, human selection and hybridization brought 

extensive genetic diversity of eggplant cultivars, now grown all over the world. Cultivar 

differences concern mainly the colour, shape and height of fruits, but chemical composition 

of the fruits, earliness of fruiting, yield, environmental requirements, etc. are also taken into 

consideration. Fruit colour varies from light to dark purple, almost black, green, or white. 

Fruit length is between 4-45 cm, and thickness 2-35 cm, and weight ranges between 15-1500 

g. The fruits are set as single or in clusters, up to 5 fruits. Physiologically ripe fruits become 

brown, red or yellow (Swarup, 1995). 

African eggplants – S. aethiopicum and S. macrocarpon, are the most popular native, 

traditional vegetables in West and Central Africa, but the productivity of these crops is still 

relatively low and the growing area and yields have not been recorded. The centre of 

diversity of these eggplants is Western Africa. African eggplants are grown mainly in gardens 

and small fields near villages. S. aethiopicum is a fruit and leaf vegetable. It is a herbaceous 
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shrub with hairy or glabrous leaves and hermaphroditic flowers, self or cross-pollinated, 

single or in clusters. The fruits are consumed raw or cooked. They are light to dark green, 

white or blackish in colour, with a bitter taste that varies depending on its saponin content. 

The fruit shape is round, elongate-round or oval with smooth or grooved surface and taste 

varies from sweet to bitter, particularly in the case of oval-fruit cultivars. At full maturity, the 

fruits turn red or reddish-orange due to high carotene content. Fruit surfaces vary from 

smooth to grooved or ribbed. The leaves are often consumed in the same way as spinach 

(Seek, 1997; Macha, 2005). 

S. macrocarpon is grown for its large, glabrous leaves (50 × 30 cm), used as a green 

vegetable. Fruits have a large, often clasping calyx. They are sub-spherical and large (3-10 

cm in diameter, 2-6 cm long), cream white, green-white or green. Fruits are sweeter in taste 

compared to S. aethiopicum. At full maturity fruits turn yellow, orange or brown with 

cracked surface (Bukenya, 1994; Macha, 2005). 

1.3.2 Classification  

The classification of eggplant is as follows (Lawande and Chavan, 1998; Mace et al., 1999; 

Collonier et al., 2001): 

 

Class                         Magnoliopsida 

Family                      Solanaceae                 Genus                   Solanum 

Subfamily                 Solaoideae                  subgenus              Leptostemonum 

Tribe                         Solaneae                     Species                 melongena 

 

Solanum melongena was originally described by Linnaeus (1753) in his “Species Plantarum”, 

where he described the two species which are the corner stones of the eggplant complex, i.e. 

S. incanum and S. melongena. Other classifications followed in order to explain the complex 

pattern of wild, domesticated and semi-domesticated plants that form the “S. incanum-S. 

melongena complex” (Table 1.4-1.5, Mace et al., 1999). 

The domestication of Solanum vegetables in Africa depended on the development of 

agricultural systems and the availability of suitable wild or introduced species (Lester and 

Daunay, 2003). Studies by Daunay et al. (2001) recognize three African vegetable Solanum 

species (Figure 1.1), and Solanum melongena L., which was domesticated rather in South 

East Asia than in Africa, but whose closely related wild species are indigenous in Tropical 

Africa and the crop is extensively grown in both northern and southern Africa. 
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Table 1.4: Ancient taxonomical classification of Solanum (Mace et al., 1999) 

Authors Achievement Remark 

Linnaeus 

“Species 

Plantarum“) 

Described S. incanum and S. 

melongena. 

Led to confusion because of the 

morphological plasticity of these 

species 

Dunal (1852) Intended to give the exact number 

of African Solanum species. 

- 

Dammer (1915) Increased the number of African 

Solanum sp. to 200. 

Did not clarify the delimitations of 

these species. 

Bitter (1923) Begun to unravel the confusion 

surrounding African Solanum 

species by using the species- 

aggregate concept. 

Indicates close relationship between 

groups of species but does not force 

premature nomenclatural decisions 

for that group. 

 

 

Table 1.5: Taxonomical classification of Solanum according to their centre of origin (Lester and 

Hasan, 1991; Mace et al., 1999) 

Wild taxa of S. incanum sensu lato,  

from Africa  

Weedy and cultivated taxa of S. 

melongena from Asia 

Group A S. campylacanthum East and 

South Africa 

Group E S. melongena 

(S. insanum) 

India 

Group B S. panduriforme South Africa Group F S. melongena 

(S. cumingii) 

S.E Asia 

Group C S. incanum North Africa, 

Arabia 

Group G S. melongena 

(S. ovigerum) 

S.E Asia 

Group D S. lichtensteinii South Africa Group H S. melongena 

(S. melongena) 

world-

wide 

 

 

The botanical classification of eggplant recognizes three major botanical varieties under the 

species melongena (Lawande and Chavan, 1998): 

 S. melongina var. serpentium (Snake Aubergine ) 

 S. melongena var. depressum (Dwarf Aubergine ) 

 S. melongena var. esculentum (Common Aubergine). 
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Figure 1.1: The domestication of Solanum sp. (Lester and Daunay, 2003) 

 

S. melongena, S. aethiopicum and S. macrocaepon  are diploid plants (2n=2x=24) (Daunay, 

1997). S. melongena and its varieties are very diverse in fruit form and colour (Prinz, 1989; 

Lawande and Chavan, 1998). The variation is continuous, which means that the existing sub-

classifications into botanical varieties and subspecies have no horticultural value. For certain, 

this biodiversity of eggplant could be used to select new types for greenhouse cultivation all 

over the world. Controlled hybridization within S. melongena lead to the development of 

many hybrid F1 cultivars (heterozygous but homogeneous phenotype). 

1.3.3 Botanical description of eggplant 

It is a tropical perennial that does not support frost. The stem develops monopodial for the 

first 6 to 10 leaves which coincide with the vegetative phase. Once flower initiation starts the 

stem develops sympodial with dichotomous development generally each two leaves. The 

plant thus has a bushy habit that can reach a height of 0.5 m to 2.5 m. The stems and the 

upper surface of the eggplant leaves are covered with stellate hairs which make them rough to 

touch. The stem is thick and has a strong woody ring at its base; the bark is thin, green or 

reddish due to anthocyanin. It can be with or without thorns. The large leaves alternate, are 

angular or lobed, usually with strong thorny ribs. They are greyish green with purple 

discoloration on the ribs. 
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Eggplants are autogamous. Flowers appear in the axils, sometimes solitary, but often grouped 

in cymes of two, three or even five flowers. The flowers are large, 3 to 5 cm of diameter 

having a coloured corolla violet or purple and whose lower face is fluffy. The chalice, 

coloured green or purplish colour, covers the upper part of the fruit; it is very indented and 

jagged, smooth or spiny. The flowers are usually long-styled hermaphrodites, but in the distal 

part of the cymes, they are often short-styled or males (Daunay et al., 1997). 

Flowers can stay open for 8 to 10 days but will close every evening; they are more receptive 

in the morning between 6:00 and 11:00 in summer (Rao, 1980). Pollen remains viable for 3 

days while the receptivity of the stigma is good till the 2
nd

 day and declines thereafter (Rao, 

1980).  

The first flower appears between 55 and 110 days after sowing  but for most varieties, this 

takes about 70 to 80 days. Fruit development ranges between 20-40 days between flowering 

and fruit harvest at the commercial stage though it takes 40 to 80 days to reach full 

physiological maturity (Daunay, 2002). 

 

  
 

Figure 1.2: Eggplant, flower and fruit morphology (Daunay, 2002) 
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Round 

Figure 1.3: Main forms of fruits found in Europe (Adinolfi and Bianchi, 1983) 

 

Botanically, the fruits are full bays, with the seeds arranged in two or more carpels. Their 

shape varies depending on the cultivar from round to pear-shaped, oblong or elongated and 

lengths varying from 4 to 5 cm to over 30 cm (Figure 1.3). The bitter and pungent flavour of 

many varieties of eggplant is due to the presence of solasonine, a glycoalkaloid in the 

placental area of the fruit and saponins, localized especially in the seeds (Aubert et al., 1989). 

When the fruits are cut or injured, their flesh takes a dark brown coloration due to the 

presence of phenolic compounds that rapidly oxidize in air (Rubatzky and Yamaguchi, 1997). 

Seeds are small, yellowish brown, smooth and hairless and kidney-shaped. There are 200-250 

seeds per gram. Germination is sometimes irregular following harvest but this seed dormancy 

is easily lifted by a cold treatment. They support desiccation and can retain their germination 

capacity for several decades if stored in dry and cool conditions (15% RH and 6°C). 

The root system is characterised by a strong taproot. In addition, a large number of more 

superficial, horizontally spreading roots develop. The entire root system is relatively shallow 

(50 cm) but powerful enough to explore a large volume of earth. 
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1.3.4 Physiology of flowering, fruit set and fruit ripening 

Growth and flowering are continuous throughout the life of the plant and, in view of the 

competition between vegetative growth and fruiting; eggplant is prone to waves of 

production. Low light intensities, with high temperatures and/or excess nitrogen fertilization, 

are favourable for vegetative development at the expense of flowering and fruit set. 

Sometimes the flowers have sepals overly developed which take the form of leaves or the 

main stem. This is a result of low temperatures below 10-12°C (Daunay, 2002). 

S. melongena is a self-pollinating species, with a tendency to highly variable outcrossing that 

can reach over 70% depending on climatic conditions and the presence of pollinating insects 

such as bumblebees and honeybees, wild or domestic. As tomato, eggplant is a buzz-

pollinated species. Pollinators vibrate the flower and anthers, dislodging pollen (Vaissière, 

2002). In cold and wet weather, fruit set can be significantly improved by the use of insect 

pollinators. It is also possible to use auxin based hormones which cause the formation of 

parthenocarpic fruits. S. melongena cultivars have a natural parthenocarpic behaviour; this 

character was introduced by breeders in modern varieties. The fruit is harvested still 

immature. At this point, its skin is smooth and shiny. The overall colour of the fruit in the 

commercial stage is a result of that of the exocarp (skin) and mesocarp and endocarp (flesh) 

(Table 1.6). 

Anthocyanin is responsible for the wide variety of colours of eggplant fruit and its content 

varies considerably among different cultivars. The white fruit cultivars lack this pigment 

(Sidhu et al., 1982). The anthocyanin coloration of eggplant may be sensitive or insensitive to 

light. If the biosynthesis is light-sensitive, parts of the fruit with low light exposure are 

brighter (reduced anthocyanin formation). If light does not interfere with the anthocyanin 

biosynthesis the fruit has a homogeneous colour regardless of the exposure of the skin 

(Daunay, 2002). Finally physiological maturity also affects the colour. A fruit that has 

exceeded its harvest stage becomes dull yellow (on white or light green cultivar) or more or 

less dark brown ('Black' and purple cultivars). 

The fruit firmness changes also with physiological age: the more a fruit is aged, the higher 

the firmness. There is also a link between fruit diameter and firmness: the thicker the fruit the 

more it is firm (Hennart, 1996).  
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Table 1.6: Fruit colour at harvest stage according to the flesh and the skin colour (Messiaen, 

1998; Daunay, 2002) 

Exocarp Mesocarp Endocarp  

Colourless Light green White  

Purple  Purple  Pink purple 

Streaked with purple Purple and green striped Purple and white striped 

Uniform purple “Black”, very dark purple purple 

 

 

Eggplant fruits have a reasonable nutritional value which can be compared with the 

nutritional value of tomato (Sutarno et al., 1993). The chemical composition (Table 1.7) and 

texture of the eggplant fruit makes them attractive for human consumption worldwide. In 

addition, certain species of Solanum are rich sources of various types of steroidal alkaloids 

and saponins, which are of great interest for pharmaceutical research. Eggplant is known to 

have medicinal characteristics (Lawande and Chavan, 1998); it is widely used in traditional 

medicine against haemorrhoids, ulcers, diabetes, asthma, cholera, bronchitis, dysuria, high 

blood cholesterol levels, ear infections and toothaches (Sutarno et al., 1993). 

 

 

Table 1.7: Chemical composition of eggplant (per 100 g edible portion from different eggplant 

cultivars) (Lawande and Chavan, 1998). 

Constituent Content  Constituent Content 

Oxalic Acid 18 mg  Sodium 3.0 mg 

Calcium 18 mg  Copper 0.17 mg 

Magnesium 16 mg  Potassium 2.0 mg 

Phosphorus 47 mg  Sulphur 44 mg 

Iron 0.9 mg  Chlorine 52 mg 

Moisture content 92.7 %  Vitamin A 124 UI 

Carbohydrates 5.8 g  Thiamine 0.4 mg 

Protein 0.98 g  Riboflavin 0.11 mg 

Fat 0.18 g  Β-Carotene 0.74 µg 

Fibre 3 g  Vitamin C 12 mg 

Energy 24 kcal    

Steroidal saponin 5-10mg    

 



Chapter 1 

19 

Despite the similarity in the chemical composition of eggplant cultivars (Lopes-Andreu et al., 

1992), there are differences that are typical for the different cultivars groups. The physical 

characteristics of fruit, e.g. shape, colour, presence of spines on the calyx or foliar colour, 

influence the chemical composition (Dighe, 1995). Other factors such as cultural techniques, 

the availability of water in soil, irrigation and fertilization can also affect the mineral content 

of eggplant (Russo, 1996). Bajaj et al. (1979) found that the long-fruited cultivars contain, on 

average, a large amount of dry matter, amino protein, water soluble sugars, free reducing 

sugars, anthocyanins, phenols and glycoalkaloids as solanine. The percentages of nitrogen 

were similar for purple, green and white eggplant cultivars (Dighe, 1995). However, the 

white fruit cultivars contain twice as much crude fibre as the purple and green cultivars 

(Dighe, 1995); while the amino acid levels were higher in cultivars with purple fruit and 

lower in white fruit cultivars (Flick et al., 1978).  

The presence of glycoalkaloids, which often occur between members of Solanacea family, 

are responsible for bitterness in eggplant fruit and its high levels (20 mg/100 g fresh weight) 

produces a bitter taste and off-flavour. Potassium, chlorine, magnesium and calcium are 

present at high concentrations but are highest in the green and lowest in the purple cultivars 

(Bajaj et al., 1990). 

1.4 Salt stress: Causes and responses of plants 

1.4.1 Introduction 

From an agricultural point of view, salinity is the accumulation of dissolved salts in the soil 

water to an extent that inhibits plant growth (Gorham, 1992). There are mainly two forms of 

soil salinity: primary and secondary salinity. Primary salinity results from the accumulation 

of salts in the soil or groundwater through natural processes over a long period of time. Two 

natural processes cause primary salinity. The first is the weathering of parent materials 

containing soluble salts. The second is the deposition of oceanic salt carried through wind 

and rain. Secondary salinization results from human activities that change the hydrologic 

balance of the soil between water applied (irrigation or rainfall) and water used by crops and 

transpiration. The most common causes of secondary salinization are (i) land clearing and the 

replacement of perennial vegetation with annual crops, and (ii) irrigation schemes using salt 

rich irrigation water or having insufficient drainage water. 
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Salinity is a major constraint to food production because it limits crop yield and restricts use 

of land previously uncultivated. Estimates vary, but approximately 7% of the world’s total 

land area is affected by salinity (Flowers et al., 1997). Most importantly, the percentage of 

cultivated land affected by salt is even greater. Furthermore, there is also a dangerous trend of 

a 10 % per year increase in the saline area throughout the world (Ponnamieruma, 1984). In 

addition, salinity is a problem for agriculture because also only few crop species and 

genotypes are adapted to saline conditions. Although irrigation covers only about 15% of the 

cultivated land of the world, irrigated land has at least twice the productivity of rain-fed land, 

and may therefore produce one-third of the world’s food. The reduced productivity of 

irrigated lands due to secondary salinity is, therefore, a serious issue. With the projected 

increase in populations of 4.3 billion people (World meters, 2016) coupled with increased 

urbanization in developing countries, the world’s agriculture is faced with an enormous 

challenge to maintain, let alone increase, our present level of food production (Owen, 2001). 

Reducing the spread of salinization and increasing the salt tolerance of crops and improving 

species or genotypes to salt tolerance, particularly the high yielding ones are, therefore, issues 

of global importance. 

In Tunisia, 30% of available water contains 3 g/l or ±51.3 mM of salt (= threshold value for 

salty water, Ennabli (1995)) and this proportion increases from north to south (10% in north 

and 50% in south, Chaabouni 1995). In irrigated agriculture, water with 2 to 3.5g/l (≈ 34.2 to 

59.85 mM) of salt are the most used and those grading from 3.5 to 4.5g/l(≈ 59.85 to 76.95 

mM) come second (Braudeau and Hachicha, 1998). The use of saline water varies according 

to region and the importance of water resources (Table 1.8). 
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Table 1.8: Importance of saline groundwater exploited in Tunisian agriculture (Boutiti, 1995) 

Governorate Salinity (g/l)  Salinity (mM ) Occurence of saline 

groundwater (100%) 

Ariana  4-5   68.4-85.5 75 

Béja  4-6  68.4-102.6 40 

Ben Arous  1-6  17.1-102.6 100 

Bizerte  4  68.4 33 

Gabes  5-12  85.5-205.2 100 

Gafsa  3-10  51.3-171 100 

Jendouba  4-6  68.4-102.6 16 

Kairouan  3-4  51.3-68.4 30 

Kasserine  3-6  51.3-102.6 54 

Kébilli  5-6  85.5-102.6 100 

Kef  4-5  68.4-85.5 57 

Monastir  5  85.5 75 

Nabeul  4-6  68.4-102.6 66 

Sfax  5-15  85.5-256.5 100 

Sidi Bouzid  3.5-10  59.85-171 40 

Siliana  7-16  119.7-273.6 55 

Tozeur  4-6  68.4-102.6 66 

Zaghouane  5-6  85.5-102.6 80 

 

1.4.2 Causes and types of salinity 

1.4.2.1 Quality of irrigation water 

The suitability for the use of water in irrigation should be based on the chemical composition 

of the residual alkalinity and the electrical conductivity. Braudeau and Hachicha, (1998) 

divided the waters into five classes according to their electrical conductivity (Table 1.9). 

The sodium adsorption ratio (SAR) is used as an index of risk of alkaline water. SAR 

describes the proportion of sodium to calcium and magnesium in the solution and is given by 

the following expression: 

SAR=Na / √ (Ca + Mg) / 2 

Where Na, Ca and Mg are the concentrations of these ions in meq/l. 

SAR of irrigation water is thus connected to the exchangeable sodium percentage (ESP) by 

the soil. It is also used to measure the sodicity of soils.  
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Table 1.9: Water classification according to the electrical conductivity (EC) (Braudeau and 

Hachicha, 1998) 

Class EC  Characteristics 

C1  EC<0.25dS/m  Low salinity water. 

C2  0.25<EC<0.75dS/m  Medium salinity water. 

C3  0.75<EC<2.25dS/m  Water with high salinity. 

C4  2.25<EC<5dS/m  Water with very high salinity. 

C5  5<EC<20dS/m  Exceptional saline water 

 

 

Table 1.10: Water classification according to the sodium adsorption ratio (SAR) (Lacharme, 

2001). 

Class  SAR  Characteristics 

S1  SAR < 10  low sodic water used for irrigation of almost all soils with little 

danger. 

S2  10<SAR<18  moderately sodic water having a danger of appreciable alkalization in 

the ground fine texture. 

S3  18<SAR<26  strongly sodic water can cause the appearance of the contents of 

exchangeable Na, dangerous in most soils. 

S4   26<SAR<100  strongly sodic waters and generally unusable for irrigation unless 

salinity is low or average 

 

 

1.4.2.2 Saline soils 

Salinization is the set of mechanisms according to which the soil is enriched with soluble 

salts and acquires a more or less strong, salty character (Braudeau and Hachicha, 1998). In 

irrigated lands, the water applied to the soil is consumed by the crop or evaporates directly 

from the moist soil. The excess salt remains and accumulates in the soil causing salinization. 

Irrigation with salty water hastens this process (Chaabouni, 1995).  

Considering the average requirement of 6,000 m³/ha for irrigated areas of North and Centre 

Tunisia, 11,000 m³/ha for the oasis of Gabes and 20,000 m³/ha for the rest of the southern 

oasis, areas threatened by salinization are estimated to be 68,000 ha for irrigated plots from 

groundwater and 2,000 ha for irrigated plots from deep aquifers (Boutiti, 1995). 

Two main types of salt affected soils have been described namely alkaline and sodic soils. 
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1.4.2.2.1 Sodic soils  

The term sodic soil is used to refer to situations where the soil physical behaviour is affected 

by the presence of exchangable sodium irrespective of the Na amount present. The sodium 

affects the behaviour of the diffuse double layer of the clay particles in relation to swelling, 

clay dispersion and physical degradation (Sumner, 1993). 

Sodisation is measured as the percentage of the cation exchange complex occupied by 

sodium (ESP).  

𝐸𝑆𝑃 =  
𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑁𝑎 (𝑚𝑒𝑞 𝑝𝑒𝑟 100 𝑔 𝑠𝑜𝑖𝑙)𝑥 100

𝐶𝑎𝑡𝑖𝑜𝑛 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝑒𝑞 𝑝𝑒𝑟 100 𝑔 𝑠𝑜𝑖𝑙)
 

When a threshold sodium level is reached, generally around 10% or more (ESP ≥ 10%), clays 

tend to deflocculate (disperse). A soil is considered sodic if the ESP is higher than 15%.  

Sodic soils consist of fine-textured soils, with high contents of smectite clay, with low 

permeability and poor drainage (Rafiq, 1990). In such soils, swelling and dispersion of soil 

aggregates causes the size and number of water-conducting pores (macropores) to decrease, 

resulting in a slow leaching. The salty water held in micropores remains largely immobile 

under steady-state flow conditions, since the micropores do not take much part in the water 

flow (Russo, 1989). 

1.4.2.2.2 Alkaline soils 

These sodic soils contain Na
+
 salts capable of alkaline hydrolysis (Na2 CO3); this is an 

increase in pH (pH > 9) of the soil under the effect of the accumulation of bases (Lacharme, 

2001).  

The presence of CO3
2-

 ions, causes CaCO3 (which is only slightly soluble) to precipitate as 

solid calcium carbonate. Hence, the calcium ions Ca
2+

 are immobilized and the Na
+
 ions left 

in solution can bind to the colloidal complex (Braudeau and Hachicha, 1998).  

2 Na
+
 + CO3

2-
 + Ca

2+
  2 Na

+
 + CaCO3 (solid) 

According to Sumner (1993) alkaline soils are also defined as soils in which the ESP is >15 

and the EC of the saturation extract is <4 dS with pH between 8.5 and 10. 
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1.4.3 Plant responses to salt stress 

1.4.3.1 Introduction 

Plants can be categorized according to their biomass production under salt stress. Four main 

responses can be distinguished (Prasad, 1997). Eu-halophytes (Salicornia) have growth 

stimulation at moderate salt stress while facultative halophytes have enhanced growth at low 

salt levels (Plantago maritima). Glycophytes can be subdivided in plants with low salt 

tolerance (e.g. Hordeum) and very low salt tolerance (Glycine max). Most crop plants are 

glycophytes. 

The general effect of salinity is a reduced growth rate resulting in smaller leaves, shorter 

internodes and sometimes fewer leaves. The initial and primary effects of salinity, especially 

at low to moderate concentrations, are due to their osmotic effects (Munns and Termat, 1986; 

Jacoby, 1999). Roots are also reduced in length and mass but depending on the genotype may 

become thinner or thicker (Munns and Tester, 2008). Plants with their root system in a 

medium with heterogeneous salt concentration, such as occurs in the soil, develop more roots 

and absorb more water in the less saline part of the medium. Over days, reduction in cell 

elongation and also cell division leads to slower root appearance and smaller final size. Cell 

dimensions change, with more reduction in area or/and in depth, so roots are smaller and 

thicker or longer and thinner.  

Maturity rate may be delayed or advanced depending on the species. The degree to which 

growth is reduced by salinity differs greatly with species and to a lesser extent with varieties 

within a species. The severity of the salinity response is also mediated by environmental 

interactions such as relative humidity, temperature, radiation and air pollution (Shannon et 

al., 1994). 

Depending upon the composition of the saline solution, ion toxicities or nutritional 

deficiencies may arise because of a predominance of a specific ion or competition effects 

among cations or anions (Khan, 2001; Parida et al., 2005; Cheng et al., 2015). The osmotic 

effects of salinity contribute to reduced growth rate, changes in leaf colour, and 

developmental characteristics such as root/shoot ratio and maturity rate. Ionic effects are 

manifested more generally in leaf and meristem damage or as symptoms typical for 

nutritional disorders. Thus, high concentration of Na or Cl may accumulate in leaves or 

portions thereof and result in ‘scorching’ or ‘firing’ of leaves; whereas, nutritional deficiency 

symptoms are generally similar to those that also occur in the absence of salinity.  
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Calcium deficiency symptoms are common when Na/Ca ratio is high in the soil water. 

Calcium is known to play a crucial role in maintaining the structural and functional integrity 

of plant membranes in addition to its considerable role in cell wall stabilization, regulation of 

ion transport and selectivity and activation of cell wall enzymes. The low Ca/Na ratio of a 

saline medium plays a significant role in growth inhibition in addition to causing significant 

changes in morphology and anatomy of plants. It is possible to speculate that Ca controls Na 

influx by gating channels in the plasmalemma that are permeable to Na (Kaya et al., 2002). 

All salinity effects are not automatically negative; salinity may have some favourable effects 

on yield, quality, and disease resistance. At low salinity, relative growth rate and relative leaf 

growth rate of pea plants did not decrease significantly (Najafi et al., 2007). In grafted water 

melon low salinity improved fruit quality, total fruit yield, dry matter, glucose, fructose and 

total soluble solids (Colla et al., 2006). In potato, low salinity increased leaf area and dry 

matter compared to control treatment (Van Hoorn et al, 1993). Tomato apparently favours the 

growth of foliage at the expense of fruit formation under saline conditions (Katerji et al., 

1998). Pardossi et al. (1999) working on celery noticed that increasing salinity had little or no 

influence on plant growth, water relations, and the tissue concentration of macronutrients, but 

it enhanced the uptake of Na and Cl, which accumulated markedly in the mature leaves and 

to a much lesser extent in the actively growing leaves. Moreover salinization also improved 

the yield quality by reducing the accumulation of nitrate–nitrogen and the incidence of 

`blackheart' in young leaves  

Generally, salinity can inhibit plant growth by three major ways (Greenway and Munns, 

1980): 

 Water deficit arising from the more negative water potential (elevated osmotic 

pressure) of the soil solution; 

 Specific ion toxicity usually associated with either excessive chloride or sodium 

uptake; and 

 Nutrient ion imbalances when the excess of Na
+
 or Cl

-
 leads to a diminished uptake of 

K
+
, Ca

2+
, NO3

-
 or P, or to impaired internal distribution of one or another of these 

ions. 

1.4.3.2 Effects of salinity on plant phenology and biomass 

One immediate response of plants to elevated salinity is a decrease in the rate of leaf 

expansion. Consequently, the total leaf area of the plant is reduced. The common decrease in 
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leaf expansion is associated with a loss in cell turgor pressure rather than a salt-specific 

effect. This is supported by Na
+
 and Cl

-
 levels which are below toxic concentrations in the 

expanding cells themselves. For example, Hu and Schmidhalter (1998) showed that wheat 

growing in 120 mM NaCl reacted with a 25% reduction in growth rate, Na
+
 in the cells of 

expanding leaves was maximal only 20 mM, and Cl
-
 only 60 mM. However, a review by Ball 

(1988) on mangrove found that the common decrease in leaf expansion is not related to a loss 

in turgor pressure and is most likely a result of a change in hormonal signalling from roots to 

leaves. 

In the salt-sensitive genotypes, in which salt is not effectively excluded from the transpiration 

stream, salt will build up to toxic levels in the leaves, resulting in death of old leaves and new 

leaves becoming injured and succulent (Munns and James, 2003). Consequently, the number 

of green and healthy leaves will ultimately decline. There is then a race against time to 

initiate flowers and produce seeds while there are still an adequate number of green leaves 

left to supply the necessary photosynthesis (Mass and Poss, 1989; Munns, 1993). 

Consequently, seed number and seed size are reduced. 

Although salinity can induce a rapid reduction in root growth (Neumann, 1995), shoot growth 

decreases proportionally more than root growth, causing an increase in the root/shoot ratio. In 

addition, salinity significantly decreased tiller number and their appearance in wheat (Mass 

and Poss, 1989). Salinity significantly reduces the total dry matter yield, and the degree of 

reduction in total dry matter depending on genotypes and salt concentrations (Pessarakli and 

Huber, 1991). Salinity causes stunting of shoots. 

The phenological responses to salt stress are complex and change with the developmental 

stages of the plant (Neumann, 1995). For example, many crops show a reduced tolerance to 

salinity during seed germination, but greater tolerance during later growth stages and vice 

versa in other crops. Results of salt tolerance for some crops have shown that wheat, sorghum 

and cowpea (Mass and Poss, 1989) were most sensitive during the vegetative and early 

reproductive stages, less sensitive during flowering, and least sensitive during the grain filling 

stage. In contrast, sugar beet and sunflower are relatively more sensitive during germination 

and most tolerate at late growth stage (Mass and Poss, 1989), while the tolerance of soybeans 

may increase or decrease during different growth periods depending on the variety. Levy 

(1992) working on potato showed that salinity delays the emergence of the plants, reduces the 

growth of stems and tubers and hastens maturity. Therefore, information on the growth stage 

response to salinity is important in adopting suitable genetic and management strategies for 
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saline soils. For example, if a crop is more sensitive during one stage than another, it may be 

possible to irrigate with saline water during the more tolerant stages of growth and use low-

salinity water only during the sensitive stages of growth.  

In glycophytes, growth rate is generally reduced by salinity even at low concentrations 

(Greenway and Munns, 1980). NaCl reduced the total above ground biomass and delayed 

flowering and maturity in rice (Castillo et al., 2007). Increasing salinity decreased significantly 

plant growth in tomato (Zribi et al., 2009). Pasternack et al. (1984) stated that the sensitivity of 

onions to salt stress during the early stages of growth could be due to a small and shallow 

rooting system. Wannamaker and Pike (1987) showed that the salinity seriously affects 

germination in onion (50% reduction for an EC of 130 dS.m
-1

). François (1994) working on 

garlic concluded that salinity negatively affect all components of the yield (weight and 

diameter of the bulb, the number of plants per unit area). The yield in carrot roots decreased 

by 14% for each unit of increase in the salt stress (Malcolm Smith, 1971).. Graifenberg et al. 

(1996) classed fennel as a sensitive crop to salinity. Indeed fennel bulbs accumulated more 

Na
+
 and Cl

-
 than leaves and roots. In addition the Na

+
 generates the deficiency of K

+
 in the 

bulbs which may contribute to the reduction in growth. Salinity increases Na
+
 and Cl

-
 in 

tissues basal to the apical meristem in lettuce and contributes to the reduction of Ca
2+

, K
+
 and 

PO4
2-

 (Lazof and Läuchli, 1991). This disruption of the ionic composition generates a 

nutritional imbalance in the apical meristem which might signal growth reduction in 

expanding leaves.  

1.4.3.3 Effect of salinity on physiological aspects 

Salinity stress involves changes in various physiological processes. One approach toward 

understanding of physiological responses to salinity is to follow the series of events after 

salinity initiates. Such time studies do not prove causal relations, but they can eliminate some 

possibilities. For example, if leaf expansion slows before photosynthesis does, then the 

decrease in photosynthesis cannot cause the decrease in leaf expansion (Munns, 1993; Yeo, 

1998). 

The initial effects of increasing soil salinity are very similar to those observed when plants 

are exposed to drought. Reductions in leaf water potential will reduce stomatal conductance 

and stomata will close. This simultaneously restricts the entry of CO2 into the leaf, reducing 

photosynthesis (Baker and Rosenqvist, 2004). At higher concentrations, NaCl may also 

directly inhibit photosynthesis due to oxidative stress (Stepien and Johnson, 2009). Salt stress 

contributes to the accumulation of toxic compounds (free reactive oxygene) which induce an 



Chapter 1 

28 

oxidative damage. The inhibition of assimilation in salt-stressed plants is accompanied by a 

decrease in electron transport through PSII, indicated by the decline in ΦPSII and the 

photochemical quenching, and cumulative damage to PSII, indicated by the progressive drop 

in Fv/Fm (François, 1994; Zribi et al., 2009; Stepien and Johnson, 2009). 

The uptake of NaCl competes with that of other nutrient ions, especially K
+
 leading to 

potassium deficiency (Ball et Farquhar, 1984). Although leaves of the halophyte grey 

mangrove have been reported to accumulate high NaCl concentration, changes in 

photosynthesis were associated with change in leaf K
+
 concentration (Ball et al., 1987). More 

than 50 enzymes require K
+
 as a cofactor, and these are particularly susceptible to high Na

+
 

and high Na
+
/K

+
 ratios (Munns et al., 2005). A substantial decrease in the photosynthetic 

capacity of spinach leaves has been attributed to the reduction in K
+
 supply under high-

salinity conditions which lead to a reduction in the quantum yield, due to the malfunctioning 

of photosystem II (Chow et al., 1990).  

A strong positive correlation has been found between the photosynthetic capacity of leaves 

and their nitrogen content, most of which is used for the synthesis of components of the 

photosynthetic apparatus (Evans et Terashima, 1987; Sugiharto et al., 1990). A high chloride 

level reduces the uptake of nitrate. Furthermore, a specific negative ion effect of chloride on 

photosynthesis has been found in tomato plants (Heuer and Feigin, 1993), and Cl
-
 has also 

been found to be closely associated with the inhibition of photosynthesis in bell pepper plants 

(Bethke and Drew, 1992). A direct effect of NaCl on the photosynthesis process has also 

been found in pea plant (Fedina et al., 1994). In chickpea, photosynthetic rates were reduced 

more by chloride than by sulphate salinity (Datta and Charma, 1990). In salt stressed barley 

plant, reduced Mn concentrations have been correlated with a reduced CO2 assimilation rate 

(Cramer and Nowak, 1992). Photosynthetic activity in rice could be significantly increased 

by potassium applications (Bohra and Doerfling, 1993) and the net photosynthetic rate of 

barley was remarkably increased by nitrogen nutrition (Shen et al., 1994).  

Salinity also caused chloroplasts to aggregate which leads to ultrastructural changes of the 

assimilating organs (Glagoleva et al., 1992). These include dilatation of thylakoid membranes 

and enlarged mesophyll cells (Brugnoli and Bjorkman, 1992; Mitsuya et al., 2000). Salt stress 

significantly reduced chlorophyll content in many plants (Hernandez et al., 1995; Zhu et al., 

2002). 
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1.4.3.4 Effect of salinity on biochemical aspects 

Salt stress leads to oxidative stress as observed by the accumulation of toxic compounds such 

as reactive oxygen species (ROS) in plants, which include peroxides, superoxides and 

hydroxyl radicals (Burdon et al., 1996; Shen et al., 1997; Tsugane et al., 1999). These toxic 

molecules can then damage cellular membranes, membrane-bound structures, enzymes and 

DNA especially in mitochondria and chloroplasts, and can therefore severely impair plant 

growth and survival (Allen, 1995). Increasing salinity is associated with a decrease in auxin, 

gibberellin and cytokinin levels in plant tissues, and an increase in abscisic acid (Moorby and 

Besford, 1983). Such changes in hormone levels are thought to be a primary process 

regulating the reduction in growth associated with salinity. There is little evidence that 

salinity directly affects the hormone balance within the plant, and the greatest change in 

hormone levels caused by saline conditions results from water deficit (Blume, 1988). 

Most research on the effect of salinity on the enzyme activity and metabolism of proteins was 

performed in vitro (Noble and Rogers, 1992). Generally, enzymes are inhibited in vitro by 

salt irrespective if they are extracted from glycophytes or halophytes (Greenway and Munns, 

1980). Tolerance to salinity is always correlated with efficient antioxidant systems (Gosset et 

al., 1994; Sreenivasulu et al., 2000; Bowers et al., 2000; Ashraf and Harris, 2004; Demiral 

and Turkan, 2004). 

1.5 Mechanisms of salinity tolerance of plants 

1.5.1 Osmotic adjustment 

Osmotic adjustment by means of solute accumulation in plant cells is a process by which the 

water potential of a cell can be decreased without an associated decrease in cell turgor. It is a 

net increase in solute content per cell that is independent of the volume changes that result 

from loss of water (Taiz and Zeiger, 2002). Osmotic adjustment in plants subjected to salt 

stress can occur by the accumulation of high concentrations of either inorganic ions or 

organic solutes (or both). Their relative contribution varies among species, among cultivars 

and even between different compartments within the same plant (Ashraf, 1994a; Ashraf and 

Bashir, 2003).  

Ion accumulations in the cytosol (mainly K
+
) and in the vacuole (Na

+
, especially in salt 

tolerant cultivars/species) are found to be important for the osmotic adjustment of plant cells 

(Gorham et al., 1985). 
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The compatible organic osmolytes generally found in higher plants are low molecular weight 

sugars, organic acids, polyols, and nitrogen containing compounds such as amino acids, 

amides, imino acids, soluble low molecular weight proteins such as LEA (late 

embryogenesis- abundant) proteins and dehydrins. The accumulation of soluble 

carbohydrates in plants has been widely reported as a response to salinity or drought, often 

accompanied by a significant decrease in net CO2 assimilation rate (Popp and Smirnoff, 

1995; Murakeozy et al., 2003). Amino acids have been reported to accumulate in higher 

plants under salinity stress (Ashraf, 1994b; Mansour, 2000). The important amino acids in 

this respect include alanine, arginine, glycine, serine, leucine and valine, together with the 

imino acid, proline, and the non-protein amino acids, citrulline and ornithine (Rabe, 1990; 

Mansour, 2000). Proline accumulates in larger amounts than other amino acids in salt 

stressed plants (Ashraf, 1994a; Ali et al., 1999; Abraham et al., 2003). Of the different 

quaternary compounds, glycine betaine is known to play an important role in osmotic 

adjustment in salt stressed plants (Mohanty et al., 2002; Yang et al., 2003) although not all 

plants can biosynthesize this compound. While assessing the role of some amino acids and 

glycine-betaine in osmoregulation of spinach plants subjected to salt stress, Martino et al. 

(2003) found that osmoregulation due to accumulation of some free amino acids and glycine 

betaine, was one of the predominant strategies used by spinach plants to tolerate saline stress. 

Osmotic adjustment has undoubtedly gained considerable recognition as a significant and 

effective mechanism of salinity resistance in crop plants. Compatible solutes seem to function 

as a chaperone protecting enzymes and membrane structures, and as a scavenger reducing 

radical oxygen species under salt stress conditions (Horie et al., 2012). 
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Figure 1.1: Transporters and fluxes of K+ and Na+ in the plant cell (Serrano and Rodriguez-

Navarro, 2001)  

Legend:(a) The P-type H
+
-pumping ATPase shown in red at the upper part of the scheme energizes the plasma 

membrane, developing a membrane potential which may vary between –100 and –200 mV and a pH gradient of 

2–3 units. Under the effect of this electrical potential, and occasionally the effect of the pH gradient, several 

transporters (shown in green — HKT is a K
+ 

Na
+
 symporter or Na

+
 uniporter; HAK is probably a K

+
H

+
 

symporter; SOS1 is a Na
+
/H

+
 antiporter; and LCT1 transports divalent cations or Na

+
) and channels (shown in 

pink — IRK, inward rectifying K
+
 channels; ORK, outward rectifying K

+
 channels; VIC, voltage insensitive 

channels; NSC, non-selective  channels) mediate K
+
 and Na

+
 movements across the plasma membrane. A V-

type H
+
- pumping ATPase and a H

+
-pumping pyrophosphatase (shown in blue) energize the tonoplast 

developing a membrane potential, which may vary between –80 and –20 mV, and a pH gradient of 1–2 pH 

units. Under the effect of this electrical potential and the pH gradient, several transporters (shown in green — 

NHX is a Na
+
/H

+
 antiporter; ITR is a myoinositol- Na

+
 symporter; a HAK type K

+
- H

+
 symporter has not been 

identified, but can be predicted in certain circumstances from the K
+
 distribution across the tonoplast) and 

channels (shown in pink — SV, slow-activated vacuolar channels; VK, vacuolar K
+
 channels; FV, fast-activated 

vacuolar channel) mediate K
+
 and Na

+
 fluxes across the tonoplast. 

 (b) In non-salt-stressed cells, K
+
 is taken up from the external medium and accumulated in the cytoplasm and 

vacuole; a part of this K
+
 may be returned to the external medium either as a normal balancing efflux or during 

osmotic adjustments; these fluxes are mediated by channels, but the existence of K
+
/H

+
 antiporters is also 

probable. The presence of 100 mM Na
+
 in the external medium inhibits the K

+ 
influx mediated by HKT, HAK 

and IRK, and triggers a Na
+ 

influx mediated by HKT, VIC/NSC, and LCT1; Na
+
 may return to the external 

medium crossing the tonoplast, by mediation of ITR, and the plasma membrane, by mediation of SOS1. 
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1.5.2 Ion exclusion or inclusion 

Plants respond to salinity stress either by accumulating inorganic ions as osmotica for 

maintenance of water balance, the halophytic response, or by partial exclusion of ions and the 

synthesis of organic osmotica for osmotic adjustment, the glycophytic response.  

Effective strategies for glycophytes to cope with salinity stress are to keep cytosolic Na
+
 

levels low at the cellular level and to keep shoot Na
+
 concentrations low at the whole plant 

level. Glycophytes thus accumulate a certain level of Na
+
 in their roots and exclude it from 

their shoots, especially from the meristems and from leaves that are actively expanding and 

photosynthesizing. Such plants are referred to as Na
+
 excluders (Wyn Jones, 1981; Ashraf, 

1994a). Regulation of Na
+
 uptake by cells and long distance Na

+
 transport seems to be a 

crucial adaptation of plants to salt stress (Munns et al., 2000).  

In contrast, certain species efficiently accumulate high amounts of Na
+
 in the shoots and are 

thus known as Na
+
 includers. For example, most dicotyledonous halophytes are Na

+
 

includers, and some salt tolerant glycophytes such as barley fall into this category (Collander, 

1941).  

The underlying mechanisms of Na
+
 entries into plant roots via both symplastic and apoplastic 

pathways are largely unknown. Although there is strong evidence that Na
+ 

moves passively 

through a general cation channel from the saline growth medium into the cytoplasm of plant 

cells (Blumwald, 2000; Mansour et al., 2003), active transport of Na
+
 through Na

+
/H

+
 

antiports is also known (Niu et al., 1993; Shi et al., 2003). During intrusive Na
+
 entries into 

the root, plants can exert “selectivity” at three independent biological membranes: the plasma 

membrane of epidermal/cortical cells, the tonoplast of cells in roots and shoots, and the 

plasma membrane of the xylem parenchyma cell (Horie et al., 2012) (Figure 1.1). Salt 

tolerance in most plants is associated with low uptake and accumulation of Na
+
, which is 

mediated through the control of influx and/or by active efflux from the cytoplasm to the 

vacuoles and also back to the growth medium (Grattan and Grieve, 1999; Blumwald, 2000) 

(Figure 1.1). This control mechanism is dependent on the regulation of proton pumps and 

antiporters operating at both plasma membrane and tonoplast. For example, overexpression 

of the vacuolar Na
+
/H

+
 antiporter that sequesters Na

+
 in vacuoles (NHX1) improved the 

salinity tolerance in Arabidopsis, tomato, and brassicas (Aharon et al., 2003) (Figure 1.1). 

Tavakkoli et al. (2011) demonstrated that Na
+
 and Cl

–
 exclusion among barley genotypes are 
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independent mechanisms and different genotypes expressed different combinations of the two 

mechanisms. 

The variation in mechanism of ion uptake could be due to some multiple adaptations to toxic 

ions operating concurrently within a specific plant. These mechanisms can occur in all cells 

within the plant, or can occur in specific cell types, showing adaptations at cellular or whole 

plant level (Tester and Davenport, 2003; Carden et al., 2003). It is evident from these reports 

that glycophytes can use both ion exclusion or inclusion mechanisms in response to saline 

substrates. These two mechanisms depend on the pattern of ion distribution between leaves 

and on ion compartmentation within the cell (Cheeseman, 1988; Ashraf, 1994a; Munns, 

2002). As a further complication, time-courses of ion accumulation can be different in an 

organ-specific way (Ashraf and Bashir, 2003).  

1.5.3 K
+
/Na

+
 and Ca

2+
/Na

+
 ratios discrimination 

Under saline conditions, due to excessive amounts of exchangeable Na
+
, high Na

+
/K

+
 and 

Na
+
/Ca

2+
 ratios occur in the soil. Plants subjected to such environments, take up high 

amounts of Na
+
, whereas the uptake of K

+
 and Ca

2+
 is considerably reduced. Reasonable 

amounts of both K
+
 and Ca

2+
 are required to maintain the integrity and functioning of cell 

membranes (Marschner, 1995; Davenport et al., 1997; Wenxue et al., 2003).  

It is now generally accepted that K
+
/Na

+
 homeostasis is a key feature of plant salinity 

tolerance (Ashraf, 2004). The underlying mechanism for maintenance of adequate K
+
 in plant 

tissue under salt stress seems to be dependent upon selective K
+
 uptake and selective cellular 

K
+
 and Na

+
 compartmentation and distribution in the shoots (Poljakoff-Mayber and Lerner, 

1999; Munns et al., 2000; Carden et al., 2003). Plants use low- and high-affinity transporters 

for uptake of K
+
 from the growth medium (Blumwald, 2000). There are three classes of low 

affinity K
+
 channels [Inward rectifying channels (KIRC), K

+
 outward rectifying channels 

(KORCs), and voltage-independent cation channels (VIC)], which play important roles in 

maintaining cellular K
+
/Na

+
 ratios (Amtmann and Sanders, 1998) (Figure 1. 1). In addition, 

two families of high-affinity transporters have also been reported to play a role in K
+
 

transport (Quintero and Blatt, 1997), and they also determine the K
+
/Na

+
 ratio in plant cells. 

For example, the KUP-HAK, high-affinity K
+
 transporters have been found in Arabidopsis 

(Quintero and Blatt, 1997; Kim et al., 1998; Fu and Luan, 1998) and barley (Santa- Maria et 

al., 1997) (Figure 1. 1). These transporters couple K
+ 

transport to the H
+
 gradient and are very 

selective for K
+
. However, Na

+ 
blocks them in even small concentrations (Kim et al., 1998; 
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Fu and Luan, 1998). High K
+
/Na

+
 selectivity in plants under saline conditions has been 

suggested as an important selection criterion for salt tolerance (Gorham et al., 1997; Ashraf, 

2002; Wenxue et al., 2003). Cheng et al. (2015) suggest that higher-affinity K
+
 uptake might 

play a key role in higher salt tolerance and it might be a reliable indicator for breeding new 

species of salt-tolerant wheat.    

Kafkafi (1984) concluded that roots of the salt tolerant Beta vulgaris had a greater affinity for 

K
+
 relative to Na

+
 than did the salt sensitive Phaseolus vulgaris. Recently, however, Munns 

and James (2003) have found that although Na
+
 exclusion had a positive relationship with 

salinity tolerance of different tetraploid wheats, K
+
/Na

+
 ratio showed little relationship.  

Calcium plays an important role in protecting the structure and the functioning of plant 

membranes besides the control of regulation of ion transport and enzymes activities. (Rengel, 

1992; Marschner, 1995). Wu et al. (2012) suggest that Ca
2+

 could regulate K
+
/Na

+ 

homeostasis in rice at low salinity by enhancing the selectivity for K
+
 over Na

+
, reducing the 

Na
+
 influx and efflux, and lowering the futile cycling of Na

+
. 

The maintenance of calcium acquisition and transport under salt stress is an important 

determinant of salinity tolerance (Soussi et al., 2001; Unno et al., 2002). In most cases salt 

tolerance of a crop cultivar can be increased by an increase in the Ca
2+

 concentration in the 

saline growth medium. For example, supplemental calcium alleviated the adverse effect of 

salt stress on the germination and vegetative growth of bean (Awada et al., 1995) and pigeon 

pea (Subbarao et al., 1990). In contrast, no significant effect on the uptake of Na
+
 by rice of 

varying Na
+
/Ca

2+
 ratios was found by Yeo and Flowers (1985). The relationship between salt 

tolerance and Ca
2+

 retention among different plant species was investigated by Unno et al. 

(2002) using salt tolerant maize (Zea mays) and squash (Cucurbita maxima), and salt 

sensitive reed canary grass (Phalaris arundinacea) and cucumber (Cucumis sativus). Ca
2+

 

was released extensively from root sections and intact roots of the salt sensitive plants when 

exposed to saline medium. The distribution of Ca
2+

 in shoot decreased greatly in the salt 

sensitive plants under salt stress. These results suggest that the ability of plants to retain Ca
2+

 

is associated with their salt tolerance. It can be concluded that K
+
/Na

+
 and Ca

2+
/Na

+
 ratio and 

selectivity are effective in discriminating between salt tolerant and salt sensitive plants of 

many crops 
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Chapter 2 In vitro regeneration of eggplant 

 

2.1 Introduction  

In vitro culture, with its potential to induce somaclonal variation (chromosomal 

rearrangements) proved to be a promising method to select for salt tolerant genotypes in a 

number of crops (Karan and Subudhi, 2012). Also molecular marker techniques were used 

successfully to transfer alleles of interest from wild relatives into commercial cultivars 

(Tanksley and McCouch, 1997). Marker-assisted selection (MAS) and QTL mapping to 

select genotypes with desirable salt tolerant traits offers also a great promise for plant 

breeding for traits as abiotic stress tolerance (Karan and Subudhi , 2012).  

The in vitro culture approach reduces the time required for the release of new variety 

compared to mutation breeding and has been useful in breeding programs (Zhu et al., 2000). 

According to Rai et al. (2011) in vitro selection is based on the induction of genetic variation 

among cells, tissues and/or organs in cultured and regenerated plants. The selection of 

somaclonal variation appearing in the regenerated plants may be genetically stable and useful 

in crop improvement. A general approach to select for salt-tolerant crops is given in Figure 

2.1. After selection of suitable explants callus production is initiated. These undifferentiated 

cells will then be cultivated on media with increasing osmolarity. Calli which survive are 

then used to regenerate plants with a higher salt tolerance. Queiro et al. (2007) established 

from potato callus cultures (by direct selection or gradual selection) cell lines able to grow on 

media containing (50, 100, 150 or 200 mM NaCl). The same authors reported that the NaCl- 

tolerant calli showed a decrease in relative growth rate and water content, with higher 

reduction in the 150 mM tolerant callus. Hassan and Willkins (1988) obtained a salt tolerant 

callus line of Lycopersicon peruvianum by exposing the cells in suspension cultures and then 

regenerate callus on increasing concentrations of salt (50-350 mM). Moreover, this selected 

line grew better in media containing salt than in those without it. It retained its salt tolerance 

after subculture for 3 passages (3 months) on salt-free medium.  
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Figure 2.1: An in vitro procedure for regeneration of salinity tolerant crop plants (Karan and 

Subudhi , 2012) 

 

A bottleneck in this approach is the necessity for a high regeneration of plants from calli. In 

eggplant in vitro regeneration of different explant types has been reported both via 

embryogenesis (Rao and Singh, 1991; Saito and Nishimura, 1994; Sharma and Rajam, 1995) 

and organogenesis (Allichio et al., 1982; Gleddie et al., 1983; Mukherjee et al., 1991; Sharma 

and Rajam, 1995). Magioli et al. (1998) found that eggplant cotyledons and leaves were the 

most responsive explant types. The regeneration capacity of plant tissue is however, highly 

dependent on the cultivar. For example, Sharma and Rajam (1995) studying four Indian 

eggplant cultivars showed that the variety Pusa Kranti produced more shoots from cotyledon 

fragments than from any other explant type. In other Solanaceae, such as potato, cultivation 

of leaf discs of 14 potato varieties showed a wide variation in newly formed shoots, one 

genotype produced up to 45 units per explant (Wheeler et al., 1985).  

The balance between two plant hormones, auxin and cytokinin, determines the state of 

differentiation and dedifferentiation. In potato, NAA is the most often used auxin for efficient 

formation of callus (Al Wareh et al., 1989). It is a very strong auxin which exerts its action 

over a wide concentration ranging from 0.03 to 5 mg/l (Pijnacker and Ferwerda, 1990). Also 

thidiazuron (TDZ) has been shown to induce callus formation in a variety of species and 

sometimes higher proliferation rates were obtained compared to other growth regulators 

(Murthy and Saxena, 1998). 

Organ regeneration in plants can be broadly categorized as either direct or indirect. The 

presence of auxins and cytokinins in the medium is required for inducing shoots. TDZ is also 

known for its potential to induce adventitious buds (Murthy and Saxena, 1998). Indeed, TDZ 

application results in a high endogenous cytokinin activity in in vitro conditions (Wang et 
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al.,1986; Fiola et al.,1990; Saxena et al.,1992) as it inhibits degradation of cytokinins through 

inhibition of cytokinin-oxidase (catabolic pathway) (Hare and Van Staden, 1994). For 

example, low concentrations of TDZ induced shoots from both cotyledons and leaf explants 

of eggplant (Magioli et al., 1998). Concentration plays a significant role in the regeneration 

of shoots and also the interaction with other cytokinins such as BA influenced shoot 

induction (Magioli et al., 1998).  

Plants growing in vitro are also affected by environmental factors such as light and 

temperature (Kozai and Smith, 1995). Light (the quality of the spectrum, the photon flux and 

photoperiod) is a very important factor and affects growth and development of plants in vitro. 

Light quality plays also an important role in morphogenesis and photosynthesis (Hoenecke et 

al., 1992; Saebo et al., 1995). Callus induction and shoot regeneration are closely related to 

light quality. Piao (2002) showed that fluorescent light was better than blue and red for the in 

vitro multiplication of potato. Tennessen et al. (1994) have suggested that red light inhibits 

the growth of shoots. Werbrouck et al. (2012) showed that both the number of shoots and 

callus growth was enhanced by blue light in Ficus benjamina. However, an interaction with 

light intensity is also described as Prunus has the highest proliferation rate at low intensity of 

red light but under higher intensity, red light does not differ from white or blue light in its 

proliferation rate (Baraldi et al., 1988). Inconsistent responses may thus be the result of 

genotypic variation and/or variation in the experimental conditions. 

Screening in vitro callus under salt stress could allow selecting eggplant callus lines or 

tolerant seedlings to salinity. Also, tissue culture systems have been used as a useful tool to 

elucidate the cellular mechanisms involved in salt tolerance by using selected NaCl-tolerant 

cell lines (Davenport et al., 2003). We hypothesised that a reliable in vitro regeneration 

system could be established exploiting the responsiveness of different explant types in the 

eggplant cultivar Bonica.Therefore we investigated effects of different TDZ concentration as 

well as the effect of light quality on both callogenesis and shoot proliferation.  

2.2 Materials and methods 

2.2.1 Plant Material 

Seeds of eggplant (‘Bonica’) were obtained from Vilmorin, France and were treated with 

thiram (diamide tetramethyl thio-peroxydicarbonique). Seeds were surface-sterilized with 

70% alcohol and rinsed with distilled water. Then, seeds were soaked in a solution of 0.02% 
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Dreft (5-15% non-ionic surfactants, 15-30% anionic surfactants) and 5% HazTab (1,3,5 

Dichloro-Triazine-Trionedihydrate-Dichlorosodium) for 20 min followed by a second 

soaking in a solution of mercuric chloride (0.5%) for 10 min. After three rinses with sterile 

distilled water the seeds were germinated on agar-solidified (0.8 %) MS medium with 3% 

(w/v) sucrose in 0.7 L glass vessels. The pH was adjusted to 5.8 with 1 N NaOH before and 

then adding solidified agar (Sigma). 

Plant material was maintained in a growth chamber at 28±2°C and a 16-h photoperiod regime 

provided by cool-white fluorescent lamps with a photon flux density of 36 µmol m
–2 

s
–1

. 

2.2.2 Effect of TDZ on callogenesis and organogenesis 

Hypocotyl, epicotyl, (1 mm long) as well as leaf and cotyledon segments (50 mm
2
) were 

excised from 25- to 30-day-old seedlings. Explants were cultured for 30 days on MS medium 

with 3 % sucrose and 0.8 % agar supplemented with 0, 0.1, 0.2 or 0.4 µM TDZ. Four 

explants per glass vessel were used, this in 4 replications. The efficiency of the regeneration 

was measured after 30 days for callogenesis (percentage of regenerated callus, the percentage 

of callus with buds, the number of shoots/callus and the fresh weight of callus) and for 

organogenesis (percentage of explants that developed buds, number of shoots per explant and 

the fresh weight of formed shoots). 

2.2.3 Effect of light quality on callogenesis and organogenesis 

Best calli (in terms of fresh weight) formed in the presence of 0.2 µM of TDZ were 

fragmented and transferred onto MS medium supplemented with 0.4 μM TDZ and then 

transferred under two LED light radiations: blue light and red light (Green Power LED string, 

Philips, Eindhoven) and cool white fluorescent light (Figure 2.2). Four calli per glass vessel 

were used, this in 4 replications and calli were cultured for 25 days.  

2.2.4 Statistical Analysis 

Data were tested by analysis of variance using SPSS Version 19 (SPSS Inc., Chicago) 

followed by a Student-Newman-Keuls test (P=0.05). Data are presented as an average of four 

replications ± standard error (SE). 
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Figure 2.2: Spectrum of the LED strings (Red, blue, fluorescent cool white light) 

 

2.3 Results 

2.3.1 Effect of TDZ on callogenesis 

Effects of increasing concentrations TDZ on callogenesis are given in Table 2.1. A high 

variation within treatments was found (Photo 2.1). 

For the epicotyl and hypocotyl explants, callogenesis is present both in the absence and 

presence of TDZ. However, a concentration of 0.4 µM TDZ yielded 100% callus formation. 

In the absence of TDZ there is no callogenesis for the cotyledon and leaf explants. However 

in the presence of TDZ callogenesis takes place. A concentration of 0.4 µM TDZ is found to 

be much better in terms of percentage of callogenesis (Table 2.1). 

We also distinguished between the type of callogenesis (non-differentiated and differentiated 

bud forming calli). For the epicotyl explants, the concentration 0.4 µM TDZ yields 100% 

differentiated callus with visible buds, although all treatments form a statistical unique class. 

For the hypocotyl explants, 0.1 µM of TDZ is slightly better (40%) than the other TDZ 

concentrations. For the cotyledon explants 0.4 µM of TDZ is found to be slightly better 

compared to the other TDZ concentration in term of callus with buds (30%). And finally for 
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the leaf explant, the highest percentage of calli with buds was achieved in the presence of 0.4 

µM TDZ (Table 2.1). 

Shoots were already initiated on certain calli. For the different types of explants the optimal 

shoot induction rates were achieved in the presence of 0.4 µM of TDZ though for the 

hypocotyl explants no TDZ also yielded a higher number of shoots (Table 2.1). 

The effectiveness of callus induction was also expressed in the callus fresh weight. For the 

epicotyl explant, the callogenesis weight is significantly higher if 0.2 µM of TDZ is used 

(Table 2.1). For the hypocotyl explant, the treatments 0.1µM, 0.2 µM and 0.4 M TDZ, form a 

higher callus weights compared to the control. The callus weights formed on the cotyledon 

and foliar explants were not influenced by the TDZ concentration.  

 

Table 2.1: TDZ-induced changes in callus percentage, percentage of callus with buds, the 

number of shoots per callus, callogenesis weight from different types of explants. 

 TDZ Epicotyl Hypocotyl Cotyledon Leaf 

Callogenesis 

(%) 

0µM 55.0±18.9
a
 55.0±26.3

ab
 0±0

c
 0±0

c
 

0 .1µM 80.0±13.5
a
 46.7±11.2

ab
 70.0±17.3

ab
 84.2±6.6

b
 

0.2µM 52.5±11.1
a
 30.0±12.2

b
 56.2±12.1b 48.7±16.4

a
 

0.4µM 100.0±0
a
 100.0±0

a
 100.0±0

a
 93.7±4.7

a
 

Callus with 

buds (%) 

0µM 50.0±17.3
a
 20.0±10.8

a
 0±0

a
 0±0

b
 

0.1µM 52.0±11.1
a
 40.0±20.4

a
 25.0±11.9

a
 5.0±2.04

b
 

0.2µM 66.6±19.1
a
 5.0±5.0

a
 25.0±8.7

a
 20.0±9.1

ab
 

0.4µM 100.0± 0
a
 30.0±4.6

a
 30.0±7.4

a
 30.0±7.5

a
 

Number of 

shoots per 

callus 

0µM 4.5±1.70
a
 4.0±1.47

a
 - - 

0 .1µM 3.5±0.64
a
 0.5±0.28

b
 3.7±1.49

a
 1.0±0.70

b
 

0.2µM 2.7±0.47
a
 0.7±0.47

b
 2.2±0.75

a
 0.7±0.47

b
 

0.4µM 6.5±1.19
a
 3.5±0.28

ab
 5.5±1.04

a
 5.5±1.32

a
 

Callogenesis 

weight (g) 

0µM 2.5±0.55
b
 1.7±1.51

b
 - - 

0.1µM 3.3±0.81
b
 5.7±1.20

a
 4.3±1.88

a
 6.6±0.75

a
 

0.2µM 11.8±3.51
a
 5.5±0.98

a
 5.6±0.88

a
 3.9±0.88

a
 

0.4µM 8.4± 1.27
ab

 6.1±0.91
a
 6.4±0.38

a
 5.6±1.04

a
 

Means followed by the same lowercase within each column are not significantly different at P= 0.05 according 

to the Student-Newman-Keuls test (n=4) 
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 A   B  

 C   D  

Photo 2.1: Variation in calli growth obtained of the cotyledon explants (A), epicotyl explants (B), 

hypocotyl explants (D) and leaf explants (D) (TDZ 0.4 µM)) 

 

2.3.2 Effect of TDZ on direct organogenesis 

Direct organogenesis ranging between 90-100% was found for 0.4µM of TDZ in hypocotyl, 

cotyledon and leaf explants while for the epicotyl explant no organogenesis was present 

(Table 2.2). TDZ was necessary for direct organogenesis in the cotyledon and leaf explants. 

A dose effect was found, 0.4 µM was significantly better than lower concentrations to induce 

organogenesis (Table 2.2). 

Despite a high percentage of bud initiation was observed the development to shoots was 

relative low. Both explant type and TDZ concentration influenced this shoot formation. If no 

TDZ was present in the medium epicotyl and hypocotyl explants were able to form shoots 

(Table 2.2). The hypocotyl explant was found to be the most responsive yielding 2.5 

shoots/explant with an average weight of 2.8 g (Photo 2.2). The addition of TDZ had a 

negative effect on shoot formation in both epicotyl and hypocotyl explants. A concentration 
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of 0.4 µM TDZ is marked by the absence of shoots even when in all explants bud formation 

was present (Table 2.2). 

 

Table 2.2: TDZ-induced changes in percentage of explants with buds, number of shoots per 

explant and organogenesis weight (g) in different type of explants in ‘Bonica’ genotype. 

 TDZ Epicotyl Hypocotyl Cotyledon Leaf 

Percentage of 

explant with 

buds 

0µM 40.0±14.1
a
 36.2±18.4

b
 0±0

c
 0±0

c
 

0 .1µM 27.5±10.1
a
 26.2±6.9

b
 65.0±15.0

b
 45.0±15.1

b
 

0.2µM 42.5±20.9
a
 20.0±14.1

b
 56.2±14.6

b
 36.2±14.3

b
 

0.4µM 0±0
a
 90.0±5.8

a
 100±0

a
 90.00±6.1

a
 

Number of 

shoots per 

explant 

0µM 0.75±0.5
a
 2.5±0.3

a
 - - 

0.1µM 0±0
a 

1.5±0.9
ab

 0.25±0.2
a
 0±0

a
 

0.2µM 0.75±0.5
a
 0±0

b
 0±0

a
 0±0

a
 

0.4µM 0±0
a
 0±0

b
 0±0

a
 0±0

a
 

Organogenesis 

weight (g) 

0µM 0.56±0.20
a
 2.8±0.42

a
 - - 

0.1µM - 0.5±0.06
b
 - - 

0.2µM 0.60±0.19
a
 - - - 

0.4µM - - - - 
Means followed by the same lowercase within each column are not significantly different at P = 0.05 according 

to the Student-Newman-Keuls test (n=4) 

 

A  B  

Photo 2.2: Plantlets obtained without addition of TDZ of the hypocotyl explant (A) and epicotyl 

explant (B) 
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2.3.3 Effect of light quality on callogenesis: 

Light quality effects were observed on callus formation and on indirect organogenesis. Light 

quality significantly affected the callus growth and this was tissue dependant. For the epicotyl 

and cotyledon explants fluorescent lamps and red light promoted callus proliferation 

compared to blue light (Table 2.3) (Photo 2.3). For hypocotyl explants, however, blue light 

resulted in higher callus weight than red light (Table 2.3) (Photo 2.3). Finally callus formed 

under different types of light radiation constituted a homogeneous class for the foliar explants 

(Photo 2.3). However, the red and blue light generated almost twice the callus weight than 

callus formed under fluorescent lamps (Table 2.3). 

For epicotyl, hypocotyl and cotyledon explants the maximum number of shoots per explant 

(respectively 3, 2.5 and 2) was obtained under fluorescent light. Yet, in leaf explants the 

highest number of shoots was obtained under the red radiation (2.5/calli) (Table 2.3). 

 

Table 2.3: Light quality induced changes in callogenesis weight and number of shoots for 

different types of explants. 

 
Light quality 

Type of explant 

Epicotyl Hypocotyl Cotyledon Leaf 

Callus 

weight (g) 

Fluorescent  8.91±1.58
a
 10.1±0.8

ab
 21.2±2.53

a
 5.9±1.11

a
 

Blue 4.06±0.80
b
 14.6±1.6

a
 10.3±1.99

b
 10.3±1.56

a
 

Red 8.18±0.52
a
 5.8±1.7

b
 22.1±2.63

a
 9.7±1.03

a
 

Number of 

shoots per 

explant 

Fluorescent  2.50±0.64
a
 3.0±0.91

a
 2.0±0.41

a
 1.2±0.25

a
 

Blue 1.00±0.40
a
 1.5±0.29

a
 1.0±0.41

a
 1.2±0.47

a
 

Red 1.50±0.64
a
 0.75±0.25

a
 1.5±0.86

a
 2.5±0.95

a
 

Means followed by the same lowercase within each column are not significantly different at P= 0.05 according 

to the Student-Newman-Keuls test (n=4) 
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Photo 2.3: Calli and shoot from different type of explants under different light qualities  
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2.4 Discussions 

2.4.1 Effect of TDZ  

Various sources for eggplant regeneration have been reported via somatic embryogenesis 

using leaf explants (Gleddie et al., 1983; Mukherjee et al., 1991) or organogenesis using 

hypocotyl explant (Kamat and Rao, 1978; Matsuoka and Hinata, 1979) and leaf explants 

(Gleddie et al., 1983; Mukherjee et al., 1991). Comparative studies on the responsiveness of 

different types of explants were undertaken by Allichio et al. (1982) and Sharma and Rajam 

(1995) and from these studies it was obvious that the cultivar and explant used strongly 

influenced the responses. 

In this study we wanted to obtain a good regeneration protocol from calli in the cultivar 

‘Bonica’, in order to regenerate plantlets from more salt tolerant calli lines. Given the 

parameters studied for callogenesis (callogenesis percentage, number of shoots per callus and 

weight callogenesis) and for organogenesis (percentage of explants with buds) leaf and 

cotyledon explants were significantly more responsive in the presence of TDZ than the 

epicotyl and hypocotyl explants (P <0.05). Similar results were reported by Magioli et al. 

(1998) studying the frequency of the induction of organogenic calli and the number of buds 

formed per explant applying low TDZ concentrations. This is in contrast with other species 

were much higher concentrations were needed (2-200μM) (Hüttmann and Preece, 1993). In 

our work the concentration of 0.4μM TDZ was the best for the in vitro regeneration of the 

eggplant variety ‘Bonica’. Also Magioli et al. (1998) found that low concentrations of TDZ 

were effective for the in vitro regeneration of eggplant though he obtained an optimal 

response at 0.2 µM TDZ while higher concentrations generated a reduction of formed buds 

and the appearance of necrosis. Similar inhibitions of bud formation with high concentrations 

have been shown in Pseudotsuga menziesii (Goldfarb et al., 1991) and in pear (Leblay et al., 

1991). 

However, successful rooting was not achieved after shoots were transferred to root inducing 

media (data not shown). 

2.4.2 Effect of light quality on the weight of callogenesis and the number of shoots 

The impact of light quality on callus induction and regeneration of shoots were investigated 

by assessing the weight of callogenesis and the number of formed shoots. The fluorescent 

light was better than red and blue for the in vitro generation of shoots this for most explant 
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types. Similar results were obtained by Piao et al. (2002) working on the potato and Heo et al. 

(2002) working on herbaceous plants. This could be due to the multispectral composition of 

the fluorescent radiation compared to the monospectral LED light. Christiaens et al (2016) 

reviewed effect of LED light on the rooting capacity of ornamentals. This review also 

highlighte the species dependant responses, for certain species fluorescent lamps were the 

most optimal light source, while other species reacted better to monochromatic lights. 

Likewise as for the TDZ experiment no successful rooting was obtained with these plantlets. 

2.5 Conclusion 

We tried to establish an in vitro protocol to regenerate plantlets from induced calli in order to 

set-up screening tests for salt tolerant calli lines. The concentration of 0.4 μM TDZ was the 

optimal tested concentration for the in vitro regeneration of the eggplant variety ‘Bonica’. 

Leaf and cotyledon explants were significantly more responsive in the presence of TDZ this 

in terms of callogenesis, organogenesis and morphogenesis efficiency than the epicotyl and 

hypocotyl explants. The fluorescent light was better than red and blue monochromatic light 

for the in vitro propagation of the eggplant. 

However, as we could not induce rooting, the in vitro approach to induce salt tolerant lines 

seemed troublesome. 
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Chapter 3 Effect of salt stress on germination and 

seedling growth in eggplant (Solanum melongena L.) 

 

 

Abstract 

The effects of salinity under in vitro controlled conditions on germination, seedling 

growth and two biochemical parameters in four eggplant (Solanum melongena L.) 

cultivars were studied. Seeds and subsequent seedling growth were exposed to 

increasing salt stress (0, 20, 40, 80 and 160 mM NaCl). The responses of the 

germination, seedling growth and biochemical parameters to salt stress indicated two 

groups with contrasting sensitivity responses. ‘Adriatica’ and ‘Black Beauty’ were more 

sensitive to the applied salt stresses than ‘Bonica’ and ‘Galine’. Germination was 

strongly reduced at 160 mM for all cultivars. The decline in seed germination 

parameters, fresh weigh, dry weigh, height and leaf number were more pronounced 

with the increase of NaCl concentration in the sensitive cultivars ‘Adriatica’ and ‘Black 

Beauty’ than in the tolerant cultivars ‘Bonica’ and ‘Galine’. The water content 

decreased markedly in sensitive varieties and remained quite stable in tolerant 

cultivars. Higher levels of MDA and proline were detected in the leaves of the sensitive 

cultivars ‘Adriatica’ and ‘Black Beauty’. 

Our results suggest that germination; seedling morphology and biochemical parameters 

can be used as efficient indicators to detect salt stress in eggplant. 
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3.1 Introduction  

High salt concentrations in soils largely account for the decrease in yield of a wide variety of 

crops worldwide (Munns and Tester, 2008). This problem is more severe in arid and semi-

arid regions, where salinity is one of the major limiting factors for productivity. 

Seed germination is one of the most important phases in the life cycle of plants and is highly 

responsive to the prevailing environment including salt stress (Saritha et al., 2007). 

Furthermore, the sensitivity of plants to salinity may depend on their developmental stage 

(Adam, 1990). Therefore, the study of salt tolerance during germination, early and late 

growth of plants is fundamental for detecting saline limits at each developmental stage 

(Zapata et al., 2004). It has been reported that salinity reduced as well as delayed germination 

of crop plants such as melon (Botia et al., 1998), tomato (Cuartero and Fernandez-Munoz, 

1999) and eggplant (Akinci et al., 2004). Lower levels of salinity delayed germination, 

whereas higher levels decreased the final percentage of seed germination (Goulam and Fares, 

2001; Ben Dkhil and Denden, 2010). Naz et al. (2014) working on Pisum sativum reported 

reduced germination and seedling growth (shoot length, root length, fresh and dry biomass) 

under saline conditions. Although it does not fully reproduce the field behaviour of plants, the 

percentage of germination under controlled saline conditions gives always a trend about the 

differential behaviour of the studied cultivars to the applied stress (Ben Naceur et al., 2001). 

The inhibition of seed germination induced by salt could be generated by osmotic stress or by 

specific ion toxicity (Huang and Redman, 1995). Haddas (1977) showed that germination rate 

and final seed germination decreased with the decrease of water movement into the seeds 

during the imbibition phase. It is assumed that low seed moisture content under salt stress 

triggered cessation of metabolism or inhibition of certain metabolic steps in the germination 

(Younes et al., 1991). 

Salt tolerance has been defined as the ability to maintain adequate growth and metabolism 

under stress conditions (Munns and Tester, 2008). A major factor associated to salt tolerance 

is the ability of plants to adjust the osmotic pressure in the cytosol, which is mediated by the 

synthesis of organic solutes such as proline (Ashraf and Foolad, 2007). The accumulation of 

this compound during stress is important for osmoregulation and cell protection from salinity 

(Molinari et al., 2007). However, in some species the accumulation of proline is associated to 

salt induced injury rather than with an osmo-protector adaptive effect (Zgallaï et al., 2005; 

Pattanagul and Thitisaksakul, 2008; Silveira et al., 2009; Ferreira-Silva et al., 2010).  
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Eggplant is considered to be moderately sensitive to salt stress (Shahbaz et al., 2012). Yet, 

this salt tolerance varies between eggplant varieties. The germination and seedling stages are 

considered as more sensitive to salt stress (Chartzoulakis and Loupassiki, 1997; Akinci et al., 

2004) although information about varietal reactions in eggplant is scarce. 

The present study was conducted to investigate the differential response of four eggplant 

varieties to increasing salinity during the germination and seedling stage. This was assessed 

by in vitro germination kinetics and seedling growth. To interpret the cultivar reactions we 

also studied the variation that occurs in lipid peroxidation (MDA: Malonaldehyde) and in 

proline accumulation.  

3.2 Materials and methods  

3.2.1 Plant materials and salt stress treatments 

The experiment was conducted in a growth chamber in Gent University in 2011. Four 

commercial eggplant cultivars two open-pollinated cultivars, ‘Adriatica’, ‘Black Beauty’ and 

two F1 hybrids ‘Bonica’ and ‘Galine’ were used as plant material.  

Seeds were surface-sterilized with 70% alcohol and rinsed with distilled water. Then, seeds 

were soaked in a solution of 0.02% Dreft (5-15% non-ionic surfactants, 15-30% anionic 

surfactants) and 5% HazTab (1,3,5 Dichloro-Triazine-Trionedihydrate-Dichlorosodium) for 

20 min followed by a second soaking in a solution of mercuric chloride (0.5%) for 10 min. 

After three rinses with sterile distilled water the seeds were germinated on agar-solidified (0.8 

%) Murashige and Skoog (1962) medium with 3% (w/v) sucrose in 0.7 L glass vessels. The 

pH was adjusted to 5.8 with 1 N NaOH before and then adding solidified agar (Sigma).  

NaCl was added to the medium at the concentration of 0 (control), 20, 40, 80 and 160 mM. 

Plant material was maintained in a growth chamber at 28°C under a 16 h photoperiod regime 

provided by cool-white fluorescent lamps with a photon flux density of 36 µmol.m
-2

s
-
1 at 

seedling level. For each treatment and cultivar 4 seeds per vessel, this in five replications 

were used. 

3.2.2 Plant measurements 

The germination (radicle emergence) and the time to germinate were determined at 24 h 

intervals for 7 days. Three parameters of germination were determined which included: final 

germination percentage; the mean germination time (MGT) and the mean daily germination 
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(MDG). The mean germination time is calculated as follows: MGT = (n1t1) + (n2t2) + ……. + 

(nxtx)/Xn where n1 is the number of germinated seeds at the first day of germination, t1 is the 

number of days from start to first germination, and Xn is the total number of seeds 

germinated. The mean daily germination (MDG) is the final germination percentage/number 

of days to final germination (Jha et al., 2010). 

After 6 weeks 1 seedling per vessel was randomly sampled and seedling length, number of 

leaves, aerial fresh (FW) and dry weight (DW) were measured. The aerial part of the plant 

(shoots and leaves) was weighted (FW) and then dried in a forced-draft oven at 80°C for 24 h 

and re-weighted (DW). Water content (WC) was calculated as the (FW-DW/DW) ratio 

according to Munns (2010). 

3.2.3 Lipid peroxidation 

Malonaldehyde (MDA), an end product of lipid peroxidation was determined according to 

Hodges (1999). 500 mg of leaves crushed with liquid nitrogen were homogenized in 5 mL of 

ethanol (80%) and centrifuged at 3,000 g for 10 min. To 1 mL of the supernatant 1 mL of 

thiobarbituric acid (TBA, 0.65% w/v) and 1 mL TCA (20% w/v) were added. The 

homogenate was incubated at 95°C for 25 min and the reaction was stopped by cooling the 

mixture in ice. After 10 min of centrifugation at 3,000 g the absorbance was measured by 

spectrophotometer at 440, 532 and 600 nm (Infinite M200, TECAN Group Ltd., 

Switzerland). The MDA content was calculated using the molar extinction coefficient of 

MDA (ε = 157 mmol
-1

 cm 
-1

) and the results are expressed as nmol MDA g
-1

 FW. 

3.2.4 Proline content 

The determination of proline was done according to Bates et al. (1973). Plant leaves (0.5 g) 

were crushed in 3% sulfosalicylic acid and the homogenate filtered through filter paper. After 

addition of acid ninhydrin and glacial acetic acid, the resulting mixture was heated at 100°C 

for an hour in a water bath. The mixture was extracted with toluene and proline was 

quantified spectrophotometrically at 520 nm from the organic phase. Proline concentration 

was calculated using the following formula:  

µmol proline g
-1

fresh weight = (µg proline mL
-1

x mL of toluene/115.5)/g of sample 

3.2.5 Statistical analysis 

The experimental design was a completely randomized design per cultivar. All data obtained 

were subjected to one way analysis of variance (ANOVA) to determine the significant 
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differences between the treatments or varieties using the software of SPSS Statistics 19. 

Tukey’s HSD test (P=0.05) was used to compare the means. 

3.3 Results 

3.3.1 Seed germination under different salinity levels  

The germination time course for the different NaCl concentrations and cultivars is given in 

Figure 3.1. The seed germination in the control treatment was high and reached 100% in 

‘Bonica’ and ‘Galine’, 79.2 % in ‘Adriatica’ and 83% in ‘Black Beauty’. The necessary 

period to reach final germination percentage of seeds was influenced by the NaCl 

concentrations (Figure 3.1). At the level of 20 mM of NaCl this parameter was hardly 

affected for all the cultivars when compared to the control. However, under a higher level of 

salinity the necessary period to reach the maximum seed germination increased markedly 

though cultivar effects were present (Figure 3.2). Seed germination attained its maximum at 

the fourth day for a salt concentration of 40 mM, at the fifth day for a salt concentration of 80 

mM and at the sixth day for the highest salt concentration (160 m M) in ‘Adriatica’ and 

‘Black Beauty’. In contrast, the maximum seed germination is reached at the second day for a 

salt concentration of 40 m M and at the third day for a salt concentration of 80 and 160 mM 

in ‘Bonica’ and ‘Galine’ (Figure 3.1). 

It is clear that the four cultivars did not react in a similar way to the applied salt stress. A salt 

concentration of 40 mM and 80 mM NaCl lead to a strong decrease of the final germination 

percentage in ‘Adriatica’ and ‘Black Beauty’ while the germination capacity of ‘Bonica’ and 

‘Galine’ was hardly affected (Table 3.1). However, 160 mM NaCl was detrimental to all 

cultivars with hardly germinating seeds for ‘Adriatica’ and ‘Black Beauty’ and a seed 

germination percentage averaging 20% for ‘Bonica’ and ‘Galine’ (Table 3.1).  

The mean daily germination (MDG) was not affected in the 20 mM NaCl treatment; a slight 

increase for the cultivars ‘Bonica’ and ‘Galine’ was even noted. 40 mM decreased already 

significantly MDG in ‘Adriatica’ (Figure 3.2). Increased salinity levels to 80 mM of NaCl 

caused a significant reduction in MDG in ‘Adriatica’, ‘Black Beauty’ and ‘Galine’ by 

respectively 81%, 77% and 58% when compared to their respective controls. A concentration 

of 160 mM strongly reduced MDG in all cultivars.  
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Figure 3.1Time course of seed germination under increasing saline conditions (n=20).  

 

 

Table 3.1 Differential response of final seed germination (%) of eggplant cultivars to increasing 

NaCl levels in the medium.  

Cultivar 0 mM 20 mM 40 mM 80 mM 160 mM 

‘Adriatica’ 79.2±4.8b 77.1±7.9b 54.1±2.4c 25.0±6.8c 4.1±6.5b 

‘Black Beauty’ 83.3±6.8b 81.2±1.5b 62.5±10.7b 33.3±6.8c 6.2±4.3b 

‘Bonica’ 100±0a 100±0a 85.4±7.9a 81.3±7.9a 20.8±2.4a 

‘Galine’ 100±0a 100±0a 84.4±7.1a 70.8±10.7b 22.9±1.9a 
Means followed by the same lowercase within each column are not significantly different at P= 0.05 according 

to the Tukey’s test. Data are means ± SE of 5 replications. 
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Figure 3.2 Effect of increasing NaCl on the final germination (%), mean daily germination 

(MDG) % and mean germination time (MGT). Comparisons between means were made with 

Tukey’s test multiple range test (P=0.05). Values are means ± SE (n=5). 

 

The mean germination time (MGT) is a measure of the rapidity of germination, with lower 

values indicating faster germination. There is a genotypic difference as ‘Bonica’ and ‘Galine’ 

germinate faster than ‘Adriatica’ and ‘Black Beauty’ in the control treatment. Increasing 

salinity significantly affected MGT of ‘Adriatica’ and ‘Black Beauty’ from 40 mM NaCl and 

‘Bonica and ‘Galine’ from 80 mM on (Figure 3.2). At 80 mM NaCl the number of days for 

MGT doubled, this for all cultivars. 
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3.3.2 NaCl induced changes in seedling growth 

Seedling growth as evaluated by number of leaves and shoot length is only determined for the 

range 0-80 mM NaCl as seed germination was too low for 160 mM NaCl. Leaf number was 

not affected by salt stress in ‘Bonica’ and ‘Galine’ while negative effects on shoot length 

were noted for 80 mM NaCl with a reduction of 59.6% and 44.2% respectively. In contrast, 

the number of leaves was reduced from 40 mM NaCl on and the shoot length from 80 mM 

NaCl on for ‘Adriatica’ and ‘Black Beauty’; shoot length was reduced by 18.9% and 20.3% 

when compared to their respective controls (Photo 3.1; Figure 3.3). 

The salt induced decreases in FW and DW showed an overall similar trend. The maximum 

decrease in FW and DW, however, was observed in ‘Adriatica’ and ‘Black Beauty’. For 

instance, in the 80 mM NaCl treatment the FW decreased by 84.4% in ‘Adriatica’ and by 

84.4% in ‘Black Beauty’, compared with their respective controls (Table 3.3). Likewise DW 

decreased by 79.2% in ‘Adriatica’ and by 79.4% in ‘Black Beauty’ for 80 mM NaCl (Table 

3.3). In contrast the decline in FW between the control and 80 mM NaCl was less in ‘Bonica’ 

(35.0%) and in ‘Galine’ (34.1%). The same trend was observed in DW with a decrease by 

35.3% in ‘Bonica’ and by 35.1% in ‘Galine’ at 80 mM NaCl (Table 3.3). Further, a 

significant decrease of the ratio of water in the aerial biomass relative to its dry weight (WC), 

was observed in the highest concentration of NaCl (80 m M) when compared to the 

respective control in the cultivars ‘Adriatica’ (47%) and ‘Black Beauty’ (47.54%). In 

contrast, the WC remained quite stable in both ‘Bonica’ and ‘Galine’ (Table 3.3). 
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Figure 3.3: Effect of increased NaCl concentration on number of leaves and shoot length of the 

eggplant varieties. Comparison between means were made with Tukey’s HSD test (P=0.05). 

Data are means ± SE of five replicates. 

 

Table 3.3 Effect of NaCl on fresh weight (FW), dry weight (DW) and water content (WC) of the 

aerial biomass of eggplant seedlings after 6 weeks of growth. No data are given for 160 mM due 

to the high mortality for this salt level. 

Cultivar NaCl (mM) FW (g) DW (g) WC (g H2O/g DW) 

Adriatica 0 2.11±0.16
a
 0.96±0.01

a
 1.17±0.18

a
 

 20 1.37±0.22
b
 0.71±0.10

b
 1.02±0.22

ab
  

 40 0.97±0.22
b
 0.50±0.01

c
 0.99±0.18

b
 

 80 0.33±0.04
c
 0.20±0.01

d
 0.62±0.15

b
 

Black Beauty 0 2.12±0.17
a
 0.97±0.01

a
 1.22±0.11

a
 

 20 1.38±0.22
b
 0.70±0.10

b
 0.98±0.17

ab
 

 40 1.00±0.21
c
 0.55±0.01

c
 0.94±0.18

ab
 

 80 0.33±0.04
d
 0.20±0.01

d
 0.64±0.04

b
 

Bonica 0 2.14±0.18
a
 0.99±0.03

a
 1.15±0.06

a
 

 20 1.99±0.18
a
 0.92±0.05

b
 1.17±0.07

a
 

 40 1.62±0.15
b
 0.75±0.03

c
 1.16±0.06

a
 

 80 1.39±0.13
b
 0.64±0.06

d
 1.21±0.18

a
 

Galine 0 2.14±0.20
a
 1.00±0.01

a
 1.13±0.06

a
 

 20 1.92±0.21
ab

 0.90±0.01
b
 1.12±0.11

a
 

 40 1.77±0.14
b
 0.83±0.02

c
 1.10±0.09

a
 

 80 1.41±0.24
c
 0.65±0.04

d
 1.16±0.09

a
 

Data are means ± SE of 5 replications Means followed by the same lowercase within each column are not 

significantly different at P= 0.05 according to Tukey’s HSD test. 

Adriatica Black Beauty Bonica Galine

N
u
m

b
e
r 

o
f 

le
a
v
e
s

0

1

2

3

4

5

6

7
0 20 40 80

B

A
A A

A

A

B
A

A A

C

A

C

A

A

A

Adriatica Black Beauty Bonica Galine

S
h
o
o
t 

le
n
g
h
t 

(c
m

)

0

2

4

6

8

10

12

14

A

B

C

A

A

B

A

A

B

A

A

B

C

A

B

A

C



Chapter 3 

64 

 

    

    

Photo 3.1: Shoot length of different eggplant cultivars under different NaCl concentrations  

 

3.3.3 NaCl induced changes in biochemical parameters 

Leaf proline increased significantly when exposed to increased NaCl levels in all the 

cultivars. The accumulation of proline was more pronounced in ‘Adriatica’ and ‘Black 

Beauty’, these cultivars showed already a significant increase at 20 mM NaCl while in 

‘Bonica’ and ‘Galine’ a moderate increase was only observed at 80 mM NaCl. In ‘Adriatica’ 

and ‘Black Beauty’ proline increased strongly in relation to the severity of the salt stress. 

‘Adriatica’ showed the highest proline accumulation at 80 mM NaCl. 

MDA showed a similar trend as observed for proline under saline conditions. Moreover the 

level of lipid peroxidation in ‘Adriatica’ and ‘Black Beauty’ showed respectively 7-fold 

increase and 6-fold increase in the treatment 80 mM when compared to their respective 

controls while it showed respectively 3-fold increase and 2-fold increase in ‘Bonica’ and 

‘Galine’ when compared to the respective controls. Consequently the induced lipid 
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peroxidation under increasing salinity was more pronounced in ‘Adriatica’ and ‘Black 

Beauty’ than in ‘Bonica’ and ‘Galine’. 

 

 

Figure 3.4 Effect of salt stress on leaf proline content (µmol g
-1

 FW). Vertical bars indicate SE. 

Different letters indicate significant difference between treatments based on Tukey’s HSD test 

(P = 0.05).  

 

Figure 3.5 Salt stress induced changes in MDA content (nmol g
-1

FW) in leaves of the cultivars of 

eggplant subjected to different NaCl concentrations. Data are means of five replicates ± SE. 

Different letters indicate significant difference between treatments based on Tukey’s HSD test 

(P = 0.05).  
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3.4 Discussion 

Seed germination is a sensitive developmental stage and most plant species germinate best in 

non-saline conditions. This was already shown for a number of vegetables as cucumber 

(Jones et al., 1989), lettuce (Coons et al., 1990; Nasri et al., 2015), beans (Goertz and Coons, 

1991; Jeanette et al., 2002) and Pisum sativum (Naz et al., 2014) but also in wheat (Ben 

Naceur et al., 2001). Also in our experiment seed germination parameters (germination 

percentage, MGT and MDG) were adversely affected by increasing saline stress. However, 

two groups with contrasting sensitivity responses were found. ‘Bonica’ and ‘Galine’ behaved 

as more tolerant cultivars while ‘Adriatica’ and ‘Black Beauty’ were the more susceptible 

cultivars and already sensitive to moderate stresses. The germination process in eggplant 

seeds is fast in the control treatment; therefore the applied salt stress mainly affects the 

uptake of imbibition water by seeds due to the lower osmotic potential of germination media. 

Exposure to high saline concentration does not only provoke inhibition of germination but 

also a decrease in germination speed and rate as shown by the decrease in MDG and the 

increase in MGT under salt stress. This may be due to the fact that seeds seemingly develop 

an osmotically enforced “dormancy”. This may be an adaptive strategy of seeds to prevent 

germination under stressful environment thus ensuring proper establishment of the seedlings 

when conditions change such as rainfall in field conditions (Gill et al., 2003; Nasr et al., 

2012). 

Germination of eggplant seeds is already strongly reduced at 80 mM NaCl for the susceptible 

cultivars. Chartzoulakis and Loupassaki (1997) found also a strong reduction of eggplant 

germination at 100 mM NaCl. In tomato, Cuartero and Fernandez-Munoz (1999) reported a 

decreasing germination trend from 80 mM NaCl and a drastic decline at 190 mM NaCl for 

sensitive cultivars. Similar inhibitory germination results were reported by Yildirim et al. 

(2002) for celery and parsley at 182 mM NaCl, by Nasri et al. (2011) for lettuce at 100 and 

150 mM of NaCl. Zapata et al. (2004) found a strong inhibition of seed germination in tomato 

at 100 mM NaCl and in beetroot, pepper, melon and broccoli at150 mM NaCl. In Pisum 

sativum a stong reduction of germination was observed at 80 mM NaCl (Naz et al., 2014). 

The effect of salinity on germinating seeds in many species is not limited to a reduced 

germination percentage, but also a lengthening of the time needed to complete germination is 

observed. The decreases in germination rate and MDG under saline conditions have been 

reported by Ungar (1996) on Atriplex patula at 34 mM NaCl, by Jeanette et al. (2002) on 

Phaseolus species at 120 mM NaCl and by Datta et al. (2009) on five Triticum aestivum 
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varieties at 150 mM NaCl. Tomato seeds needed 50% additional days to germinate at 80 mM 

NaCl than in a medium without salt and almost 100% more days at 190 mM (Cuartero and 

Fernandez-Munoz, 1999). 

Salinity slows eggplant shoot growth in the seedling stage. As for the germination the effects 

of the salt stress in the seedling stage divided the cultivars in two groups. Growth reduction 

as determined by shoot height, number of leaves, FW, DW and WC was more pronounced for 

‘Adriatica’ and ‘Black Beauty’ compared to ‘Bonica’ and ‘Galine’. Leaf initiation was not 

affected by salt stress in ‘Bonica’ and ‘Galine’, shoot reduction at 80 mM was thus solely due 

to shorter internodes. Although 20 mM enhanced shoot growth in ‘Bonica’, the dry weight of 

the seedlings was already reduced at this level compared to the control. The salt sensitive 

cultivars (‘Adriatica’ and ‘Black Beauty’) showed, however, a pronounced decrease in FW 

and DW whereas the salt tolerant cultivars (‘Bonica’ and ‘Galine’) were able keep up a better 

dry mass production when exposed to salinity. The water content of leaf tissue (WC) may 

serve as an indicator of stress. A marked reduction of WC was observed in the sensitive 

cultivars ‘Adriatica’ and ‘Black Beauty’ thus reducing turgor and cell expansion, while the 

tolerant ‘Bonica’ and ‘Galine’ had the ability to maintain their WC quite stable. A decrease in 

FW, DW and WC of young seedlings under saline conditions has also been reported by Prado 

et al. (2000) on Chenopodium quinoa at 400 mM NaCl, by Akinci et al. (2004) on Solanum 

melongena at 100 mM NaCl and by Ben Dkhil and Denden (2010) on Abelmoschus 

esculentus at 60 mM NaCl.  

The adaptation of plants to salinity is associated with the increase of osmotically active 

organic substances which help to alleviate the salinity-mediated osmotic stress. Osmotic 

regulators in plants include organic solutes such as soluble sugars and proline (Turan et al., 

2009; Xu et al., 2012). In our work, proline increased in the leaves in response to salinity in 

all cultivars; however, more proline accumulated in ‘Adriatica’ and ‘Black Beauty’ this for 

the applied salinity levels. It has been reported that plants may accumulate compatible solutes 

such as proline under salt stress, but their relative contribution to stress tolerance varies 

among species or even among cultivars of a same species (Ahraf and Foolad, 2007; Abbas et 

al., 2014). Indeed the two cultivars with the highest proline increase were also the most 

susceptible cultivars with respect to shoot growth and biomass. Accumulation of proline 

might therefore also be due to a reduction in its use in protein synthesis which can also be 

severely inhibited by abiotic stresses (Stewart and Hanson, 1980). Salinity inhibits the 

synthesis of a majority of shoot proteins in barley (Ramagapol, 1987). Moreover salt stress 
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can seriously disrupt normal metabolism through oxidative damage to proteins (Imaly and 

Linn, 1988). Veeranagamallaiah et al (2008) identified 29 proteins that significantly up-

regulated (tolerant crops) or down-regulated (susceptible crops) due to NaCl stress. Kosova et 

al (2013) suggested that susceptible plants can be characterised by mobilization of their 

energy reserves, consumption of energy reserves and enhanced protein degradation under 

stress. In contrast Moons et al. (1995; 1997) noticed that both ABA and ABA-responsive 

proteins, such as late embryogenesis abundant (LEA) protein, were present at high levels in 

roots of tolerant rice varieties. Kosova et al. (2013) found an increased relative abundance of 

proteasome subunits, indicating enhanced protein degradation upon salt stress.  

It is known that free radical-induced peroxidation of membrane lipids is associated with 

stress induced damage at cellular level (Jain et al., 2001). Therefore the level of MDA 

produced during peroxidation of membrane lipids, is often used as an indicator of oxidative 

damage. The lower level of lipid peroxidation in leaves of ‘Bonica’ and ‘Galine’ suggests 

that for a same salt stress less oxidative damage occurred. The different accumulation pattern 

of proline might thus also be explained by the metabolic damage caused by salt stress. It 

might be interesting to analyse the accumulation pattern of Na
+
 and Cl

-
 in the different 

cultivars as salt stress damage is partially an osmotic drought but by prolonged stress also 

ionic toxicity can occur. 

3.5 Conclusion 

This experiment under controlled in vitro conditions indicates that NaCl disturbed 

considerably the mechanism of germination at relative low salinity levels. Under increasing 

salt levels growth parameters in terms of fresh weigh, dry weigh, tissue water content, height 

and leaf number were negatively affected and increased cell damage as evaluated by MDA 

occurred. Our observations both on germination kinetics and young seedling development 

divided the cultivars in two groups. The sensitive cultivars ‘Adriatica’ and ‘Black Beauty’ 

supported only moderate salt stress up to 40 mM NaCl while the tolerance level of the 

tolerant group (‘Bonica’ and ‘Galine’) was up to 80 mM NaCl. Proline increased hugely in 

response to salinity in the sensitive cultivars.  

Selection of genotypes able to absorb water under conditions of low soil water potential at 

germination and seedling stage could result in genotypes more tolerant (with enhanced 

growth rate) to salinity. In field cultivation, the reaction to the applied salt levels would be 

lower than in our experimental system as for a given salt level in the irrigation water there is 
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a delay in the build-up in salinity in the soil or substrate of the young seedling. Our method 

and all studied parameters could be used as a diagnostic tool to screen cultivars for salt stress 

in the seedling phase. 
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Chapter 4 Application of chlorophyll fluorescence to 

screen eggplant (Solanum melongena L.) cultivars for 

salt tolerance  

 

 

Abstract 

The objective of this study was to investigate the relative salt tolerance of four eggplant 

cultivars (Solanum melongena L.) by studying chlorophyll fluorescence parameters 

during the vegetative growth stage under increasing salinity levels. The plants were 

grown in pots filled with peat under controlled conditions and were subjected to saline 

stress ranging from 0 (control), 20, 40, 80 and 160 mM NaCl for 25 days. The results 

showed that increasing NaCl concentration hardly affected the maximum quantum 

yield of PSII (Fv/Fm). The quantum yield of PSII (ΦPSII) decreased significantly in 

‘Adriatica’ and ‘Black Beauty’ under saline stress. Photochemical quenching (qP) 

decreased for ‘Black Beauty’ and non-photochemical quenching (NPQ) increased for 

‘Adriatica’ under salt stress. For ‘Bonica’ and ‘Galine’ chlorophyll fluorescence 

parameters did not significantly change under salt stress, revealing their photochemical 

tolerance to salinity. After 25 days of salt stress plant growth was reduced in all 

cultivars, however, this decline was more pronounced for ‘Adriatica’ and ‘Black 

Beauty’. Additionally, a significant correlation between biomass and ΦPSII was observed 

for ‘Adriatica’ and ‘Black Beauty’. Our results suggest that ΦPSII can be used as a 

diagnostic tool to identify salt-tolerant egg-plant cultivars. 
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4.1 Introduction 

The introduction of irrigated agriculture in arid and semi-arid regions resulted in the 

development of soil salinization. It is reported that already 15 million ha are saline in the 

Middle East and North Africa (Le Houerou et al., 1986). High salt concentrations in soil 

decrease yields for a wide variety of crops all over the world (Sekman et al., 2007). Indeed, 

salinity is regarded as one of the most important environmental constraints that affect 

adversely plant growth and metabolism particularly in the arid and semi-arid regions in the 

world (Munns and Tester, 2008). 

Plants respond to salinity stress through a set of changes in basic biological functions 

including photosynthesis and photorespiration, synthesis of life saving molecules, fine tuning 

in translation and transcription, and reactive molecule scavenging (Mittler, 2002; Azevedo 

Neto et al., 2006; Wei et al., 2009; Turkan and Demiral, 2009). Decreased photosynthetic rate 

under stressful environments was generally ascribed to stomatal closure and decreased 

mesophyll conductance at a severe stress (Flexas et al., 2004; Bikash et al., 2005; Zribi et al., 

2009). High saline concentrations contribute to leaf chlorosis, malfunctioning of the 

chloroplasts and photo-inhibition or photo-oxidation, which significantly affect the 

assimilation rate (Moradi and Ismail, 2007). Maxwell and Johnson (2000) showed that 

chlorophyll a fluorescence can constitute an important selection criterion to verify the plant 

sensitivity or tolerance to environmental stresses and to determine the damage of the 

photosynthetic apparatus caused by these stresses. Zribi et al. (2009) reported a significant 

increase in NPQ in salt-stressed tomato plants, without significant changes in Fv/Fm. 

Chlorophyll fluorescence measurements also revealed that NPQ increased whereas the 

electron transport rate decreased in rice plants under salt stress (Moradi and Ismail, 2007). In 

wheat, salt stress decreased Fv/Fm, ΦPSII and qP while increasing NPQ (Zheng et al., 2009). 

Chlorophyll fluorescence could thus be a non-destructive and non-invasive tool to determine 

effects of salt stress on photosynthetic machinery. 

Eggplant (Solanum melongena L.) is an important vegetable crop in the Mediterranean area 

with Egypt, Iran and Turkey belonging to the top five eggplant producing nations 

(FAOSTAT, 2015). However, salinization affects irrigated agriculture in these regions and 

limited research has been carried out to evaluate the physiological and biochemical responses 

of eggplant to salt stress. Crop yield and growth parameters have been used to screen for 

salinity tolerance in the seedling stage (Akinci et al., 2004). Based on growth and production 



Chapter 4 

75 

parameters eggplant is considered moderately sensitive to salinity (Savvas and Lenz, 2000), 

with significant genotypic variation regarding salt tolerance (Akinci et al., 2004). Screening 

for salt tolerance should also use physiological traits in combination with growth 

performance. Exposure of eggplant to sub-lethal salt concentrations causes stomatal closure 

(osmotic stress) and reduces photosynthetic rates, which might lead to an inhibition of 

electron transport through photosystem II. Since hardly any information is available for 

eggplants, the objective of the present work was to investigate the relative salt tolerance of 

four eggplant cultivars by studying selected chlorophyll fluorescence parameters during the 

vegetative growth stage under increasing salinity levels.  

4.2 Materials and methods 

4.2.1 Plant material  

Four commercial eggplant (S. melongena L.) cultivars, two open-pollinated (‘Adriatica’ and 

‘Black Beauty’) and two F1 hybrids (‘Bonica’ and ‘Galine’) were used as plant material. 

Seeds were sown into 80 mL plug trays containing a peat-based medium on 3 May 2011 in a 

growth chamber at a constant temperature of 25°C, RH of 70%, photon flux density of 150 

µmol m
–2 

s
–1

 and photoperiod of 16 h. After 25 days eggplant seedlings at the second true leaf 

stage were selected for uniformity and transplanted into 2 L plastic pots. Plants were 

transferred to a heated glasshouse (located at 51°02’N, 03°42’E) and were fertigated with 250 

mL full-strength Hoagland’s solution, twice a week (Photo 4.1). The temperature in the 

glasshouse ranged between 22°C and 27°C while the daily maximum photon flux density 

averaged 340 µmol m
–2 

s
–1

. Shading screens were used to prevent direct sunlight.  

 

4.2.2 Salinity treatments  

Five salinity treatments were applied starting 36 days after the transfer to the glasshouse. 

NaCl was added at 0 (control), 20, 40, 80, and 160 mM to a full-strength Hoagland’s solution 

with electrical conductivity values of 1.18, 1.42, 2.75, 3.05, and 5.21 dS m
–1

 respectively. All 

solutions were prepared with distilled water. Plants were irrigated with 250 mL per pot, 

which was applied twice a week during 25 days.  
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Photo 4.1: Experimental set-up in a heated glasshouse (Left: eggplants at the start of the 

experiment, right plants after 4 weeks of salt stress). 

 

4.2.3 Chlorophyll a fluorescence 

Chlorophyll a fluorescence in dark- and light-adapted leaves was measured with a portable 

fluorometer (PAM-2500, Walz, Effeltrich, Germany). After 30 min of dark-adaptation, Fv/Fm 

was calculated as (Fm – F0)/Fm where Fm (induced by a short pulse (0.6 s) of saturating light 

(3,450 µmol m
–2 

s
–1

)) and F0 were the maximal and minimal fluorescence (Genty et al. 1989). 

After 4 min of illumination with continuous red, non-saturating actinic light (447 µmol m
–2 

s
–

1
) and saturating pulses every 25 s, maximum (Fm’) and steady state (Fs) fluorescence signals 

were measured in light adapted leaves. Then, the actinic light was turned off and a far red 

pulse was applied to obtain the minimal fluorescence after the PSI excitation (F0’). ΦPSII was 

calculated as (Fm’ – Fs)/Fm’ and qp was calculated as (Fm’ – Fs)/(Fm’ – F0’) (Van Kooten and 

Snel 1990). NPQ which is proportional to the rate constant of thermal energy dissipation was 

estimated as (Fm – Fm’)/Fm’ (Bilger and Björkman 1990). The electron transport rate (ETR) 

was calculated as ΦPSII × PAR × 0.84 × 0.5 were the absorbed photon energy (PAR), is 

assumed to be equally distributed between PSI and PSII and 0.84 is the assumed light 

absorptance of the leaf. 

The youngest fully developed leaf was selected for measurements after 5 days of saline stress 

(5 DSS) and was further used for the measurements taken after 10, 15, 20 and 25 DSS, this in 

four replicates. 
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4.2.4 Determination of biomass production 

Plant development was assessed by fresh mass determination of the aerial parts of the plant 

(shoots and leaves) after 25 DSS. For each cultivar and treatment two plants per block (eight 

plants in total) were randomly measured. 

4.2.5 Statistical analysis 

 Each treatment was applied to 20 plants per cultivar. The experiment was designed as a 

randomized complete block design, with four blocks. Each experimental unit contained five 

plants. Data were subjected to one way analysis of variance (ANOVA) followed by Tukey’s 

HSD test (P=0.05) to distinguish differences among the treatments. Principal component 

analysis (PCA) was carried out on chlorophyll fluorescence parameters. Only PCAs with 

eigenvalues > 1, thus explaining more than a single parameter alone, were extracted. For 

these principal components a varimax rotation was applied on the obtained factor loadings. 

This rotation results in simpler factors, relating parameters mainly to one principal 

component axis (Manly 1994). All statistical analyses were carried out using SPSS 19 (IBM 

SPSS Statistics). 

4.3 Results 

4.3.1 NaCl induced changes in chlorophyll fluorescence parameters 

Up to 10 DSS no significant effects on Fv/Fm, qp and NPQ (P>0.05) were found for any of the 

cultivars (data not shown). Fifteen days after applying salt stress (15 DSS) a decreasing trend 

for Fv/Fm was noticed for ‘Bonica’ (P=0.046) (Figure 4.1) although no significant negative 

effect was present after 25 DSS (Figure 4. 3 A). A significant decrease of Fv/Fm was found 

for ‘Black Beauty’ after 25 DSS of 160 mM NaCl (Figure 4.3A). Fv/Fm of ‘Adriatica’ and 

‘Galine’ were not significantly affected by salt levels during the experimental period.  

Significant differences in ΦPSII were observed in ‘Adriatica’ and ‘Black Beauty’ (Figure 

4.3B). ΦPSII decreased progressively and significantly in ‘Adriatica’ from 10 DSS (P=0.010) 

and ‘Black Beauty’ from 5 DSS (P<0.001). At 15 and 25 DSS ΦPSII was reduced by 41% for 

a level of 160 mM of NaCl compared to the respective controls in ‘Adriatica’. Likewise, in 

‘Black Beauty’ a decline of ΦPSII by 39.7% after 15 DSS of 160 mM of NaCl and by 43.9% 

after 25 DSS was found when compared to their respective controls. In contrast ΦPSII in 

‘Bonica’ and ‘Galine’ was never significantly affected by the salt treatment (Figure 4.3B). 
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Decreases in qp were found only in ‘Black Beauty’ after 25 DSS (Figure 4.3C). A similar but 

opposite trend was observed for NPQ. After 15 DSS a significant increase in NPQ for a salt 

stress from 40 mM (P=0.005) and 80 mM (P=0.023) on was found respectively for 

‘Adriatica’ and ‘Bonica’. For the highest salt stress level (160 mM NaCl) the increase in NPQ 

was respectively 26.7% for ‘Adriatica’ and 25.0% for ‘Bonica’. However, after 25 DSS 

significant effects were only noted for ‘Adriatica’ where NPQ increased from 0.97 for control 

plants to 1.58 for a salt stress of 160mM NaCl or an increase of 63% (Figure 4.3D). After 25 

DSS, ETR decreased from 23.5 for control plants to 12.5 for a salt stress of 160 mM NaCl in 

‘Black Beauty’ (P=0.008) and from 17.7 for control plants to 8.7 for a salt stress of 160 mM 

NaCl in ‘Adriatica’ (P=0.024). No effects of salt stress on ETR were found for ‘Bonica’ and 

‘Galine’.  

A scores scatter plot of the first two PCAs (explaining 80.1% of the variation) shows a good 

separation of ‘Bonica’ from the three other cultivars after 25 DSS (Figure 4.4). The loading 

that positively correlated with PCA1 (44.2%) was NPQ and that with PCA2 (35.8%) were 

ΦPSII and qP. The loading of Fv/Fm correlated negatively with PCA1. For all cultivars the 

scores of the PCA moved to higher NPQ values and lower Fv/Fm, ΦPSII and qP under 

increasing salt stress. The separation of control and salt stressed plants of ‘Adriatica’ along 

PCA1 was higher compared to the other cultivars (see arrows in Figure 4.4). For ‘Black 

Beauty’ control and salt stressed plants were well separated along PCA2. 
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Figure 4.1. Effects of different salt treatments (0, 20, 40, 80 and 160 mM) after 5 days under 

NaCl stress on chlorophyll fluorescence parameters: maximum quantum yield of PSII (Fv/Fm) 

(A), the effective quantum yield of PSII (ΦPSII) (B), the photochemical quenching (qp) (C) and 

non-photochemical quenching (NPQ) (D). Different uppercase letters indicate significant 

differences using Tukey’s test (P=0.05). Data are means of four replicates ± SE. 
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Figure 4.2. Effects of different salt treatments (0, 20, 40, 80 and 160 mM) after 15 days under 

NaCl stress on chlorophyll fluorescence parameters: maximum quantum yield of PSII (Fv/Fm) 

(A), the effective quantum yield of PSII (ΦPSII) (B), the photochemical quenching (qp) (C) and 

non-photochemical quenching (NPQ) (D). Different uppercase letters indicate significant 

differences using Tukey’s test (P=0.05). Data are means of four replicates ± SE. 
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Figure 4.3. Effects of different salt treatments (0, 20, 40, 80 and 160 mM) after 25 days under 

NaCl stress on chlorophyll fluorescence parameters: maximum quantum yield of PSII (Fv/Fm) 

(A), the effective quantum yield of PSII (ΦPSII) (B), the photochemical quenching (qp) (C) and 

non-photochemical quenching (NPQ) (D). Different uppercase letters indicate significant 

differences using Tukey’s test (P=0.05). Data are means of four replicates ± SE. 
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Figure 4.4. Principal component analysis (PCA) of chlorophyll fluorescence parameters of the 

eggplant cultivars grown for 25 days under saline stress. PCA1 is positively correlated with the 

non-photochemical quenching (NPQ) and negatively with the maximum quantum yield of PSII 

(Fv/Fm), PCA2 is positively correlated with the effective quantum yield of PSII (ΦPSII) and the 

photochemical quenching (qp). Each data point represents the mean of four replicates. Arrows 

indicate the increasing salt stress level. 

 

4.3.2 NaCl induced changes in biomass production 

Fresh aerial biomass of all cultivars decreased as the salinity increased (Figure 4.5). A 

significant growth reduction was already present for the lowest salt stress level (20 mM 

NaCl). Although plant vigour differed between the cultivars as indicated by their biomass 

without salt stress, the salt induced decreases in fresh biomass showed an overall similar 

trend. The maximum decrease in fresh biomass was observed in ‘Adriatica’ and ‘Black 

Beauty’. As compared to control conditions, fresh biomass decreased by 86.6% in ‘Adriatica’ 

and by 87.8% in ‘Black Beauty’ at 160 mM (Figure 4.5). In contrast, the decline in fresh 

biomass between the control and the 160 mM NaCl level was 36.9% in ‘Bonica’ and 35.9% 

in ‘Galine’ (Figure 4.5). Also a significant correlation between fresh biomass and ΦPSII was 

observed for ‘Adriatica’ (R=0.760, P<0.001) and ‘Black Beauty’ (R=0.762, P<0.001). 
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Figure 4.5. Effect of increasing salt levels on fresh aerial biomass in four eggplant cultivars. 

Different uppercase letters indicate significant difference using Tukey’s test (P=0.05). Data are 

means of four replicates ± SE. 

 

4.4 Discussion 

In saline soil, plants experience first an osmotic stress as a consequence of a reduced osmotic 

potential of the soil solution. In a second stage exposure to salinity also causes accumulation 

of salts in the plant tissues. These salts will eventually rise to toxic levels and may cause Na
+
 

toxicity (ionic stress), thereby reducing nutrient acquisition or causing nutritional imbalances 

(Munns and Termat, 1986). Osmotic and ionic damage are interrelated and co-exist under 

saline conditions (Castillo et al., 2007). Dry biomass measurements are considered an 

appropriate parameter for evaluating stress tolerance in crops (Munns et al., 2000) although 

fresh weight is often used in horticultural crops to describe plant biomass (Marcelis et al., 

1998). Also in our experiment salinity had a significant impact on eggplant biomass. When 

plants were submitted to a salt stress of 160 mM NaCl for 25 days, a decrease in fresh 

biomass by more than 80% in ‘Adriatica’ and ‘Black Beauty’, and by more than 30% in 

‘Bonica’ and ‘Galine’ were found. Important decreases of plant biomass have been reported 

for green beans at 100 mM (Yasar et al., 2007) and for rice at 120 mM (Demiral and Turkan, 

2005), while for more salt tolerant mangroves a decrease at 250 mM was found (Ru et al., 
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2009). Asch et al. (2000) reported that in rice the salt tolerant genotype had the smallest and 

the susceptible genotype had the greatest reduction in biomass production.  

Salt stress will restrict CO2 availability due to stomatal closure which may lead to reduced 

photosynthesis (Munns and Tester, 2008) and hence reduced growth. In addition non-

stomatal factors also affect photosynthesis under higher saline levels (Stepien and Klobus, 

2006); accumulation of NaCl in chloroplasts of higher plants will lead to inhibition of PSII 

and increased susceptibility to photo-damage (Sudhir and Murthy, 2004). To evaluate the 

direct effect of salt stress on PSII photochemistry chlorophyll a fluorescence was measured in 

four eggplant cultivars. In the present study, results showed that at 25 DSS, Fv/Fm was 

generally unaffected, with exception of ‘Black Beauty’ at the highest NaCl concentration. 

Similar results have been reported for wheat (Gallé et al., 2002) and tomato (Zribi et al., 

2009). This slight decrease of Fv/Fm is likely to be due to the reversible inactivation or 

downregulation of PSII rather than to photo-damage of PSII (Demming-Adams and Adams, 

1996). 

PSII activity and its regulation are best studied by ΦPSII (Genty et al., 1989). For two cultivars 

the growth inhibition was correlated to a decline of ΦPSII. The salt stress induced a significant 

and early reduction of ΦPSII indicating a decrease in electron transport through PSII in 

‘Adriatica’ and ‘Black Beauty’ cultivars, which is in agreement with the findings of Zribi et 

al. (2009) in tomato and Lu et al. (2009) in soybean. This was also mirrored in a decrease of 

qP in ‘Black Beauty’ under increasing salinity. This fluorescence parameter gives an 

indication of the ability of PSII to reduce the primary electron acceptor QA under the applied 

salt stress as well as of the number of photons used by photochemical reactions/number of 

absorbed photons (Govindjee et al., 1981). As ΦPSII was affected after 5 and 10 DSS in 

‘Adriatica’ and ‘Black Beauty’ respectively, this parameter has potential to be an early and 

non-destructive tool to screen eggplant cultivars for salt tolerance. The same finding has been 

reported for soybean by Lu et al. (2009). 

ΦPSII was not affected in ‘Bonica’ and ‘Galine’ up to 25 days of salt stress indicating a more 

optimal functioning of PSII under salt stress. Moreover the whole chain electron flow 

continued at an effective rate in these cultivars. Indeed, qP was hardly affected by increasing 

salt stress in these cultivars, which is also obvious from the limited variation along the PCA2 

axis under increasing salt stress whereas qP was reduced in ‘Black Beauty’. The 

photochemical quenching can contribute to protect the photosynthetic apparatus by 

transferring electrons to O2 under drought or salt stress (Ort and Baker, 2002). Cornic and 
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Fresneau (2002) showed that oxygenation of ribulose-1,5-bisphosphate in C3 plants can 

efficiently replace the carboxylation when stomata close. We can assume reduced CO2 

assimilation due to salt stress as fresh biomass decreased for all cultivars. As ΦPSII and ETR 

are not affected in ‘Bonica’ and ‘Galine’, we may argue that alternative electron sinks were 

more active in these cultivars. Besides photorespiration, photoreduction might also occur at 

the acceptor side of PSI in the Mehler reaction (Asada, 2000) resulting in a pH gradient 

across the thylakoid membranes and enhancing thermal dissipation of excess excitation 

energy (Johnson et al., 1994).  

The increase in non-photochemical energy dissipation is probably the major process involved 

in protection against photo-damage (Krause and Weiss, 1991). This increase was more 

pronounced in ‘Adriatica’ at 25 DSS. Also changes in PCA score by salt stress were greater 

for ‘Adriatica’. Apparently, the increase in NPQ of ‘Adriatica’ was effective in preventing 

reductions of Fv/Fm. The increased NPQ will dissipate a part of the excitation energy at the 

expense of photochemical utilization (Osmond, 1994; Zribi et al., 2009) thus contributing to a 

downregulation of PSII to avoid over-reduction of the primary electron acceptor QA. This 

response reflects a protective or regulatory mechanism to avoid photo-damage of the 

photosynthetic apparatus (Demming-Adams and Adams, 1996). 

4.5 Conclusion 

‘Bonica’ and ‘Galine’ tolerated better the applied salt stress as shown by growth performance 

and limited effect on primary photochemistry as compared to ‘Adriatica’ and ‘Black Beauty’. 

ΦPSII could distinguish the differential response to salt stress in the studied eggplant cultivars. 

Consequently, the light-adapted responses could be considered as an early indicator of salt 

induced disturbances in eggplant.  
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Chapter 5 Effect of salt induced stress on physiological 

responses in eggplant cultivars (Solanum melongena L.) 

 

 

Abstract  

The effect of NaCl stress on physiological and biochemical parameters was investigated 

in four eggplant cultivars (Solanum melongena L.). The plants were grown in pots filled 

with peat under controlled conditions and were subjected during 30 days to saline stress 

ranging from 0 (control), 20, 40, 80 and 160 mM of NaCl. Increasing NaCl 

concentration increased strongly proline, malondialdehyde and carbohydrates leaf 

contents in sensitive cultivars ‘Adriatica’ and ‘Black Beauty’. However the tolerant 

cultivars ‘Bonica’ and ‘Galine’ showed a decrease in carbohydrates accumulation and a 

significant increase in level of starch under saline stress. Salt stress reduced the biomass 

parameters in all the cultivars. The midday leaf water potential (ψ) and leaf osmotic 

potential (ψπ) were significantly affected in sensitive cultivars and remained quite stable 

in tolerant cultivars under salt stress. Leaf Cl
-
 content was higher in sensitive than in 

tolerant cultivars. The leaf K, Ca and Mg contents were reduced under salt stress in 

sensitive cultivars. Increasing salinity did not change Ca and Mg content in tolerant 

cultivars. 

The responses of the growth, physiological and biochemical parameters to salt stress 

were more sensitive in ‘Adriatica’ and ‘Black Beauty’ than in ‘Bonica’ and ‘Galine’. 

Our results suggest that the physiological and biochemical mechanism can be adopted 

as an excellent tool for the diagnosis of salt stress in eggplant. 
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5.1 Introduction 

Water scarcity and quality degradation are major constraints for agricultural development in 

the southern Mediterranean countries. Besides, the introduction of irrigated agriculture in arid 

and semi-arid regions resulted in the development of secondary soil salinization (Ritzema et 

al., 2008). Salinity is regarded as one of the most important environmental extremes that 

affects plant growth and metabolism adversely in the arid and semi-arid regions of the world 

(Munns and Tester, 2008). Increasing salinity causes a significant decline in biomass 

production (Parida and Das, 2005; Junmin et al., 2012) and thus decreases yields for a wide 

variety of crops all over the world (Sekman et al., 2007). Salinity of the soil affects the water 

uptake and thus the plant water status. One of the earliest responses under salt stress is a 

reduction of the leaf area and the changed plant water status most likely leads to this initial 

growth reduction (Dash and Panda, 2001). Plant growth suppression is directly related to the 

total concentration of salt ions and/or the decrease in soil osmotic potential (Silva-Ortega et 

al., 2008). 

Under salinity stress both osmotic and ionic effects affect the metabolism of plant cells in 

many ways. Specific effects of salt stress on plant metabolism have been related to the 

accumulation of toxic ions (Na
+ 

and Cl
-
) or to K

+
 and Ca

2+
 depletion (Munns et al., 2002). In 

addition, accumulation of Na
+
 ions changes ion balance such as Na

+
/Ca

2+
 and K

+
/Na

+
 ratio in 

plant cells under saline condition. A high Na/Ca ratio results in increased cell permeability 

(Levitt, 1980). Ion disorder caused by salinity may also lead to changes in plant lipid 

metabolism (Kuiper, 1985). Lipid peroxidation, induced by free radicals, is important in 

membrane deterioration (Halliwell, 1987; McCord, 2000) and might lead to visible injury in 

leaves (Yildiztugay et al., 2011). 

Plants develop an array of mechanisms to cope with salinity. Under saline conditions, plants 

accumulate compatible solutes such as sugars, amino-acid, protein and/or other compounds to 

protect themselves against the damage of the salinity and to accommodate the ionic balance 

in the vacuole in a process called osmotic adjustment (Yazici et al., 2007; Turkan et al., 2009; 

Yildiztugay et al., 2011; Xu et al., 2012). Carbohydrates contribute to 13% of the osmotic 

adjustment (Hu and Schmidhalter, 1998). Turan et al. (2007) reported that proline 

accumulation increased in plant tissue during salinity stress. Compartmentalization of toxic 

ions in different tissues is another possibility to enable metabolic functions and to tolerate 

higher amounts of salt in the soil.  
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Vegetables are generally considered as glycophytes and therefore susceptible to soil salinity 

(Colla et al., 2010; Shahbaz et al., 2012). Eggplant (Solanum melongena L.) is a vegetable 

crop of high importance in the Mediterranean region with Egypt and Turkey belonging to the 

top five of eggplant producing nations (FAOSTAT, 2015). This vegetable is an important 

greenhouse crop for out of season production, however, secondary salinization due to non-

sustainable irrigated horticulture results in a decline in eggplant productivity. Few 

comparative studies concerning salt stress have been published on eggplant though growth 

parameters and horticultural performances have been used to select plants tolerant to salinity 

(Savvas and Lenz, 2000; Akinci et al., 2004). Chlorophyll a fluorescence proved to be a 

promising screening technique for salt tolerant eggplant cultivars (Chapter 4, Hanachi et al, 

2014). Yet, no information on how physiological and biochemical traits of eggplant cultivars 

with an opposing salt tolerance evolve under salt stress has been published. The aim of this 

research is to evaluate the genotypic variation of increasing salt stress response in eggplant. 

Two relative salt sensitive cultivars (‘Adriatica’ and ‘Black Beauty’) and two more tolerant 

cultivars (‘Bonica’ and ‘Galine’) based on chlorophyll fluorescence screening were used in 

this study (Chapter 4, Hanachi et al., 2014). The effects of increasing salt stress on plant 

water relations, osmotic adaptation and foliar accumulation of sodium and chloride in these 

four eggplant cultivars differing in salt tolerance was addressed. This knowledge might be of 

further advantage to screen eggplant cultivars tolerant to salt stress. 

5.2 Materials and methods  

5.2.1 Plant materials  

Four commercial eggplant (S. melongena L.) cultivars, two open-pollinated (‘Adriatica’ and 

‘Black Beauty’) and two F1 hybrids (‘Bonica’ and ‘Galine’) were used as plant material. 

Seeds were sown into 80 mL plug trays containing a peat-based medium on 3 May 2011 in a 

growth chamber at a constant temperature of 25°C, RH of 70%, photon flux density of 150 

µmol m
–2

 s
–1

 and photoperiod of 16 h. Eggplant seedlings were selected for uniformity and 

transplanted into 2 L plastic pots at the appearance of the second true leaf stage. Plants were 

transferred to a heated glasshouse with a minimum temperature set-point of 21°C (located at 

51°02’N, 03°42’E) and were fertigated with 250 mL full-strength Hoagland’s solution 

(Hoagland and Arnon, 1950), twice a week. The temperature in the glasshouse ranged 

between 22°C and 27°C while the daily maximum photon flux density averaged 340 µmol m
–

2
 s

–1
 (quantum sensor SKP215, Skye at plant canopy and connected to a data logger, type 
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DL3000, Delta-T, UK; data were logged every 10 min). Shading screens were used to 

prevent direct sunlight to the plants. 

5.2.2 Salinity treatments 

Five salinity treatments were applied starting 36 days (4
th

 leaf stage) after the transfer to the 

greenhouse. NaCl was added at 0 (control), 20, 40, 80 and 160 mM to a full-strength 

Hoagland‘s solution with electrical conductivity values of 1.18, 1.42, 2.75, 3.05, and 5.21 dS 

m
–1

 respectively. All solutions were prepared with distilled water. Plants were irrigated with 

250 mL per pot, which was applied twice a week during 30 days.  

Each treatment was applied to 20 plants per cultivar. The experiment was designed as a 

randomized complete block design, with four blocks. Each experimental unit contained five 

plants.  

5.2.3 Plant water status 

The midday leaf water potential (Ψl) (11 h – 12 h) of the youngest fully-expanded leaves was 

determined with a Scholander pressure chamber (model 1000, PMS Instrument Company, 

Albany, OR, USA). The leaf osmotic potential (Ψπ) was determined according to the method 

of Callister et al. (2006). Leaves were dried in an oven at 80°C for 48 h. Then, 20 mg of dry 

matter was extracted with 1 ml of distilled water in a water bath of 100°C for 1 hour. The 

extract was centrifugated for 3 minutes at 17000 g and the osmolarity of the supernatant was 

determined using an osmometer (Fiske One-Ten Micro Sample Fiske Associates, Howard, 

USA) and the osmotic potential (ψo) was calculated with the Van‘t Hoff equation: 

ψo = - (n/V) RT /[(m/V) (FM – DM)/DM] 

 

where ψo is the average osmotic potential of leaves (MPa); (n/V) is the measured osmolality 

(mOsm·kg
-1

); R is the gas constant (8.314 472 x 10
-6

 m
3
·mPa K

-1
 mol

-1
); T is the temperature 

in Kelvin; (m/V) is the leaf dry weight/the water volume of the extraction; DM is dry matter 

weight (g) and FM is the fresh matter weight (g). The analysis was done in 4 replicates per 

treatment. 

5.2.4 Growth parameters 

After 30 days of saline stress 8 plants (2 plants per block) were taken at random for each 

treatment. The fresh weigh (FW) of the aerial biomass and the number of leaves were 

measured. Dry weight (DW) was determined after 48 h drying at 60°C. The water content of 
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the aerial biomass (TWC) was calculated as (FW-DW/FW). Then, leaves were milled and 

stored until leaf mineral analysis.  

According to Jha et al. (2010) the plant tolerance index was measured as the total fresh 

weight (FW) of salt stressed plant ÷ total FW of control plants, and this index was related to 

the leaf sodium content for the salinity treatment 20 mM, 40 mM, 80 mM and 160 mM of 

NaCl.  

5.2.5 Metabolite analysis 

Fully developed upper leaves (2 leaves/replicate in a bulked sample) were harvested between 

12 h and 14 h from four plants in each treatment and for each variety after 30 days of salt 

stress treatments. Leaf material was grounded in liquid nitrogen and stored at -80°C until 

analysis. 

Sugars were extracted with 80% ethanol at 70°C for 10 min and further at 45°C for 3 hours, 

followed by centrifugation at 5,000 g for 5 min. Glucose, fructose and sucrose were analysed 

using high pH anion-exchange chromatography with pulsed amperometric detection (Waters; 

CarboPac MA1 column with companion guard column, eluent: 50 mM NaOH, 22°C). The 

remaining ethanol insoluble material was washed twice with ethanol 80% and the residual 

pellet was treated with HCl 1M for 2 hours at 95°C for starch hydrolysis. Starch was 

determined spectrophotometrically at 340 nm by the enzymatic reduction of NADP
+
 (UV-

VIS, Biotek Uvikon XL). 

Proline was determined according to Bates et al. (1973). Plant tissue (500 mg) was extracted 

with 10 mL of 3% (w/v) sulfosalicylic acid. After filtration, 2 mL acid ninhydrin and 2mL 

glacial acetic acid were added to the extracts (2 mL) and this mixture was kept at 100°C for 1 

hour in a water bath, then the reaction was stopped in an ice-bath. The formed chromophore 

was extracted from the acid aqueous solution by means of cold toluene (4 mL) and measured 

spectrophotometrically at λ = 520 nm (InfiniteM200 TECAN Group Ltd., Switzerland). The 

proline concentration was determined using a calibration curve and expressed as µg proline g
-

1
 FW. 

Lipid peroxidation wad measured as the amount of malondialdehyde (MDA) determined by 

the thiobarbituric acid (TBA) reaction (Hodges et al. 1999). Leaf material (1 g) was 

homogenized in 25 mL 80% ethanol, followed by centrifugation at 3000 g for 10 min. A 1 

mL aliquot of sample extract was added to 1 mL of thiobarbituric acid (TBA, 0.65% w/v) as 

well as to 1 mL of trichloroacetic acid (TCA, 20% w/v) and homogenates were incubated at 
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95°C for 25 min, cooled and centrifuged at 3,000 g for 10 min (4°C). The MDA content was 

measured based on the reaction with thiobarbituric acid (TBA) and the absorbance was 

measured at λ=440 nm, 532 nm and 600 nm by spectrophotometer (InfiniteM200 TECAN 

Group Ltd., Switzerland). Malondialdehyde (MDA) equivalents were calculated as described 

by Hodges et al. (1999). 

5.2.6 Mineral analysis 

P, K, Ca and Mg were determined by inductively coupled plasma (Ultima 2, Horiba Jobin 

Yvon S.A.S., France) after microwave digestion of leaf material (200 mg DW) with 5 M 

HNO3. The wavelengths used for determination of the elements were respectively, 177.49 nm 

for P, 285.21 nm for Mg, 317.93 nm for Ca and 766.49 nm for K. Nitrate and chloride were 

analysed by anion-exchange chromatography and monitored by suppressed conductivity 

detection (Ion Pac AS11 HC column, Dionex, Sunnyvale, California) after extraction of 500 

mg dried leaf material in 25 mL MilliQ water for 30 min. Na was analysed by flame 

photometry (Solaar AA, Thermo Fisher Scientific) after dry ashing at 525°C (1 g dried leaf 

material) followed by extraction with 4 M HCl. 

5.2.7 Statistical analysis 

Data were subjected to one way analysis of variance (ANOVA) followed by Tukey’s HSD 

test (P=0.05) to distinguish differences among the treatments using the software of SPSS 

Statistics 19 (IBM SPSS Statistics). 

5.3  Results 

5.3.1 Plant growth parameters 

Increasing salt stress affected the vegetative growth of the four eggplant cultivars. Although 

we noted a not always significant increase in number of leaves at 20 mM NaCl in all 

cultivars, a further increase of the salt level reduced the number of leaves progressively 

(Table 5.1). The highest salinity level (160 mM NaCl) decreased the number of leaves in 

‘Adriatica’, ‘Black beauty’, ‘Bonica’ and ‘Galine’ by respectively 35.9%, 28.2%, 18.0% and 

12.1% when compared to their respective controls. Increased salinity level also caused a 

shoot length reduction in ‘Adriatica’, ‘Black Beauty’, ‘Bonica’ and ‘Galine’ by respectively 

52.8%, 52.8%, 37.9% and 39.6% compared to their respective controls (Table 5.1). Thus, the 
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vegetative growth of ‘Adriatica’ and ‘Black Beauty’ was more affected than ‘Bonica’ and 

‘Galine’ under salt treatment. 

A significant decrease in dry biomass (DW) was observed for all cultivars though varietal 

differences were present. The highest decrease in DW was observed in ‘Adriatica’ and ‘Black 

Beauty’. For 160 mM NaCl DW decreased by 74.1% in ‘Adriatica’ and by 72.6% in ‘Black 

Beauty’ compared to their respective controls (Table 5.1). In contrast the decline in DW 

between the control and the 160 mM NaCl level was limited to 35.7% in ‘Bonica’ and 33.8% 

in ‘Galine’. Also a significant decrease in water content (TWC) was observed in the highest 

concentration of NaCl (160 mM) when compared to the respective control in the cultivars 

‘Adriatica’ (25.5%) and ‘Black Beauty’ (36.8%). In contrast, TWC remained quite stable in 

‘Bonica’ and ‘Galine’ (Table 5. 1). 

 

Table 5.1: Effect of increasing levels of NaCl on morphology and plant water status of four 

eggplant cultivars. Plant morphological parameters include number of leaves, plant height; 

aerial dry weight (DW) and plant water status includes tissue water content (TWC),  

Cultivar NaCl 

(mM) 

N° of 

leaves 

Height 

(cm) 

Internode 

length (cm) 

DW (g) TWC (%) 

Adriatica 0 7.2
a
 36.3

a
 5.07

a
 15.6

a
 79

a
 

 20 8.0
a
 35.3

a
 4.46

ab
 10.8

b
 77

a
 

 40 6.3
b
 30.1

b
 4.83

a
 6.7

c
 76

a
 

 80 5.4
c
 21.3

c
 4.07

bc
 5.0

d
 67

b
 

 160 4.6
c
 17.1

d
 3.78

c
 4.0

e
 58

c
 

Black Beauty 0 7.1
b
 36.3

a
 5.18

a
 16.0

a
 78

a
 

 20 8.0
a
 34.9

b
 4.38

b
 11.2

b
 76

a
 

 40 7.0
b
 30.2c 4.25

b
 4.1

c
 74

a
 

 80 6.1
c
 21.4

d
 3.57

c
 5.3

d
 61

b
 

 160 5.1
d
 17.1

e
 3.42

c
 4.3

e
 49

c
 

Bonica 0 9.4
ab

 34.2
b
 3.64

a
 25.7

a
 82

a
 

 20 10.0
a
 39.0

a
 3.90

a
 23.3

b
 82

a
 

 40 9.1
bc

 32.4
b
 3.56

ab
 19.5

c
 82

a
 

 80 8.5
c
 27.0

c
 3.23

b
 17.9

d
 82

a
 

 160 7.7
d
 21.2

d
 2.76

c
 16.5

e
 82

a
 

Galine 0 7.7
ab

 36.5
a
 4.73

a
 20.9

a
 81

a
 

 20 8.0
a
 38.2

a
 4.80

a
 19.1

b
 81

a
 

 40 7.6
ab

 32.2
b
 4.21

b
 17.2

c
 81

a
 

 80 7.2
bc

 28.2
c
 3.92

b
 15.2

d
 81

a
 

 160 6.8
c
 22.1

d
 3.27

c
 13.8

e
 81

a
 

Means followed by the same lowercase within each column and for each cultivar are not significantly different 

at P=0.05 according to Tukey’s HSD test (n=4). 
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Irrespective of the salt treatments the hybrid vigour of the F1 genotypes (‘Bonica’ and 

‘Galine’) compared to the open-pollinated genotypes was evident (Table 5.1). 

5.3.2 Plant-water relations 

Midday Ψl decreased significantly with increasing NaCl concentration in ‘Adriatica’ and 

‘Black Beauty’ and reached respectively -1.92 MPa and -1.88 MPa after 30 days at 160 mM 

NaCl (Table 5.2). In contrast Ψl remained quite stable in ‘Bonica’ and ‘Galine’ under 

increasing salt stress. The levels achieved under 160 mM NaCl (-0.62 and -0.64 MPa) 

evidenced that the tolerant cultivars hardly encountered an osmotic stress. Likewise salt stress 

significantly decreased Ψπ in ‘Adriatica’ and ‘Black Beauty’ reaching -2.52 MPa and -2.48 

MPa respectively at 160 mM NaCl while no effects on Ψπ were obtained in ‘Bonica’ and 

‘Galine’ (Table 5.2). 

 

Table 5.2: Effect of increasing levels of NaCl on midday leaf water potential (ψl ) and leaf 

osmotic potential (ψπ). 

Cultivar NaCl (mM) ψl (MPa) ψπ(MPa) 

Adriatica 0 -0.53
d
 -0.64

c
 

 20 -0.92
c
 -1.07

bc
 

 40 -1.32
b
 -1.52

b
 

 80 -1.48
b
 -1.64

b
 

 160 -1.92
a
 -2.52

a
 

Black Beauty 0 -0.51
c
 -0.61

c
 

 20 -0.91
c
 -1.06

bc
 

 40 -0.93
c
 -1.22

bc
 

 80 -1.39
b
 -1.53

b
 

 160 -1.88
a
 -2.48

a
 

Bonica 0 -0.47
a
 -0.62

a
 

 20 -0.51
a
 -0.63

a
 

 40 -0.58
a
 -0.65

a
 

 80 -0.61
a
 -0.66

a
 

 160 -0.62
a
 -0.68

a
 

Galine 0 -0.49
a
 -0.65

a
 

 20 -0.54
a
 -0.67

a
 

 40 -0.61
a
 -0.70

a
 

 80 -0.63
a
 -0.72

a
 

 160 -0.64
a
 -0.73

a
 

Means followed by the same lowercase within each column and for each cultivar are not significantly different 

at P=0.05 according to Tukey’s HSD test (n=4).  
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5.3.3 Biochemical parameters 

The foliar proline content increased significantly for all cultivars when exposed to increasing 

NaCl (Figure 5.1A). This increase was correlated to the severity of the salt stress. ‘Adriatica’ 

and ‘Black Beauty’ accumulated higher proline contents than ‘Bonica’ and ‘Galine’ when 

subjected to salt stress. ‘Adriatica’ showed the highest proline accumulation at 160 mM.  

MDA concentration as a measure of lipid peroxidation increased in all cultivars with 

increasing salt stress (Figure 5.1B). In ‘Adriatica’ and ‘Black Beauty’ MDA increased 

respectively by 11-fold and 10-fold in the 160 mM NaCl level compared to the controls 

whereas the MDA increase in ‘Bonica’ and ‘Galine’ was respectively 3-fold and 2-fold for 

the highest NaCl concentration compared to the controls. Consequently the induced lipid 

peroxidation under increasing salinity was more pronounced in the cultivars ‘Adriatica’ and 

‘Black Beauty’ than in ‘Bonica’ and ‘Galine’. 

 

Figure 5.1: Effect of salt stress on leaf proline content (µmol g
-1 

FW) (A) and on leaf lipid 

peroxidation (B) of the eggplant cultivar subjected to different NaCl concentrations. Data are 

means ± SE. Different lowercase letters indicate the significant difference between treatments 

(P=0.05) based on Tukey’s HSD test. 

 

Salt stress increased significantly glucose, fructose and sucrose content in the cultivars 

‘Adriatica’ and ‘Black Beauty’, this from 40 mM NaCl on (Figure 5.2). In contrast, 

increasing salt concentration lead to a non-significant decrease in glucose content for 

‘Bonica’ and ‘Galine’, and in fructose content for ‘Galine’. However the a significant 

decrease was noticed in  fructose content for ‘Bonica’ and in sucrose content for  the cultivars 

’Bonica’ and ‘Galine’ (Figure 5.2). Salt stress strongly increased starch accumulation in 
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‘Bonica’ and ‘Galine’ from 80 mM NaCl on but decreased leaf starch reserves in ‘Adriatica’ 

and ‘Black Beauty’ especially for 160 mM NaCl (Figure 5.2D). 

 

 

Figure 5.2 Effect of NaCl concentration on glucose (A), fructose (B), sucrose (C), and starch (D) 

levels in leaves of the eggplant cultivars. Data are means ± SE (not shown when smaller than the 

symbol). Different lowercase letters indicate the significant difference between treatments 

(P=0.05) based on Tukey’s HSD test. 
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5.3.4 Mineral content 

An increase of NaCl in the nutrient solution increased the foliar Na and Cl
-
 in all the cultivars 

(Table 5.3). These differences were significant from 40 mM NaCl for ‘Bonica’ and from 80 

mM NaCl for the other cultivars. However, for the highest NaCl concentration (160 mM) the 

strongest increase was observed in ‘Adriatica’ and ‘Black Beauty’. Indeed foliar Na content 

in ‘Adriatica’ was 2.7-fold higher than in ‘Bonica’. Likewise foliar Na content in ‘Black 

Beauty’ was 3.4-fold higher than in ‘Galine’. Leaf Cl
-
 accumulation was also stronger in the 

leaves in ‘Adriatica’ and ‘Black Beauty’ and were respectively 1.2-fold higher than Cl
-
 

content in ‘Bonica’ and ‘Galine’, respectively. 

Foliar K concentration decreased significantly from 80 mM NaCl on for ‘Adriatica’ and from 

160 mM on for the other cultivars. However, the decline of the foliar K content at the highest 

salt level was more pronounced for ‘Adriatica‘ and ‘Black Beauty’ (43% reduction) than for 

‘Bonica’ and ‘Galine’ (28% reduction) compared to the control treatment. Increasing salt 

stress induced no significant change in the Ca content in both ‘Bonica’ and ‘Galine’ whereas 

160 mM NaCl decreased leaf Ca content in ‘Adriatica’ and ‘Black Beauty’. Foliar Mg 

content was not affected by increasing salt stress in ‘Bonica’ and ‘Adriatica’ while 160 mM 

NaCl decreased Mg content in ‘Galine’ and ‘Black Beauty’.  

Leaf Na/K
 
and Na

/
Ca ratios were significantly higher under salt stress, this for all cultivars. 

There was a cultivar effect on these cation ratios resulting in higher leaf Na/K
 
and Na/Ca

 

ratios for ‘Adriatica’ and ‘Black Beauty’ than in ‘Bonica’ and ‘Galine’ (Table 5.2).  

Also nitrate and phosphor content were influenced by the salt stress. Leaf nitrate decreased 

from 80 mM NaCl in ‘Black Beauty’ and from 160 mM in ‘Adriatica’ while phosphor 

content decreased from 160 mM on in both cultivars. No significant effects on foliar nitrate 

and phosphor content were found in ‘Bonica’. However we noticed a significant impact on 

foliar nitrate in ‘Galine’ while increasing salinity hardly affected leaf phosphor. 
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Table 5.3: The effect of NaCl salinity on accumulation of, , K, Ca, Mg, Na, P, NO3
-
, Cl

- 
and on Na/K

 
and Na/Ca ratios in leaves. 

Cultivar NaCl  K
 
 Ca Mg Na P NO3

-
 Cl

-
 Na/K Na/Ca 

 (mM) (g/100 g DS)   

Adriatica 0 6.3
a
 3.0

a
 0.39

a
 1.1

b
 0.91

a
 4.1

 a
 2.5

c
 0.18

c
 0.38

c
 

 20 5.9
a
 2.9

a
 0.38

a
 1.4

b
 0.84

ab
 4.6

a
 3.1

c
 0.23

c
 0.47

c
 

 40 5.7
a
 2.9

a
 0.37

a
 2.5

b
 0.81

ab
 5.4

a
 3.5

c
 0.44

c
 0.87

c
 

 80 4.4
b
 2.4

ab
 0.33

a
 4.9

a
 0.79

ab
 3.6

a
 6.9

b
 1.11

b
 2.03

b
 

 160 3.6
b
 1.9

b
 0.32

a
 6.0

a
 0.67

b
 1.3

b
 11.1

a
 1.66

a
 3.26

a
 

Black Beauty 0 6.8
a
 3.3

a
 0.52

a
 1.1

c
 0.79

a
 9.7

a
 2.0

c
 0.19

b
 0.41

b
 

20 6.6
a
 3.3

a
 0.50

ab
 1.3

c
 0.76

ab
 8.3

a
 2.1

c
 0.17

b
 0.34

b
 

 40 6.3
a
 3.2

a
 0.46

ab
 1.8

c
 0.75

ab
 9.5

a
 2.8

c
 0.28

b
 0.54

b
 

 80 5.8
a
 3.1

a
 0.44

b
 4.6

b
 0.73

ab
 5.2

b
 5.6

b
 0.79

b
 1.46

b
 

 160 3.8
b
 2.3

b
 0.44

b
 8.4

a
 0.65

b
 2.1

c
 10.1

a
 2.27

a
 3.73

a
 

Bonica 0 5.8
a
 3.6

a
 0.52

a
 0.9

c
 0.77

a
 1.9

a
 3.2

d
 0.13

d
 0.22

c
 

 20 5.6
a
 3.1

a
 0.52

a
 1.3

bc
 0.76

a
 1.7

a
 4.3

cd
 0.23

cd
 0.42

bc
 

 40 5.4
a
 3.1

a
 0.50

a
 1.9

ab
 0.75

a
 1.3

a
 5.5

c
 0.35

bc
 0.60

ab
 

 80 5.3
a
 3.0

a
 0.48

a
 2.1

a
 0.69

a
 1.6

a
 7.1

b
 0.39

ab
 0.69

a
 

 160 4.4
b
 2.9

a
 0.45

a
 2.2

a
 0.65

a
 0.73

a
 8.9

a
 0.50

a
 0.75

a
 

Galine 0 5.9
a
 3.1

a
 0.50

a
 0.83

b
 0.91

a
 3.4

a
 2.7

c
 0.14

c
 0.26

b
 

 20 5.8
a
 3.1

a
 0.48

ab
 1.02

b
 0.89

a
 2.8

ab
 3.4

bc
 0.17

bc
 0.34

b
 

 40 5.7
a
 3.0

a
 0.48

ab
 1.7

ab
 0.86

a
 2.6

ab
 4.5

b
 0.30

bc
 0.56

ab
 

 80 5.6
ab

 2.9
a
 0.45

ab
 2.1

a
 0.83

a
 1.8

bc
 7.0

a
 0.39

ab
 0.70

a
 

 160 4.3
b
 2.9

a
 0.43

b
 2.5

a
 0.83

a
 0.9

c
 8.2

a
 0.60

a
 0.87

a
 

Means followed by the same lowercase within each column and cultivar within are not significantly different at P= 0.05 according to Tukey’s HSD test (n=4). 
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5.3.5 Plant tolerance index of eggplant cultivars 

For plants exposed to 20 mM, 40 mM, 80 mM and 160 mM NaCl the plant tolerance index 

(PTI) was calculated and related to the amount of Na in the leaves for all cultivars (Figure 

5.3). For leaf tissue our analysis shows a positive correlation for all four cultivars: Under 

increasing salinity ‘Bonica’ and ‘Galine’ combine low leaf Na
 
accumulation with high PTI 

thus maintaining a normal level of growth, while ‘Adriatica’ and ‘Black Beauty’ 

accumulating significantly higher concentrations of leaf Na failed to maintain a normal level 

of growth (low PTI) specially in 80 mM NaCl and 160 mM NaCl (Figure 5.3). 

 

 

Figure 5.3 Plant tolerance index related to salinity tolerance and the sodium content. Relation 

between leaf sodium content and plant salinity tolerance, as measured by total fresh weight 

(FW) in salt stressed plant ÷ total FW in control plants, in four eggplant cultivars. Results are 

mean ± SE of four replications. 
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5.4 Discussion 

Chlorophyll fluorescence screening of the studied eggplant genotypes indicated that 2 

genotypes were better adapted to salt stress (Chapter 4, Hanachi et al., 2014). In this study 

specific morphological and physiological determinants to further identify traits of 

sensitivity/tolerance in eggplant genotypes were characterised. 

Growth reduction is generally observed in plants exposed to salinity stress and this was 

reported for eggplants (Chartzoulakis and Loupassaki, 1997; Akinci et al., 2004). In this 

study, plant height, leaf number and internode length were affected by salinity in all cultivars. 

A level of 20 mM NaCl did not affect leaf initiation or was even slightly stimulating (‘Black 

Beauty’); though dry matter production was already reduced in all cultivars. A further 

increase of NaCl levels resulted in a decrease of leaf initiation, internode and shoot length 

and dry weight. Reduction in shoot growth generally occurs in two phases (Munns and 

Tester, 2008), the rapid response to osmotic stress is followed by a slower response due to the 

accumulation of Na in the leaves. The salt sensitive cultivars (‘Adriatica’ and ‘Black Beauty’) 

show this response and 80mM seems to be the threshold level between osmotic and ionic 

stress, while for ‘Bonica’ and ‘Galine’ the threshold level for ionic stress is not reached at 

160 mM indicating that Na accumulation in the leaves might be lower (see also further). In 

addition, levels of 80 mM NaCl decreased tissue water content (TWC) in ‘Adriatica’ and 

‘Black Beauty’ while ‘Bonica’ and ‘Galine’ could maintain their TWC up to 160 mM NaCl. 

In sand cultures or hydroponics the threshold value for most plants is approximately 40 mM 

NaCl (Munns and Tester, 2008). However, in our experimental system we used a peat 

substrate which has a cation exchange capacity (CEC) ranging between 120-130 meq/g DW 

and this probably explains the higher tolerance values for ionic stress we found. Yet, 

irrespective the growing medium, the genetic variation within Solanum melongena cultivars 

is evident. 

Leaf water potential followed the osmotic potential/EC changes in the nutrient solution 

resulting from NaCl addition as plants must maintain the water potential difference between 

leaves and solution to prevent wilting. As the leaf water potential declines, a linear decrease 

in osmotic potential contributes to prevent a rapid decline in turgor potential (Behboudien, 

1977). The salt-induced decline in ψ was accompanied by a decrease in ψπ in the sensitive 

cultivars (‘Adriatica’ and ‘Black Beauty’) thus maintaining turgor values of salt stressed 

plants similar or even higher than control plants. In contrast the tolerant cultivars (‘Bonica’ 
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and ‘Galine’) maintained relative stable values of ψ and ψπ under increasing salinity. The 

strongly reduced osmotic potential of the leaves of the sensitive eggplants is lowered through 

the uptake of Na
+
 and Cl

-
 and a simultaneous lower effective water uptake as seen from the 

decreased TWC values, which caused a greater solute concentration in the vacuole. This 

might indicate that ‘Bonica’ and ‘Galine’ have a tendency to act as isohydric species (Sade et 

al., 2012) under the applied salt stress. Isohydric plants maintain a constant midday leaf water 

potential (Ψ) when water is abundant, as well as under water deficiency conditions, by 

reducing stomatal conductance (gs) to limit transpiration. Isohydric plant maintained their 

WC thus more strictly.  

The adaptation of plants to salinity is associated with osmoregulation. Most plants growing in 

a saline environment accumulate low molecular weight water-soluble metabolites in the 

cytosol such as proline (Turan et al., 2007; Xu et al., 2012; Rejeb et al., 2014). In our work, 

proline increased in response to salinity in all cultivars; with the highest relative increase 

observed in the sensitive cultivars ‘Adriatica’ and ‘Black Beauty’ whereas a much lower 

increase was observed in ‘Bonica’ and ‘Galine’. Although it is generally agreed upon that 

proline accumulation is important the relative contribution of proline to stress tolerance varies 

among species or even among cultivars of a same species (Ahraf and Foolad, 2007; Abbas et 

al., 2010). The results obtained with the eggplant cultivars suggest that the increase in proline 

concentration is not correlated with salinity tolerance as for the sensitive eggplant cultivars a 

kind of overproduction of proline is observed. This agrees with similar observations in other 

crops such as rice (Moradi and Ismail, 2007), tomato (Bikash et al., 2005; Zgallai et al., 

2005). Stewart and Boggess (1978) showed that abiotic stress can also influence the catabolic 

pathway of proline, inhibiting its oxidation and thus leading to high proline levels. Proline 

catabolism seems to be an important mechanism to regulate proline levels in the halophyte 

Thellungiella (Kant et al., 2006). Also in potato reduced PDH expression (catabolic pathway) 

was found in two cultivars under salt stress (Jaarsma et al., 2013). On the other hand proline 

accumulation in plants acts also as a component of the non-enzymatic antioxidative defense 

system (Rejeb et al., 2014). MDA is widely used as an indicator of the extent of oxidation 

damage under stress (Jain et al., 2001). Both ‘Adriatica’ and ‘Black Beauty’ had a relative 

high level of MDA produced during peroxidation of membrane lipids at 160 mM NaCl. For 

the tolerant cultivars less salt is transferred into the leaves and this should evoke less 

oxidative damage in the leaves as found by the relative low increase of MDA in these 

cultivars. 
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Sugars that accumulate in response to stress can function as osmolytes to maintain cell turgor 

and have the ability to protect membranes and proteins from stress damage. Accumulation of 

sugars has been associated with salinity tolerant mechanisms in many species (Gilbert et al. 

1997; Hu and Shmidhalter, 1998; Xu et al., 2012). In this experiment, increasing salt stress 

led to an increasing sucrose, glucose and fructose levels in the sensitive cultivars ‘Adriatica’ 

and ‘Black Beauty’ therefore mobilizing their starch contents to maintain these high levels. In 

contrast, no accumulation but rather a decline in sucrose, glucose and fructose content was 

observed in the tolerant cultivars ‘Bonica’ and ‘Galine’ combined with starch accumulation. 

It is generally accepted that the elevation in the cellular osmolarity which result from the 

accumulation of compatibles solutes is associated to the influx of water into, or to a reduced 

efflux from, cell, thus providing the turgor necessary for the expansion of cells (Hare et al., 

1998). Despite the higher levels of soluble carbohydrates the sensitive cultivars could not 

maintain their water balance as indicated by a decreasing TWC under 80 mM and 160 mM 

NaCl. Also, the increasing cellular sugar accumulation could be a limiting factor for growth 

under salt stress and probably reduced translocation and thus utilization in the actively 

growing tissue will take place (Stoop and Pharr, 1994; Pattanagul and Thitisaksakul, 2008). 

The salt-susceptible cultivars indeed had a lower leaf initiation rate as observed by a reduced 

number of leaves. Furthermore reduced growth due to higher hexose levels in the cytoplasm 

could generate a feed-back inhibition on carbon metabolism which contributes to a lower 

CO2 assimilation (Krapp and Stitt, 1995; Krapp et al., 1991). Moreover the expression of 

Rubisco could be inhibited by a considerable accumulation of hexoses in the cytoplasm 

(Koch, 1996; Sawada et al., 1992). 

A different carbohydrate pattern was observed in the tolerant eggplant species. Also salt 

tolerant soybean (Liu and Staden, 2001), rice (Pattanagul and Thitisaksakul, 2008) and 

tomato lines (Balibera et al., 2000) were characterized by no sucrose accumulation under 

saline conditions. Salinity causes both ionic and osmotic stresses. We assume that in ‘Bonica’ 

mainly an osmotic stress is established, resulting in stomatal closure while ionic stress is 

hardly installed (based on Na and Cl
-
 content of leaves of ‘Bonica’, Table 5.3). 

Stomatal closure will lead to lower Ci and thus reduced photosynthesis. It is also known that 

plants partition sugars into starch to avoid metabolic damage by lowering feedback inhibition 

caused by the huge amount of sucrose in cytoplasm (Krapp and Stitt, 1995) although high 

leaf starch contents have also a negative effect on photosynthesis. As photosynthesis was not 
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measured in this experiment the observed carbohydrate partitioning is not well understood for 

the more salt tolerant ‘Bonica’. 

Reasonable amounts of both K and Ca are required to maintain the integrity and functioning 

of cell membranes (Davenport et al., 1997; Wenxue et al., 2003). Accumulation of Na and Cl
- 

is a common osmoregulatory response to NaCl stress (Levitt, 1980). At the same time, NaCl 

causes a decrease in concentration of K and Ca in plants (Chartzoulakis and Loupassaki, 

1997). Likewise, the results of the present study showed that NaCl treatment caused an 

increase in Na and Cl
-
 concentration, and a decrease in K, Ca, Mg, P and NO3

-
 concentration 

in all cultivars. However, the tolerant cultivars, ‘Bonica’ and ‘Galine’ accumulated lower 

foliar amounts of Na and Cl
-
 and maintained higher amounts of K, Ca, Mg and PO4

-
 as 

compared to the sensitive cultivars ‘Adriatica’ and ‘Black Beauty’. This agrees with previous 

finding obtained by Akinci et al (2004) for tolerant eggplant lines. Na/K and Na/Ca ratios 

were reported to be associated with a relative salt tolerance in many species, where tolerant 

genotypes had lower Na/K and Na/Ca ratio (Perez-Alfocea et al., 1996; Ashraf, 2004; Amor 

et al., 2005; Yasar et al., 2006; Akram et al., 2009). In fact the low Na/K ratio in the cytosol 

is essential for normal cellular functions of plants. While competing with K uptake, Na may 

block the K specific transporters under salinity. This contributes to a toxic level of Na as well 

as insufficient K concentration for enzymatic reactions and osmotic adjustment (Zhu, 2003; 

Yasar, 2006). In other studies, it was observed that tolerant genotypes regulated the osmotic 

potential more effectively by avoiding the uptake of Na and Cl
- 

and a simultaneous 

absorption of more essential ions such as K (Sivritepe et al., 2003;Yasar, 2006).  

Moreover, the ability of the plant to exclude Na and Cl
-
 from the cytosol via 

compartmentalization into vacuoles has been frequently reported as a salt tolerance 

mechanism employed by several glycophytes (Martinez Rodriguez et al., 2008; 

Paranychianakis and Angelakis, 2008). The high salt sensitivity in the cultivars ‘Adriatica’ 

and ‘Black Beauty’ is strongly associated with a considerable accumulation of salt ions in 

leaves especially Cl
- 
. This could be due to a salt exclusion system less effective in leaves of 

sensitive cultivars compared to tolerant cultivars (Silveira et al., 2012). The accumulation of 

this ion alters osmoregulation, the stability of the membrane potential and   the maintenance 

of turgor (Richards et al., 2010) and will lead to an ultimate cease of cell division and 

elongation and plant biomass. We found indeed a positive correlation between the PTI and 

leaf Na
+
 concentration and this was also reported by Jha et al. (2010) on Arabidopsis, by 

Jaarsma et al. (2013) on potato and by Chaaban et al. (2015) on barley cultivars. These 
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authors suggested that Arabidopsis and potato may use mechanisms involved with Na
+
 tissue 

tolerance, such as intracellular compartmentation and increased accumulation of compatible 

solutes. This was hypothesized by Munns and Tester (2008) as a possible tolerance 

mechanism in glycophytes and apparently Bonica and Galine respond in this way. 

5.5 Conclusion  

The metabolic responses to salt stress indicate two different responses. Proline increased 

hugely in response to salinity in sensitive cultivars while it hardly increased in the tolerant 

cultivars. However, the accumulation of this amino acid (proline) is more due to the 

metabolic damage caused by water stress rather than a resistance factor. Furthermore, salinity 

stress affects adversely carbohydrate metabolism in sensitive and tolerant cultivars. In 

sensitive ones, salinity caused a considerable accumulation of sugars (sucrose, glucose and 

fructose) in the leaves. However, under saline conditions, tolerant cultivars showed a decline 

of sugar content and starch accumulation.  

The tolerant cultivars, ‘Bonica’ and ‘Galine’ accumulated lower foliar amounts of Na and Cl
-
 

and maintained higher amounts of K, Ca, Mg and PO4
-
 as compared to the sensitive cultivars 

‘Adriatica’ and ‘Black Beauty’. Summing up that in our study, Na/K and Na/Ca ratios 

appeared to determine salinity tolerance also in eggplant. 
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Chapter 6 Contrasting responses of photosynthesis and 

stress adaptation in two eggplant cultivars (Solanum 

melongena L.) under different salt stress levels 

 

 

Abstract  

The effect of NaCl stress on gas exchanges, metabolic adaptation and mineral content of 

shoots and roots was invested in eggplant (Solanum melongena L.). Two cultivars, 

‘Bonica’ and ‘Black Beauty’, differing in their tolerance to salt stress were used.  

Significant decrease in net photosynthesis (An) was noticed in both cultivars under 

increasing salt stress though respiration rates (Rn and Rd) were not affected. 

Photorespiration (Rl), was more reduced in ‘Black Beauty’ than in ‘Bonica’ at 160 mM 

NaCl. The increase of the ratio Rl/An indicated that photorespiration was an important 

electron sink for ‘Bonica’ under salt stress. The ratio Jc/Jt was not affected by increasing 

salt levels except for ‘Black Beauty’ at 160 mM NaCl. Under 160 mM NaCl level less 

than 40% of the total electron flow was used for carboxylation of RuBP in ‘Black 

Beauty’ and ‘Bonica’. The ratio An/At decreased under increasing salinity in both 

cultivars while the ratio Rd/At increased.  

A concentration of 40 mM NaCl significantly reduced gs in Black Beauty, this for both 

13 and 21 DSS. Significant lower gs was only found for 160 mM NaCl in Bonica. 

Transpiration rate (E) was significantly reduced in ‘Black Beauty’ and ‘Bonica’. After 

21 DSS, E decreased by 72.1% and 67.2% respectively in ‘Black Beauty’ and ‘Bonica’.  

No significant effects were found on Fv/Fm for any of the cultivars. The highest salinity 

stress (160 mM NaCl) decreased ФPSII and qp in both cultivars however ‘Bonica’ 

maintained higher values than ‘Black Beauty’. At the highest salt stress level (160 mM 

NaCl) the increase in NPQ was respectively 18% for ‘Black Beauty’ and 8.0% for 
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‘Bonica’. Significant correlations between fresh biomass and ФPSII and between fresh 

biomass and qp were observed for ‘Black Beauty’ and ‘Bonica’.  

No significant effects on Chla, Chlb, total Chl, Chla/b and carotenoids (P>0.05) were 

found in any of the cultivars. Proline and MDA increased significantly in response to 

salinity in both cultivars. However proline and MDA increase was more pronounced in 

‘Black Beauty’. Furthermore, Black Beauty accumulated high levels of soluble 

carbohydrates in the leaves. On the other hand, Bonica accumulated high amounts of 

starch under increasing salt stress.  

Leaves of ‘Bonica’ accumulated lower concentration of Na than ‘Black Beauty’. At 160 

mM NaCl sodium accumulation was higher in the roots than in the leaves of ‘Bonica’. 

In contrast ‘Black Beauty’ accumulates higher Na in leaves than in roots. Leaf and root 

K contents were reduced respectively by 41.1% and by 27.9% in ‘Black Beauty’ at 160 

mM NaCl while no effect on K uptake was found for ‘Bonica’. Significant increases for 

the Na/K ratio were only observed in ‘Black Beauty’.  

The salt induced decreases in number of leaves, height, DW and FW of the two cultivars 

showed an overall similar trend, however, ‘Black Beauty’ was more affected than 

‘Bonica’. 
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6.1 Introduction 

Salinity is one of the most serious abiotic stresses limiting plant growth and development, 

especially in salt sensitive crop species (Pitman and Läuchli, 2002). The detrimental effect of 

high salinity on plants can be observed at the whole-plant level as the death of the plant 

and/or decreases in productivity. Many plants develop mechanisms either to exclude salt 

from their cells or to tolerate its presence within the cells. During the onset and development 

of salt stress within a plant, all the major processes such as photosynthesis, protein synthesis, 

and energy and lipid metabolism are affected. The earliest response is a reduction in the rate 

of leaf surface expansion, followed by a cessation of expansion as the stress intensifies 

(Parida and Das, 2004). Carbohydrates, which are needed for cell growth, are supplied 

mainly through the process of photosynthesis, and photosynthesis rates are usually lower in 

plants exposed to salinity and especially to NaCl.  

Photosynthesis, together with cell growth, is therefore one of the primary processes to be 

affected by salinity (Munns et al., 2006). Indeed, photosynthesis is known to be very sensitive 

to environmental stresses. Salinity reduces net photosynthetic rate, transpiration rate, and 

stomatal conductance in many plant species (Lakshmi et al., 1996; Tezara et al., 2002; 

Gibberd et al., 2002; Burman et al., 2003). Salt induced reduction of photosynthesis rate can 

be caused by partial stomatal closure caused by an associated osmotic stress (De Pascale and 

Barbieri, 1995; Goldstein et al., 1996;), non-stomatal limitations caused by excessive salt 

build-up and/or an ionic imbalance in the leaves (Yeo et al., 1985; Drew et al., 1990) or both 

limitations (Downton et al., 1990; Yeo et al., 1991). 

When NaCl directly inhibits photosynthesis the plant will likely suffer from oxidative stress. 

Oxidative stress will lead to damages of the plant cell membranes (Koca et al., 2007) and 

combined with high levels of salt ions to disintegration of organelles, with chloroplasts being 

the most sensitive organelles to salt stress (Demetriou et al., 2007). Salinity tolerance is 

highly related to the maintenance of net photosynthetic rates and stomatal conductance 

(Lakshmi et al., 1996) and elevated chlorophyll concentration (Krishna Raj et al., 1993; 

Salama et al., 1994). Low salinity maintains chlorophyll content (Winicov and Button, 1991) 

and high salinity degrades chlorophyll content (Malibari et al., 1993; Salama et al., 1994). 

Excess salt leads to a change in the ionic composition of the stroma of the chloroplasts which 

in turn can cause shrinkage of the thylakoids and stacking of adjacent membranes in grana 

(see review by Ashraf 2004). An irreversible impairment of the photosynthetic apparatus, 
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associated with a reduction of Rubisco activity, occurs when the stress is prolonged and salt 

continues to accumulate in the leaves (Delfine et al., 1999).  

As an indirect consequence of stomatal closure, lower intercellular CO2 concentration will 

increase the susceptibility to photochemical damages as excessive light energy at PSII level 

will increase due to low CO2 assimilation rates. Wang et al. (2007) showed that NaCl stress 

(200 mM) inhibited the electron transport activity of PSII more than that of PSI. Also in 

susceptible eggplant cultivars (chapter 4) chlorophyll fluorescence measurements, showed a 

considerable decrease in the efficiency of PSII and ETR under increasing salt stress. The 

absorbed energy non-utilized in the photochemical pathway was dissipated as heat and this 

was confirmed by the concomitant increase in NPQ. Such increase was suggested to cause a 

down-regulation of PSII in order to avoid over-reduction of QA, the first quinone electron 

acceptor of PSII (Krupa et al., 1993; Ramalho and Nunes, 1999). As proposed by Lima et al. 

(2002) and Damatta et al. (2002) under drought stress, the reduction of O2 via the Mehler-

peroxidase pathway and possibly photorespiration might provide photo-protection by acting 

as an alternative sink for excess energy in the photosynthetic apparatus. Photorespiration may 

thus be an alternative sink for light induced electron flow, and it is often presented as a 

process that may help consume an appreciable electron flow during periods of restricted CO2 

availability in the chloroplasts and high irradiance (Krause and Cornic, 1987; Stuhlfauth et 

al., 1990). According to Valentini et al (1995) the ratio JC/JO is a good indicator of relative 

rates of carboxylation versus oxygenation and may be directly controlled by the kinetic 

properties of Rubisco. However no data on the role of this alterative sink under stress 

conditions are available in eggplants. 

In this study we investigate the effects of salt stress on the regulation of photosynthesis in the 

salt tolerant eggplant cultivar ‘Bonica’ and the salt susceptible cultivar ‘Black Beauty’. This 

study was further supplemented with measurements of typical reactions to salt stress such as 

lipid peroxidation of the cell membranes, proline content, carbohydrate and mineral content. 

Furthermore we tried to get insight if a different distribution of sodium and chloride ions in 

roots and aerial parts existed between these cultivars and if this was correlated with 

photosynthetic efficiency. 
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6.2 Materials and methods  

6.2.1 Plant materials  

Two eggplant (Solanum melongena L.) cultivars, ‘Bonica’ and ‘Black Beauty’ were used as 

plant material. Seeds were germinated in trays filled with peat in a growth chamber at a 

constant temperature of 25°C, RH of 70 % and photon flux density of 150 µmol m
-2 

s
-1

. After 

25 days eggplant seedlings at the appearance of the second true leaf stage were selected for 

uniformity and transplanted to 2 L plastic pots filled with peat. Plants were transferred to a 

heated glasshouse (located at 51°02’N, 03°42’E) and supplied with a full-strength 

Hoagland‘s solution (Hoagland and Arnon, 1950). During the salt stress experiment the mean 

temperature was 22°C and the mean air humidity was 72%.  

6.2.2 Salinity treatments 

Four salinity treatments were applied starting 36 days after the transfer to the greenhouse (4
th

 

leaf stage). NaCl was added at 0 (control), 40, 80 and 160 mM to a full-strength Hoagland‘s 

solution. Plants were irrigated with 250 mL/pot which was applied twice a week during 30 

days. Each treatment was applied to 20 plants per cultivar (5 plants/block). The experiment 

was a randomized complete block design with five replications for each treatment. 

6.2.3 Gas exchange and chlorophyll fluorescence measurements  

To determine the effect of salt on foliar gas exchange, measurements were conducted once a 

day (09:00h and 12:00h) on four randomly selected plants from each of the four treatments. 

This was done on 13 DSS (13
th

 of June 2012) and 21 DSS (21
st
 of June 2012). Measurements 

were performed on sunny days. All measurements were conducted on the youngest fully 

developed leaves. Gas exchange and chlorophyll fluorescence parameters were measured 

using a portable photosynthesis system (model LI-6400; Li-Cor Biosciences, Lincoln, NE, 

USA) fitted with fluorescence head (6400-40 Leaf Chamber Fluorometer, Li-Cor 

Biosciences, Lincoln, NE, USA). Light saturated net photosynthesis (An, µmol CO2 m
-2 

s
-1

), 

stomatal conductance (gs, mol H2O m
-2 

s
-1

) and transpiration rate (E, mmol H2O m
-2

s
-1

) were 

measured on the selected plants. Mitochondrial respiration during the night was measured on 

dark covered leaves early in the morning (Rn, µmol m
-2 

s
-1

). The mitochondrial respiration 

during the day (Rd, µmol m
-2

s
-1

) was estimated from Rn according to Valentini et al. (1995).  

The chamber temperature of the fluorescence head was set to match the actual temperature 

measured in the treatment environment at the start of the measurement (25°C). The light 
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source of the fluorescent head was maintained at 1,500 µmol photons m
-2

s
-1

 and CO2 was 

maintained at treatment conditions 400 µmol CO2 mol
-1

.   

To evaluate the presence of photo-inhibitory processes, the maximum quantum yield of PSII 

(Fv/Fm) was measured on dark adapted leaves (30 min). Red actinic light (1,500 µmol m
-2

s
-1

) 

was then switched on and the quantum yield of PSII electron transport (ΦPSII), the efficiency 

of energy capture by the open PSII reaction centre were determined by measuring steady-

state fluorescence and maximum fluorescence during a light saturation pulse of 7,000 µmol 

m
-2

s
-1

 recorded on the adaxial surface of the same leaves used for gas exchange 

measurements. Fv/Fm, ΦPSII, photochemical quenching (qp,), and non-photochemical 

quenching NPQ were calculated as follows: 

Fv/Fm = (Fm-F0/Fm) 

ΦPSII = (Fm’-Fs)/Fm’ 

qp = (Fm’-Fs)/(Fm’-F0’) 

NPQ = (Fm-F’m)/Fm 

Where F0 is the initial fluorescence in leaves submitted to a period of darkness; Fm= 

maximum fluorescence in leaves acclimated to darkness; Fv = variable fluorescence in leaves 

acclimated to darkness (Fv = Fm-F0); F0’= initial fluorescence in leaves submitted to ambient 

light, Fm’ is the maximum fluorescence in leaves submitted to ambient light, Fs is the steady 

fluorescence in leaves acclimated to ambient light. 

According to Krall and Edwards (1992) the total electron flow (Jt) can be derived from the 

quantum yield of PSII (ΦPSII ), the light intensity incident on the leaf (PAR), the fractional 

absorption of light by leaf (a) and the absorptance of PSI + PSII (f): 

Jt = ΦPSII × PAR × a × f (µmol m
-2

 s
-1

) 

where ‘a’ equals 0.84 and ‘f’ equals 0.5 (Schreiber, 1997). 

The partitioning of electrons between photosynthesis (Jc) and photorespiration (Jo) was 

obtained using the values of the electron transport rate (Jt), An and mitochondrial respiration 

rate in the light (Rd), as follows (Epron et al. 1995): 

Jc = 1/3 [Jt + 8(An + Rd)] and Jo = 2/3 [Jt - 4(An + Rd)] (µmol m
-2

 s
-1

) 

Photorespiration (Rl, µmol CO2 m
-2

 s
-1

), was calculated according to Valentini et al. (1995): 

Rl = 1/12 [Jt - 4(An + Rd)] (µmol m
-2

 s
-1

) 
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Total assimilation rate was calculated as Atot = (An+ Rd+ Rl). Light use efficiency (LUE) was 

calculated as An/PAR (Long et al., 1993) (PAR=1500 µmol m
-2

s
-1

), the apparent 

carboxylation efficiency (CE) was calculated as An/Ci (Flexas et al., 2001) and water use 

efficiency (WUE) was calculated as An/Tr (Hamid et al., 1990). 

 

 

   

Photo 6.1: Dark (a) and light (b) measurments of gas exchange and chlorophyll fluorescence 

parameters. 

 

6.2.4 Metabolite analysis  

Fully developed upper leaves (2 leaves/replicate in a bulked sample) were harvested between 

12 h and 14 h from four plants in each treatment (1 plant/block) and for each variety after 30 

days of salt stress. Leaf material was grounded in liquid nitrogen and stored at -80°C until 

analysis.  

Pigments (150 mg FW) were extracted with 80% acetone. Pigments were measured 

spectrophotometrically (UVIKONXL, BIO-TEK Instrument, USA), this in four replicates. 

Chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoids (μg g
-1

 FW) were calculated 

according to Lichtenthaler (1987): 

Chla = 12.25 A663.2 - 2.79 A646.8 

Chlb = 21.5 A646.8 - 5.1A663.2 

Carotenoids = (1000 A470 - 1.82 Chl a - 85.02 Chl b) / 198. 

(a) (b) 
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Sugars were extracted with 80% ethanol at 70°C for 10 min and further at 45°C for 3 hours, 

followed by centrifugation at 5000 g for 5 min. Glucose, fructose and sucrose were analysed 

using high pH anion-exchange chromatography with pulsed amperometric detection (Waters; 

CarboPac MA1 column with companion guard column, eluent: 50 mM NaOH, 22°C). The 

remaining ethanol insoluble material was washed twice with ethanol 80% and the residual 

pellet was treated with HCl 1M for 2 hours at 95°C for starch hydrolysis. Starch was 

determined spectrophotometrically at 340 nm by the enzymatic reduction of NADP
+
 (UV-

VIS, Biotek Uvikon XL). 

Proline was determined according to Bates et al. (1973). Plant tissue (500 mg) was extracted 

with 10 mL of 3% (w/v) sulfosalicylic acid. After filtration, 2 mL acid ninhydrin and 2mL 

glacial acetic acid were added to the extracts (2 mL) and this mixture was kept at 100°C for 1 

hour in a water bath, then the reaction was stopped in an ice-bath. The formed chromophore 

was extracted from the acid aqueous solution by means of cold toluene (4 mL) and measured 

spectrophotometrically at λ = 520 nm (Infinite M200 TECAN Group Ltd., Switzerland). 

Proline was determined using a calibration curve and expressed as µg proline g
-1

 FW. 

Lipid peroxidation was measured as the amount of malondialdehyde (MDA) determined by 

the thiobarbituric acid reaction (Hodges et al. 1999). Leaf material (1 g) was homogenized in 

25 mL 80% ethanol, followed by centrifugation at 3,000 g for 10 min. A 1 mL aliquot of 

sample extract was added to 1 mL of thiobarbituric acid (TBA, 0.65% w/v) as well as to 1 

mL of trichloroacetic acid (TCA, 20% w/v) and homogenates were incubated at 95°C for 25 

min, cooled and centrifuged at 3,000 g for 10 min (4°C). The MDA content was measured 

based on the reaction with thiobarbituric acid (TBA) and the absorbance was measured at 

λ=440 nm, 532 nm and 600 nm by spectrophotometer (InfiniteM200 TECAN Group Ltd., 

Switzerland). Malondialdehyde (MDA) equivalents were calculated as described by Hodges 

et al. (1999). 

6.2.5 Mineral analysis 

Eight leaves were harvested from four plants in each treatment (1 plant/block) and for each 

variety and combined into a composite sample, dried at 70 °C for 48 h and then grounded. 

After dry-ashing at 550°C P, K, Ca, Mg, S, and Na were measured using ICP-OES (Iris 

Intrepid IIXSP, Thermo Scientific, USA). A potentiometric analysis using an ion-selective 

electrode (VWR, Belgium) for chlorides was performed. 
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6.2.6 Growth parameters and plant water status  

At the end the experiment (30 DSS) eight plants were taken at random of each treatment (2 

plants x 4 blocks). The fresh weigh (FW) of the aerial part of the plant (shoot and leaves) and 

the number of leaves were measured. The samples were then dried in a forced draft oven at 

70°C for 48 h and dry weight (DW) was determined. The tissue water content (TWC) was 

calculated as the (FW-DW/FW) ratio. 

The leaf water potential (ψmidday) of the youngest fully-expanded leaves was determined with 

a Scholander pressure chamber (model 1000, PMS Instrument Company, Albany, OR, USA). 

The leaf osmotic potential (ψπ) was determined according to Callister et al. (2006). 

Measurements were done in four replicates (See chapter 5). 

6.2.7 Statistical analysis 

All analyses were carried out on a completely randomized design. All data obtained were 

subjected to one way analysis of variance (ANOVA) to determine the significant differences 

between the treatments or cultivars using the software of SPSS Statistics 21. Tukey’s multiple 

range test (P=0.05) was used to compare the means. Principal component analysis (PCA) was 

carried out on FW, DW, TWC, total chlorophyll content, ФPSII, ETR, qp, osmotic potential, 

leaf water potential, Fv/Fm, proline, starch, Na/K ratio in leaves, Na/K ratio in roots and MDA 

of the eggplant cultivars . Only PCAs with eigenvalues > 1, thus explaining more than a 

single parameter alone, were extracted. For these principal components a varimax rotation 

was applied on the obtained factor loading. This rotation results in simpler factors, relating 

parameters mainly to one principal component axis (Manly 1994). All statistical analyses 

were carried out using SPSS 21 (IBM SPSS Statistics). 

6.3 Results 

6.3.1 NaCl induced changes in gas exchange parameters 

The temporal change in photosynthetic capacity under increasing salinity is shown in Figure 

6.1. At 13 DSS a significant decrease in net photosynthesis (An) was noticed in both cultivars 

under increasing salt stress (Figure 6.1A). At 160 mM NaCl An was reduced by 69.2% and 

78.4% respectively in ‘Black Beauty’ and ‘Bonica’ when compared to their respective 

controls. A similar trend was found in both cultivars at 21 DSS (Figure 6.1B). The 

mitochondrial respiration (Rn and Rd) was not affected by increasing salt stress in ‘Black 
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Beauty’ and ‘Bonica’ after 13 and 21 DSS (Figure 6.1C and E). However at 13 DSS, 

although no significant impact is shown, ‘Bonica’ maintained higher Rn (P = 0.08) and Rd (P 

= 0.121) than ‘Black Beauty’ for the highest salinity level salinity (160 mM NaCl) (Figure 

6.1E). Overall Bonica had a significant higher Rd (P=0.001) and Rn (P < 0.003) than Black 

Beauty at 13 DSS.  

Thirteen days after applying salt stress (13 DSS) the photorespiration (Rl) started to decrease 

significantly in both cultivars. However the reduction of Rl was more pronounced in ‘Black 

Beauty’ than in ‘Bonica’ in the 160 mM NaCl (Figure 6.1G). After 21 DSS ‘Black Beauty’ 

had lower values of Rl than ‘Bonica’ for the highest level of salinity treatment (P= 0.033; 

Figure 6.1H). 

At 13 DSS salinity decreased significantly the gross photosynthesis (At) in both cultivars. At 

was reduced by 55.1% and by 51.3% respectively in ‘Black Beauty’ and ‘Bonica’ (Figure 

6.2A). The same finding observed at 13 DSS, was noticed at 21 DSS (Figure 6.2B). 

Total electron flow (Jt) was negatively affected in both ‘Black Beauty’ and ‘Bonica’ under 

saline conditions. Significant negative effects of salt stress in Jt were noticed in ‘Black 

Beauty’ (P=0,003) and ‘Bonica’ (P=0.003) from 13 DSS on. Jt was reduced by 50.8% and 

51.9% respectively in ‘Black Beauty’ and ‘Bonica’ for 160 mM NaCl compared to their 

respective controls. Also at 21 DSS a reduction of 51.3% (P=0.017) and by 48.2% (P=0.021) 

was observed respectively in ‘Black Beauty’ and in ‘Bonica’ for 160 mM of NaCl compared 

to their respective controls. Moreover ‘Black Beauty’ tended to lower values of Jt than 

‘Bonica’ after 13 DSS (P=0.09). 

To gain insight into the relative importance of the photorespiratory pathway as a mechanism 

for dissipating excess energy, we estimated the carboxylative and oxygenative electron flows 

as well as the ratio Jo/Jt and Jc/Jt. The carboxylative electron flux (Jc) decreased significantly 

from 80 mM NaCl in ‘Black Beauty’ and from 40 mM NaCl in ‘Bonica’ at 13 DSS (Figure 

6.2C). The decrease at 160 mM NaCl reached 51.3 % in ‘Bonica’ and 54.7% in ‘Black 

Beauty’ though ‘Bonica’ maintained higher absolute values of Jc (42.84 µmol m
-2

 s
-1

) than 

‘Black Beauty’ (34.32 µmol m
-2

 s
-1

) (Figure 6.2C). A similar trend for Jc was observed in 

‘Bonica’ and ‘Black Beauty’ after 21 DSS (Figure 6.2D). 
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Figure 6.1: Changes in net assimilation (An), mitochondrial respiration during the night (Rn) 

and day (Rd) and photorespiration (Rl) in leaves of the eggplant cultivars (‘Black Beauty’ and 

‘Bonica’) subjected to different NaCl concentrations (date 1: June 13, 2012; date 2= June 21, 

2012). Data are means ± SE. Different lower case letters indicate the significant difference 

between treatments (P=0.05) based on Tukey’s HSD test. 
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Figure 6.2: Changes in At, Jc, Jo and Jt in leaves of the eggplant cultivars (‘Black Beauty’ and 

‘Bonica’) subjected to different NaCl concentrations in two dates (date 1: June 13, 2012; date 2= 

June 21, 2012). Data are means ± SE. Different lower case letters indicate the significant 

difference between treatments (P=0.05) based on Tukey’s HSD test 
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At 13 DSS, oxygenative electron flux (Jo) decreased significantly in ‘Black Beauty’ from 80 

mM NaCl on, while for Bonica relative high within treatment fluctuations were observed and 

therefore no significant effect on Jo was observed (Figure 6.2E). Overall Jo was higher in 

Bonica (P=0.033). Twenty one days after applying salt stress a decreasing though not 

significant trend for Jo was noticed in ‘Black Beauty’ and ‘Bonica’ from 80 mM NaCl on 

(Figure 6.2F). Also at 21 DSS ‘Bonica’ maintained higher values of Jo (26.3 µmol m
-2

 s
-1

) 

than ‘Black Beauty’ (13.9 µmol m
-2

 s
-1

) at 160 mM NaCl. 

The relative importance of Jc and Jo are indicated by the ratio Jc/Jt and Jo/Jt. The ratio Jc/Jt was 

not affected by increasing salt levels (Figure 6. 3E and F). In general more than 60% of the 

total electron flow was used for carboxylation of RuBP in both cultivars. Similar, no 

significant effect of salinity was present at 13 DSS in ‘Black Beauty’ and ‘Bonica’ for Jo/Jt 

ratio. In general less than 40% of the total electron flow was used for oxygenation of RuBP in 

‘Black Beauty’ and ‘Bonica’ (Figure 6.3H). 

At 13 DSS, the ratio An/At decreased under increasing salinity in both cultivars (Figure 6. 

3A). A significant lower ratio was found for 160 mM NaCl. Likewise, at 21 DSS the ratio 

An/At was significant lower at 160 mM NaCl for ‘Black Beauty’ and ‘Bonica’ (Figure 6.3B).  

The ratio Rd/At increased under increasing salt stress in both cultivars and for both measuring 

dates (13 DSS and 21 DSS). This increase was more pronounced in ‘Bonica’ than in ‘Black 

Beauty’ at 13 DSS while one week later the Rd/At ratio further increased for ‘Black Beauty’ 

but stabilized in ‘Bonica’ (Figure 6.3D). 

Furthermore we evaluated the correlation between gas exchange parameters at 21 DSS and 

leaf sodium content (measured at 30 DSS). High negative correlations (r ≥ -0.68) were found 

between An, At, Jc, and Jt, with Na accumulation in leaves of ‘Black Beauty’ and ‘Bonica’ 

(Table 6.1; Table 6.2). A moderate negative correlation was found between Rl and Jo and the 

Na content of the leaves (-0.56<r<-0.68).  

With respect to the gas exchange parameters, higher values of At and An in Black Beauty are 

correlated with higher values of Rl, Jo, Jc, Jt, gs and E. Significant correlations were also 

observed in ‘Bonica’. Higher values of At and An were correlated with higher values of Rl, Jc, 

gs, Jo, Jt and E.  

 



Chapter 6 

124 

 

Figure 6.3: Changes in An/At, Rd/At, Jc/Jt and Jo/Jt ratio in leaves of the eggplant cultivars 

(‘Black Beauty’ and ‘Bonica’ ) subjected to different NaCl concentrations in two dates (date 1: 

June 13, 2012; date 2= June 21, 2012). Data are means ± SE. Different lower case letters indicate 

the significant difference between treatments (P=0.05) based on Tukey’s HSD test.  

13 DSS
A

n
 /
 A

t

0.0

0.2

0.4

0.6

0.8
0 mM NaCl 40 mM NaCl 80 mM NaCl 160 mM NaCl

21 DSS

A
n

 /
 A

t

0.0

0.2

0.4

0.6

0.8

A

R
d

 /
 A

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
d

 /
 A

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C

J
c

 /
 J

t

0.0

0.2

0.4

0.6

0.8

B

J
c

 /
 J

t

0.0

0.2

0.4

0.6

0.8

E

Black Beauty Bonica 

J
o

 /
 J

t

0.0

0.1

0.2

0.3

0.4

0.5

D

Black Beauty Bonica 

J
o

 /
 J

t

0.0

0.1

0.2

0.3

0.4

0.5

F

G H

A

AB

AB

B

A

AB

AB

B

A
A

A

A

B

AB

AB

A

A

BBC

C

A

A

A A

A

A

A
A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A A

A

A
A

AA

A

AB

A

B

A

AB

AB

B

A A

A A

A
A

A

A

A

- = - ~ 



Chapter 6 

125 

 

 

Table 6.1: Correlations between gas exchange parameters, chlorophyll content, parameters of the plant water balance and leaf Na contents in ‘Black 

Beauty’ after 21 days of salt treatment. The significant correlations are indicated with * or ** for significance levels of 0.05 and 0.01, respectively. 

 

NaCl 

Chla Chlb 

Total 

Chl An Rl At Jc Jo Jt gs E 

NaCl - - - - -0,79
**

 - 0,56
*
 -0,74

**
 -0,74

**
 -0,56

*
 -0,69

**
 -0,77

**
 -0,78

**
 

Chla - - 0.87
**

 0.98
**

     - - - - 

Chlb - 0,87
**

 - -     - - - - 

Total 

Chl - 0,98
**

 - -     - - - - 

An -0,79
**

 - - - - 0.72
**

 0.95
**

 0.95
**

 0.72
**

 0.89
**

 0.89
**

 0.89
**

 

Rl -0,56
*
 - - - 0.72

**
 - 0.86

**
 0.86

**
 1

**
 0.95

**
 - - 

At -0,74
**

 - - - 0.95
**

 0.86
**

 - 1
**

 0.86
**

 0.97
**

 0.81
**

 0.82
**

 

Jc -0,74
**

 - - - 0.95
**

 0.86
**

 1
**

 - 0.86
**

 0.97
**

 0.81
**

 0.82
**

 

Jo -0,56
*
 - - - 0.72

**
 1

**
 0.86

**
 0.86

**
 - 0.95

**
 - - 

Jt -0,69
**

 - - - 0.89
**

 0.95
**

 0.97
**

 0.97
**

 0.95
**

 - 0.68
**

 0.69
**

 

gs -0,77
**

 - - - 0.89
**

 - 0.81
**

 0.81
**

 - 0.68
**

 - 0.99
**

 

E -0,78
**

 - - - 0.89
**

 - 0.82
**

 0.82
**

 - 0.69
**

 0.99
**

 - 
The bold numbers, in Table 7 are used to emphasize the correlation between leaf Na content and gas exchange parameters.  
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Table 6.2: Correlations between gas exchange parameters, chlorophyll content, parameters of the plant water balance and leaf Na contents in 

‘Bonica’ after 21 days of salt treatment. The significant correlations are indicated with * or ** for significance levels of 0.05 and 0.01, respectively. 

 

NaCl 

Chla Chlb 

Total 

Chl An Rl At Jc Jo Jt gs E 

NaCl - - - - -0.75
**

 -0.52
*
 -0.75

**
 -0.75

**
 -0.52

*
 -0.68

**
 -0.76

**
 -0.77

**
 

Chla - - 0.94
**

 0.99
**

 - - - - - - - - 

Chlb - 0.94
**

 - 0.97
**

 - - - - - - - - 

Total 

Chl - 0.99
**

 0.97
**

 - - - - - - - - - 

An -0.75
**

 - - - - 0.67
**

 0.95
**

 0.95
**

 0.67
**

 0.87
**

 0.88
**

 0.86** 

Rl -0.52
*
 - - - 0.67

**
 - 0.82

**
 0.82

**
 1

**
 0.94

**
 0.62

**
 0.63** 

At -0.75
**

 - - - 0.95
**

 0.82
**

 - 1
**

 0.82
**

 0.96
**

 0.82
**

 0.81** 

Jc -0.75
**

 - - - 0.95
**

 0.82
**

 1
**

 - 0.82
**

 0.96
**

 0.82
**

 0.81** 

Jo -0.52
*
 - - - 0.67

**
 1

**
 0.82

**
 0.82

**
 - 0.94** 0.62** 0.63** 

Jt -0.68** - - - 0.87
**

 0.94
**

 0.96
**

 0.96
**

 0.94
**

 - 0.77
**

 0.77** 

gs -0.76
**

 - - - 0.88
**

 0.62
**

 0.82
**

 0.82
**

 0.62
**

 0.77
**

 - 0.99** 

E     0.86
**

 0.63
**

 0.81
**

 0.81
**

 0.63
**

 0.77
**

 0.99
**

 - 
The bold numbers, in Table 7 are used to emphasize the correlation between leaf Na content and gas exchange parameters.  
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NaCl decreased significantly light use efficiency (LUE) in both cultivars this as well at 13 

DSS and 21 DSS (Figure 6.8A and B). At 13 DSS no significant effects of increasing salt 

stress on carboxylation efficiency (CE) were noticed. However, after 21 DSS a significant 

decrease was found for ‘Bonica’ from 40 mM on (Figure 6.4D) and a decreasing tendency in 

Black Beauty from 80 mM on. 

 

 

Figure 6.4: Changes in light use efficiency (LUE) and carboxylation efficiency(CE) in leaves of 

the eggplant cultivars (‘Black Beauty’ and ‘Bonica’) subjected to different NaCl concentrations 

at 13 DSS and 21 DSS (date 1: June 13, 2012; date 2= June 21, 2012). Data are means ± SE. 

Different lower case letters indicate the significant difference between treatments (P=0.05) based 

on Tukey’s HSD test. 
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6.3.2 NaCl induced changes in chlorophyll fluorescence parameters 

No significant effects were found on Fv/Fm for any of the cultivars, this for both 13 DSS and 

21 DSS (Figure 6.5A and B).  

Significant differences in ФPSII were observed in ‘Black Beauty’ and ‘Bonica’ (Figure 6.5C 

and D). ФPSII was reduced progressively and significantly from 13 DSS in ‘Black Beauty’ 

(P=0.003) and in ‘Bonica’ (P=0.003). The decrease of ФPSII in ‘Black Beauty’ was slightly 

more pronounced than in ‘Bonica’. In fact ФPSII was reduced in ‘Black Beauty’ by 51.4% at 

21 DSS for a level of 160 mM NaCl (P=0.017) compared to the control. Also in ‘Bonica’ we 

noticed a decline of ФPSII by 47.6% at 21 DSS for a level of 160 mM NaCl (P=0.041) 

compared to the control. Significant correlations between fresh biomass and ФPSII (r =0.863 , 

P=0.010) and between fresh biomass and qp (r =0.880, P=0.016) were observed for ‘Black 

Beauty’. Likewise, significant correlations between fresh biomass and ФPSII (r =0.979,  

P=0.000) and between fresh biomass and qp (r=0.983, P=0.000) were observed for ‘Bonica’. 

At 13 DSS, salt stress affected qp similarly in ‘Black Beauty’ (P=0.05) and ‘Bonica’ 

(P=0.016). For the level of 160 mM NaCl qp decreased by 52% both cultivars compared to 

their respective control (Figure 6.4E). After 21 DSS only for ‘Black Beauty, a significant 

decrease in qp was found (P=0.042) (Figure 6.4E). In contrast, qp in ‘Bonica’ was not 

significantly affected by the highest salt treatment although a decreasing trend was noticed 

(Figure 6.4F). 

A similar but opposite trend was observed for NPQ though effects were non-significant 

(Figure 6.4G and H).  
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Figure 6.5: Changes in chlorophyll fluorescence parameters in leaves of the eggplant cultivars 

(‘Black Beauty’ and ‘Bonica’) subjected to increasing NaCl concentrations in two dates (13 DSS: 

June 13, 2012; 21DSS= June 21, 2012). Data are means ± SE. Different lower case letters indicate 

the significant difference between treatments (P=0.05) based on Tukey’s HSD test. 
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We also correlated chlorophyll fluorescence characteristics (21 DSS) and leaf sodium content 

(Table 6.3; Table 6.4). For Black Beauty, higher values of Na content are correlated with 

lower values of qp (P=0.007) and ФPSII (P=0.003) (Table 6.4). Also, a weak but significant 

negative correlation between Na content and Fv/Fm (P=0.017) was found. Moreover a negative 

correlation between the photochemical processes and NPQ were observed in ‘Black Beauty’ 

(P=0.002) (Table 6.4). Also for ‘Bonica’, higher values of Na content are correlated with 

lower values of qp (P =0.004) and ФPSII (P=0.004) (Table 6.4). No significant correlations 

between Na content and Fv/Fm (P=0.119) or NPQ (P=0.440) were found. Also no correlation 

between the photochemical processes and NPQ (P=0.092) were observed in ‘Bonica’ (Table 

6.5). 

 

Table 6.3: Correlation matrix between chlorophyll fluorescence parameters and leaf Na contents 

in ‘Black Beauty’. The significant correlations are indicated with * or ** for significance levels 

of 0.05 and 0.01, respectively. 

 Na Fv/Fm qp NPQ ФPSII 

Na - -0.58
*
 -0.64

**
 0.58

*
 -0.69

**
 

Fv/Fm -0.58
*
 - 0.74

**
 -0.68

**
 0.77

**
 

qp -0.64
**

 -0.74
**

 - -0.71
**

 0.98
**

 

NPQ -0.58
*
 -0.68

**
 -0.71

**
 - -0.78

**
 

ФPSII -0.69
**

 0.77
**

 0.98
**

 -0.78
**

 - 

 

Table 6.4: Correlation matrix between chlorophyll fluorescence parameters and leaf Na contents 

in ‘Bonica’. The significant correlations are indicated with * or ** for significance levels of 0.05 

and 0.01, respectively. 

 Na Fv/Fm qp NPQ ФPSII 

Na - - -0.67
**

 - -0.68
**

 

Fv/Fm - - - - - 

qp -0.67
**

 - - - 0.97
**

 

NPQ - - - - - 

ФPSII -0.68
**

 - 0.97
**

 - - 
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6.3.3 NaCl induced changes in plant water relations. 

Stomatal conductance to water vapour (gs) of both cultivars was greatly affected by the 

increasing salt stress. A concentration of 40 mM NaCl already significantly reduced gs in 

Black Beauty, this for both 13 and 21 DSS. Significant lower gs was only found for 160 mM 

NaCl in Bonica. After 13 DSS gs was reduced by 81% and 78% respectively in ‘Black 

Beauty’ and ‘Bonica’ at 160 mM NaCl compared to their controls (Figure 6.6A). Similar, at 

21 DSS gs decreased by 75% and 70% respectively in ‘Black Beauty’ and ‘Bonica’ at 160 

mM NaCl compared to their controls (Figure 6.6B). We found a close correlation between 

stomatal conductance and net assimilation in ‘Bonica’ and in ‘Black Beauty’ (Figure 6.7, 

Table 6.1, Table 6.2).  

 

 

Figure 6.6: Changes in stomatal conductance (gs) and transpiration (E) in leaves of the eggplant 

cultivars (‘Bonica’ and ‘Black Beauty’) subjected to different NaCl concentrations in two dates 

(13 DSS, 21 DSS). Data are means ± SE. Different lower case letters indicate the significant 

difference between treatments (P=0.05) based on Tukey’s HSD test. 
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Stomatal closure also affected the transpiration rates. Significant differences in transpiration 

rate (E) were observed in the two cultivars. At 13 DSS, E was significantly reduced from 80 

mM NaCl on for both cultivars while at 21 DSS E was significantly reduced at 40 mM NaCl 

in Black Beauty. A salinity level of 160 mM NaCl reduced E by 78.6% and 75.4% 

respectively in ‘Black Beauty’ and ‘Bonica’ compared to their controls (Figure 6.6C). 

Likewise after 21 DSS E decreased by 72.1% and 67.2% respectively in ‘Black Beauty’ and 

‘Bonica’ compared to respective controls (Figure 6.6D). We also found a positive and 

statistical significant correlation was between An and E in ‘Black Beauty’ and ‘Bonica’ 

(Figure 6.6, Table 6.1, Table 6.2).  

 

 

 

Figure 6.7: Relation between net photosynthesis (An) and stomatal conductance (gs) measured 

after13 DSS (red colour) and after 21 DSS (blue colour) in ‘Black Beauty’ and ‘Bonica’.  
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After 13 DSS WUE was not affected by increasing salt stress in ‘Black Beauty’ and ‘Bonica’ 

(Figure 6.8), though a trend to a better WUE at 160 mM NaCl as present in ‘Black Beauty’. 

However, 21 days after the imposition of salt stress WUE in salinized plant were not 

significantly different from non-salinized plants in ‘Black Beauty’. Surprisingly WUE 

decreased by the salt stress in ‘Bonica’ at 21 DSS (Figure 6.8). 

As the NaCl concentration increased, both the midday ψl and ψπ decreased significantly in 

‘Black Beauty’ and reached values of -1.9 MPa and -2.5 MPa for 160 mM NaCl. 

Furthermore, in ‘Black Beauty’ gs and ψπ were significantly correlated: the more stomata 

were closed the more negative the osmotic potential (Figure 6.9). However, the leaf water 

potential remains quite stable in ‘Bonica’ and also the leaf osmotic potential is hardly affected 

by increasing salt stress (Table 6.7). Also no correlation between gs  and ψπ was found for 

Bonica (R
2
=0.14, P= 0.59 ). 

 

 

Figure 6.8: Changes water use efficiency (WUE) in leaves of the eggplant cultivars (‘Black 

Beauty’ and ‘Bonica’) subjected to different NaCl concentrations in two dates (date 1: June 13, 

2012; date 2= June 21, 2012). Data are means ± SE. Different lower case letters indicate the 

significant difference between treatments (P=0.05) based on Tukey’s HSD test. 
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Figure 6.9: Relationship between (between gs and ψπ measured after13DSS (red colour) and 

after 21 DSS (blue colour) in ‘Black Beauty’ and ‘Bonica’.    

 

6.3.4 NaCl induced changes in pigments and metabolites 

No significant effects on Chla, Chlb, total Chl, Chla/b and carotenoids (P>0.05) were found 
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cultivars. However a decreasing trend for all pigments was noticed from 80 mM NaCl on 

(Table 6.5). As compared to the control conditions Chla decreased by 26.9% in ‘Bonica’ and 

by 5.1% in ‘Black Beauty’ at 160 mM NaCl while the decline in Chlb between the control 

and the 160 mM NaCl level was 25.6% in ‘Black Beauty’ and 21.3% in ‘Bonica’ (Table 6.5). 

The highest though not significant Chla/b ratio was found for 80 mM in both cultivars. 

No significant correlations between leaf Na and chlorophyll content were found (Table 6.1, 

Table 6.2). 
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Table 6.5: Effect of increasing NaCl concentration on chlorophyll a (Chla), chlorophyll b (Chlb), 

Chla/b, total chlorophyll (Chla+b) and carotenoids in leaves of the eggplant cultivars. 

cv NaCl 

(mM) 

Chla 

(µg g
-1 

FW) 

Chlb 

(µg g
-1

 FW) 

Chla/b  Chla+b 

(µg g
-1

 FW)  

Carotenoids 

(µg g
-1

 FW) 

‘Black 

Beauty’ 

0 689.9
a 
 340.6

a
 2.3

a 
 994.5

a
 140.9

a
 

40 758.9
a
 294.4

a
 2.6

a
 1053.3

a
 173.6

a
 

80 726.8
a
 250.3

a
 2.9

a
 977.1

a
 164.9

a
 

160 654.8
a
 253.4

a
 2.6

a
 908.2

a
 137.1

a
 

‘Bonica

’  

0 485.3
a
 188.4

a 
 2.5

a 
 673.7

a
 136.6

a
 

40 511.5
a
 198.0

a
 2.6

a
 709.6

a
 129.8

a
 

80 385.2
a
 139.3

a
 2.7

a
 524.6

a
 113.8

a
 

160 354.5
a
 148.3

a
 2.4

a
 502.9

a
 95.7

a
 

Means followed by the same lowercase within each column and for each cultivar are not significantly different at 

P= 0.05 according to the Tukey’s HSD test (n=4). 

 

The level of lipid peroxidation increased significantly when exposed to increased NaCl in the 

two cultivars. ‘Black Beauty’ accumulated more MDA than ‘Bonica’; the level of lipid 

peroxidation in ‘Black Beauty’ increased 10-fold for 160 mM NaCl compared to the control 

whereas a 3-fold increase in ‘Bonica’ was found. Consequently, the induced lipid 

peroxidation under increasing salinity was more pronounced in the cultivar ‘Black Beauty’ 

than in ‘Bonica’ (Figure 6.10).  

The leaf proline content increased significantly under increasing salinity level in both 

cultivars, though proline increase was much more pronounced in ‘Black Beauty’. Under the 

160 mM NaCl, the leaf proline content showed 13-fold increase in ‘Black Beauty’ and 2.5-

fold increase in Bonica when compared with their respective controls (Figure 6.10). 

Figure 6.11 shows the negative relationship between ФPSII and MDA (at 21 DSS) and qp and 

MDA in both cultivars (linear regression, ‘Black Beauty’: R²=0.74, P< 0.001 and non-linear 

quadratic regression, ‘Bonica’: R²=0.66, P< 0.001)). The same trend was observed when 

plotting qp against MDA a negative and statistical significant correlation was observed in 

’Black Beauty’ (linear regression, R²=0.72, P<0.001) and in ‘Bonica’ (non-linear quadratic 

regression, R²=0.68, P<0.001). 
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Figure 6.10: Effect of salt stress on leaf proline content (µmol g
-1 

FW) (A) and on leaf lipid 

peroxidation (B) at 30 DSS of the eggplant cultivar subjected to different NaCl concentrations. 

Data are means ± SE. Different lowercase letters indicate the significant difference between 

treatments (P=0.05) based on Tukey’s HSD test. 

 

 

Figure 6.11: Relationship between ФPSII and MDA and between qp and MDA measured after 21 

DSS in ‘Bonica’ (left) and ‘Black Beauty’ (right). Each point represents the mean value of 5 

replicates.  
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Under increasing salt stress glucose, fructose and sucrose content increased significantly in 

the cultivar ‘Black Beauty’ (Figure 6.12A, B and C). In contrast, increasing salt concentration 

lead to a significant decrease in fructose and sucrose content in the cultivar ’Bonica’ (Figure 

6.12B and C). Salt stress strongly increased starch accumulation in ‘Bonica’ while a tendency 

to lower leaf starch reserves was observed in ‘Black Beauty’. 

 

Figure 6.12: Effect of NaCl concentration on glucose (A), fructose (B), sucrose (C), and starch 

(D) levels in leaves of the eggplant cultivars. Data are means ± SE (not shown when smaller than 

the symbol). Different lowercase letters indicate the significant difference between treatments 

(P=0.05) based on Tukey’s HSD test. 
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Furthermore, the sodium accumulation was higher in the roots than in the leaves of ‘Bonica’. 

For ‘Bonica’ lower concentration of leaf Na was found compared to ‘Black Beauty’. Indeed at 

160 mM NaCl ‘Black Beauty’ accumulated 2.9-fold Na leaf content than ‘Bonica’. 

Although leaf Cl
-
 content increased by increasing salt concentrations in the two cultivars, the 

Cl
- 
accumulation was significant in ‘Bonica’ and not significant in ‘Black Beauty’. The Cl

- 

concentration in the leaves in ‘Black Beauty’ was 1.13 fold higher than that of Cl
-
 in ‘Bonica’ 

at 160 mM NaCl treatment (Table 6.6). 

K
 
concentration decreased significantly in leaves (P=0.001) and non-significant in roots 

(P=0.757) under salt stress in ‘Black Beauty’. Leaf K and root K contents were reduced 

respectively by 41.1% and by 27.9% in ‘Black Beauty’ at 160 mM NaCl. In contrast, no 

effect on K content in leaves and roots was found for ‘Bonica’ at increasing salt stress (Table 

6.6). Increasing salinity gave no significant changes in the leaf and root Ca and Mg content in 

‘Bonica’ and ‘Black Beauty’ (Table 6.6).  

Increasing salinity decreased significantly the P leaf content in both ‘Black Beauty’ (P=0.002) 

and ‘Bonica’ (P=0.052). No effect on root P content was observed under saline conditions. 

(Table 6.6). Also S content in leaves and roots was hardly affected by an increasing salt stress 

in ‘Black Beauty’ and ‘Bonica’.  

The Na/K
 
and Na/Ca ratios in leaves and roots were higher in salinized plants for both 

cultivars than those in the control plants. However, significant differences for the Na/K ratio 

were only observed in ‘Black Beauty’ (Table 6.6). Moreover the increased Na/K
 
and Na/Ca 

ratios in the leaves and roots was more pronounced in ‘Black Beauty’ than in ‘Bonica’ at 160 

mM NaCl compared to their respective controls. For example leaves Na/K and Na/Ca ratios 

increased at 160 mM of NaCl respectively more than 16-fold and 11-fold when compared to 

their respective controls in ‘Black Beauty’. However, leaves Na/K and Na/Ca ratio increased 

at 160 mM of NaCl respectively 15-fold and 10-fold when compared to their respective 

controls in ‘Bonica’. Besides, roots Na/K and Na/Ca ratios increased at 160 mM of NaCl 

respectively more 3-folds and 2-folds when compared to their respective controls in ‘Black 

Beauty’. In contrast, roots Na/K and Na/Ca ratios increased at 160 mM of NaCl less than 2-

fold when compared to their respective controls in ‘Bonica’ (Table 6.6). It is noteworthy that 

the salt induced increase of Na/K and Na/Ca ratios was more pronounced in leaves than in 

roots. 
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Table 6.6: Effect of NaCl concentration on accumulation of K, Ca, Mg, Na, P, S, Cl
-
, Na/K and Na/Ca in leaves and roots of the eggplant cultivars. 

Cultivar Tissue NaCl 

(mM) 

K  

(g/100g) 

Ca 

(g/100g) 

Mg 

(g/100g) 

Na
  

(g/100g) 

P  

(g/100g) 

S  

(g/100g) 

Cl
-  

(g/100g) 

Na/K  Na/Ca  

‘Black Leaves 0 6.44
a
 3.11

a
 0.55

a
  0.44

c
 0.74

a
 0.20

a
 2.81

a
 0.07

b
 0.13

a
 

Beauty’  40 6.71
a
 3.23

a
  0.58

a
  0.89

c
 0.69

a
 0.20

a
  2.81

a 
 0.13

b
 0.28

a
 

  80 5.30
ab

 3.17
a
  0.56

a 
 1.86

b
 0.66

ab
 0.20

a
  4.53

a 
 0.34

ab
 0.69

a
 

  160 3.79
b
 2.84

a
  0.5.

a
  3.80

a
 0.57

b
 0.17

a 
 6.95

a
 1.20

a
 1.50

a
 

 Roots 0 1.86
a
 1.33

a 
 0.26

a
 1.10

b
 0.49

a
 0.28

a
 * 0.44

b
 0.87

a
 

  40 1.60
a
 1.21

a
 0.24

a
 1.19

b
 0.44

a
 0.26

a
 * 0.78

ab
 0.96

a
 

  80 1.15
a
 1.37

a
 0.25

a
 1.18

b
 0.46

a
 0.24

a
 * 0.91

ab
 0.86

a
 

  160 1.34
a
 1.11

a
 0.23

a
 2.38

a
 0.44

a
 0.28

a
 * 1.70

a
 2.20

a
 

‘Bonica’  Leaves 0 4.77
a
 2.85

a 
 0.62

a 
 0.09

c 
 0.72

a
 0.25

 a
 1.25

c
 0.02

a
 0.04

a
 

 40 5.02
a
 3.35

a
 0.61

a
 0.56

b 
 0.59

ab
 0.19

a
 3.28

bc
 0.11

a
 0.16

a
 

  80 4.58
a
 3.50

a
 0.66

a
 1.29

a
 0.60

ab
 0.19

a
 4.67

ab
 0.34

a
 0.44

a
 

  160 4.99
a
 3.52

a
 0.68

a
 1.37

a
 0.55

b
 0.18

a
 6.11

a
 0.30

a
 0.41

a
 

 Roots 0 1.19
a 
 1.44

a 
 0.34

a
 1.55

b 
 0.68

a
 0.33

a
 2.61

 a
 1.27

a
 1.3

a
 

  40 0.81
a
 1.61

a
 0.25

a
 1.84

b
 0.67

a
 0.29

a
 2.86

a
 2.41

a
 1.3

a
 

  80 1.00
a
 1.24

a
 0.27

a
 1.99

b
 0.47

a
 0.22

a
 2.24

a
 1.73

a
 1.4

a
 

  160 1.21
a
 1.29

a
 0.23

a
 2.55

a
 0.73

a
 0.26

a
 6.49

a
 2.19

a
 2.4

a
 

Means followed by the same lowercase within each column and cultivar within are not significantly different at P= 0.05 according to the Tukey’s HSD test (n=4). 

*:No data because of the lack of sufficient plant material.  



Chapter 6 

140 

6.3.6 NaCl induced changes on growth parameters  

The effects on biomass were evaluated in term of number of leaves, height, aerial FW and 

DW. The salt induced decreases in number of leaves, height, DW and FW showed an overall 

similar trend, however, ‘Black Beauty’ was more affected than ‘Bonica’. 

Number of leaves and plant height was slightly enhanced by 40 mM NaCl in both cultivars; 

however a further increase of the salt level significantly decreased number of leaves and plant 

height for ‘Black Beauty’ and plant height in ‘Bonica’. In ‘Bonica’ leaf initiation was only 

reduced at 160 mM NaCl (Table 6.7). The highest salinity level (160 mM NaCl) decreased 

the number of leaves in ‘Bonica’ and ‘Black Beauty’ respectively by 17.6% and 27.3% and 

the plant height in ‘Bonica’ and ‘Black Beauty’ respectively by 34.6% and 87.8% when 

compared to their respective controls (Table 6.7). Consequently, the impact of the salinity 

was more pronounced in ‘Black Beauty‘ than in ‘Bonica’. 

A very pronounced decrease in FW and DW was observed in ‘Black Beauty’ under 

increasing salt stress (Table 6.7). For instance, in the 160 mM treatment, the FW decreased 

by 87.8% and DW decreased by 72.2%, compared to their respective controls (Table 6.7). In 

contrast, the decline in FW and DW between the control and the 160 mM NaCl level was less 

in ‘Bonica’ (36.9% and 35.7%).  

 

Table 6.7: Effect of increasing levels of NaCl on morphology and plant water status of two 

eggplant cultivars. Plant morphological parameters include number of leaves, plant height, 

aerial fresh weight, aerial dry weight (DW) and plant water status includes tissue water content 

(TWC), midday leaf water potential (ψl ) and leaf osmotic potential (ψπ). 

cv NaCl 

(mM) 

N° of 

leaves 

Height 

(cm) 

FW 

(g) 

DW 

(g) 

TWC 

(g/g) 

ψ 

(MPa) 

ψπ 

(MPa) 

‘Black 

Beauty’ 

0 7.52
ab

 31.4
b
 74.7

a
 16.1

a
 0.78

a 
 -0.54

a
 -0.63

a
 

40 8.50
a
 37.0

a
 27.9

b
 7.10

b
 0.74

a
 -0.98

ab
 -1.22

ab
 

80 6.51
b
 22.9

c
 14.5

c
 5.41

c
 0.62

b
 -1.42

b
 -1.50

b
 

160 5.41
c
 18.4

d
 9.1b

d
 4.42

d
 0.50

c
 -1.90

c
 -2.51

c
 

‘Bonica’ 0 9.92
ab

 34.7
b
 149.8

a
 25.9

a
 0.82

a
 -0.49

a
 -0.63

a
 

40 10.70
a
 38.0

a
 113.1

b
 19.6

b
 0.82

a
 -0.61

a 
 -0.66

a
 

80 9.00
b
 29.5

c
 103.7

c
 18.0

c
 0.82

a
 -0.64

a
 -0.67

a
 

160 8.23
c
 22.7

d
 94.4

d
 16.6

c
 0.82

a
 -0.65

a
 -0.70

a
 

Means followed by the same lowercase within each column and for each cultivar are not significantly different 

at P=0.05 according to Tukey’s HSD test (n=4). 
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A significant decrease in TWC, as a measure of expansion growth, was observed for both 80 

mM NaCl and 160 mM NaCl in ‘Black Beauty’. In contrast, the TWC remains quite stable in 

‘Bonica’ (Table 6.7). 

A scores scatter plot of the first two PCAs (explaining 68.28% of the variation) shows a clear 

separation of ‘Bonica’ from ‘Black Beauty’ after 21 DSS (Figure 6.11). The loading that 

positively correlated with PCA1 (37.40%) were FW, DW and TWC and that with PCA2 

(30.88%) were ФPSII, ETR, qp , ψπ, ψ,  and Fv/Fm. The loading of MDA, proline and starch 

correlated negatively with PCA1. The loading of Na/K in leaves and Na/K in roots correlated 

negatively with PCA2. For both cultivars the scores of the PCA moved to higher MDA, 

Proline, Starch, Na/K ratio in leaves and Na/K ratio in roots values and lower FW, DW, 

TWC, ψπ, ψ, ФPSII, ETR and qp  under increasing salinity.  

The separation of control and salt stressed plants of ‘Black Beauty’ along PCA1 was higher 

compared to ‘Bonica’ (Figure 6.13). For ‘Black Beauty’ control and salt stressed plants were 

well separated along PCA2. 

 
 

Figure 6.13: Principal component analysis (PCA) of FW, DW, TWC, ФPSII, ETR, qp, ψπ, ψ, 

Fv/Fm, proline, starch, Na/K ratio in leaves, Na/K ratio in roots and MDA of the eggplant 

cultivars grown for 21 days under saline stress. PCA1 is positively correlated with FW, DW and 

TWC and negatively with MDA, proline and starch. PCA2 is positively correlated with ФPSII, 

ETR, qp , ψπ, ψ,  and Fv/Fm  and negatively with Na/K in leaves and Na/K in roots. Each data 

point represents the mean of four replicates. Arrows indicate the increasing salt stress level (●: 

Black Beauty; ■ Bonica)   
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6.4 Discussion 

Results of previous chapters indicated that differences in salt stress tolerance exist in eggplant 

cultivars. In this chapter we submitted two cultivars (one tolerant and one susceptible) to 

increasing salt stress. In this chapter we strongly focused on photosynthesis though mineral 

content in shoot and roots and other adaptive metabolite strategies and plant growth 

parameters were also included. 

Salt stress affects CO2 availability through stomatal closure which may lead to reduction of 

photosynthesis (Munns and Tester, 2008) and consequently contribute to the reduction of 

growth. In our research increasing salt stress lead to reduced stomatal conductance directly 

affecting gas exchanges (Figure 6.7). Both the rate of gross assimilation (At = net 

photosynthesis + total respiration in the light) and net assimilation decreased with increasing 

salt stress/closing of the stomata in both eggplant cultivars. Low leaf water potentials have 

been found to be closely related to both stomatal closure and non-stomatal reduction of 

photosynthesis (Matthews and Boyer, 1984; Kaiser, 1987). Yet, only ‘Black Beauty’ reduced 

its leaf water potential to levels below -2.5 MPa, while no correlation between leaf water 

potential and stomatal conductance was observed in ‘Bonica’ (Figure 6.9). This again reveals 

a tendency for isohydric behaviour in Bonica where a relative constant midday leaf water 

potential (Ψ) is observed while the control of the plant water balance under increasing salt 

stress acts through reduced stomatal conductance (gs). 

The ratio An/At decreases significantly under increasing salt stress in both cultivars which 

indicates that the respiration losses become more important. Mitochondrial respiration was 

not affected by salt stress, even under high salinity. Both eggplant cultivars maintained 

similar respiration rates as the control plants. Jacoby et al (2011) reviewed the role of 

mitochondrial respiration under salt stress and found a high variability in the respiratory 

responses amongst the studied species but sensitive species showed a trend towards increased 

respiratory rates. If we consider the ratio of Rd/At then indeed a higher fraction of the total 

assimilation goes to respiration under higher saline stress. High respiration rates are linked to 

higher ATP production; therefore both cultivars could maintain sufficient energy levels under 

increasing salt stress levels. However, this energy is probably used for different purposes 

such as osmotic adjustment in ‘Black Beauty’ or for sodium exclusion and tissue tolerance in 

‘Bonica’. 
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Moreover non-stomatal factors also severely affect photosynthesis under higher salinity 

levels (Stepien and Klobus, 2006). Chlorophyll fluorescence parameters can be used for 

observing stress and damage of the photosynthetic apparatus. No effects of salinity stress on 

Fv/Fm were observed though a significant reduction of ФPSII indicated a decrease in electron 

transport through PSII which is in accordance with results that have been reported for tomato 

(Zribi et al., 2009); for soybean (Lu et al., 2009) and for eggplant (Chapter 4, Hanachi et al., 

2014). Likewise a decrease in photochemical quenching (qp) and an enhanced thermal 

dissipation of excess excitation energy (NPQ) was observed in both cultivars. However, in 

contrast to the results of Chapter 4, the chlorophyll fluorescence parameters did not 

differentiate between Black Beauty and Bonica for the applied salt stresses. 

These results of the chlorophyll fluorescence analysis might indicate that decreases in PSII 

efficiency were acting as a down-regulation to maintain a balance between light-driven linear 

electron flow (Jt) and requirements of reducing power for both carboxylation and 

oxygenation of RuBP as suggested by Kraus and Weis (1991). Indeed, carboxylation can 

effectively be replaced by oxygenation of ribulose-1,5-biphosphate in C3 plants in case of 

closed stomata. The relative importance of the electron flow to carboxylation and 

oxygenation is indicated by the ratio Jc/Jtot and Jo/Jtot. These electron flows were not affected 

by increasing salt stress and ranged between 60 % -70 % for carboxylation of RuBP. As such 

also the ratio Jc/Jo which represents the balance between RuBP carboxylation and 

oxygenation was not significantly affected. 

Yet, photorespiration (Rl) in C3 plants may be considered as an alternative electron sink for 

the light-induced electron flow, and is often presented as a process that may help consume an 

appreciable electron flow during periods of restricted CO2 availability in the chloroplast and 

high irradiance (Krause and Corinc, 1987; Stuhlfauth et al., 1990). Early reports stated that Rl 

should represent only 15% of An in non-stressed conditions (Ogren, 1984), but later work 

described levels close to 30-40% for Nicotiana tabacum (Zelitch, 1992), 35-40% for 

Helianthus annuus (Jacob and Lawlor, 1993) and more than 50% for Triticum aestivum 

(Gerbaud and André, 1987) at temperatures of around 20°C and saturating irradiance. Our 

observations for non-stressed eggplants showed that Rl reaches levels of ± 36 % of An in 

Black Beauty and 57 % in Bonica. These data are in concordance with the literature, if we 

take into account the higher temperature (30-35°C) experienced during our measurements. 

Under salt stress this ratio increased considerably up to 79% for 160 mM in Black Beauty (40 

% of the total assimilation rate) and up to 204% in Bonica (32% of the total assimilation rate) 
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at 21 DSS. Photorespiration is clearly an important electron sink for ‘Bonica’ under salt 

stress. 

Also specific ion effects of salt stress on photosynthesis have been described in several plant 

species such as tomato (Heuer at al., 1993), bell pepper (Bethke and Drew, 1992) and pea 

plants (Fedina et al., 1994). Both direct effects of Na and Cl
-
 or decreases in K contents might 

explain the photosynthetic impairment. Reduced chlorophyll content due to potassium 

deficiency may limit photosynthesis (Battie-Laclau et al., 2014) but reduced chlorophyll 

content might also arise due to ionic stress and subsequent oxidative stress (Seeman and 

Critchely, 1985; Abdullah and Ahmed, 1990; Hamada and El-Enany, 1994). In this study no 

significant effects of salt stress were observed on the content of photosynthetic pigments in 

both cultivars, nevertheless chlorophyll content tended to decrease at 160 mM NaCl in ‘Black 

Beauty’ and ‘Bonica’. Not only the pigment content is important, salinity also causes 

chloroplasts to aggregate. This then leads to ultrastructural changes of the assimilating organs 

(Glagoleva et al., 1992) and include dilatation of thylakoid membranes and enlarged 

mesophyll cells (Brugnoli and Bjorkmann, 1992; Mitsuya et al., 2000). Another tendency 

found in both species is that low salt levels (40 mM NaCl) increased the chlorophyll content 

in both eggplant cultivars. As for this level K content is not affected yet, Na is not 

substituting for K as observed in K-deficient plants (Battie-Laclau et al., 2014). This 

tendency at low salinity is not well understood though it was also observed in tomato 

(Romero-Aranda et al., 2001) and other crops (Winicov and Button, 1991; Locy et al., 1996).  

Salt stress causes an oxidative stress to many cellular components (Halliwell et al., 1989; 

Yasar et al., 2008). Oxidative damage caused by ROS as a consequence of salt stress 

contributes to membrane lipid peroxidation thus reducing membrane fluidity and selectivity 

(Sairam et al., 2002; Xu et al., 2012). Membranes are thus vulnerable targets for stress 

induced cellular damage, and the extent of damage is commonly used as a measure of 

tolerance to imposed stress (Dhindsa et al., 1981; Wise et al., 1987; Zhao et al., 1992; 

Gadallah, 1999; Jain et al., 2001; Yasar et al., 2008). The extent of lipid peroxidation differed 

hugely between Black Beauty and Bonica when grown under increasing levels of salinity. 

The lower lipid peroxidation in ’Bonica’ reflected that this cultivar has a higher capability of 

cellular protection against oxidative damage caused by the applied salt treatment (Noctor and 

Foyer, 1988; Jain., 2001; Demiral and Turkan, 2005;Yasar et al., 2008; Yildiztugay et 

al.,2011; Abbas et al., 2014). Even the huge increase in proline developed by ‘Black Beauty’ 
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failed to contribute to the alleviation of salt-induced peroxidative damage and maintaining the 

homeostasis of reactive oxygen species under stress and this was also observed in Chapter 5. 

The adaptation of plants to salinity is associated with osmoregulation. To accommodate the 

ionic balance in the vacuoles, cytoplasm accumulates low-molecular-mass compounds 

termed compatible solutes because they do not interfere with normal biochemical reactions 

(Hasegawa et al., 2000; Zhifang and Loescher, 2003). These compatible solutes include 

proline, a multifunctional amino acid. In addition to its role as a cytoplasmic osmoticum 

under stress, proline may function as a carbon and nitrogen source for post stress recovery 

and growth (Fukutaku and Yamada, 1984), a stabilizer for membranes, protein synthesis 

(Kardpol and Rao, 1985) and cytoplasmic enzymes (Paleg et al., 1984), a scavenger for free 

radicals (Smirnoff and Cumbes, 1989; Saradhi et al., 1995) and as sink for energy to regulate 

redox potential (Alia and Saradhi, 1993). It has been reported that salt sensitive cultivars 

accumulated significantly higher levels of free proline compared to tolerant ones (Lutts et al., 

1999; Vaidyanathan et al., 2003; Xu et al., 2012). In our work, proline increased in response 

to salinity in both cultivars; however, more proline accumulated in ‘Black Beauty’ at various 

salinity levels as also observed in Chapter 5. Current observations confirm that the 

accumulation of this amino acid is more due to the metabolic damage caused by salt stress 

rather than to a function as tolerance factor (Hanson et al., 1994; Bikash et al., 2005; Zgallai 

et al., 2005).  

The accumulation of soluble carbohydrates in plants as osmotic regulator has been widely 

reported as response to salinity (Hu and Shmidhalter, 1998; Murakeozy et al., 2003; Xu et al., 

2012). These osmolytes also help to tolerate dehydration by improving their ability to 

maintain the osmotic balance within cells (Da Silva Lobato et al., 2008). Additional benefits 

of these solutes have been described including buffering cellular redox potential, protecting 

the cell from dehydration by stabilizing membranes and proteins structure and providing 

possible energy source under severe stress (Hasegawa et al., 2000). According to Cram 

(1976), sugars contribute up to 50% of the total osmotic potential in glycophytes subjected to 

saline conditions. In this study, salinity increased sucrose, glucose and fructose content in the 

sensitive cultivar ‘Black Beauty’. However, increasing salt concentration lead to the decline 

in sucrose, glucose and fructose content in the tolerant cultivar ‘Bonica’. This response was 

also reported by Dubey and Sing (1999) and by Pattanagul and Thitisaksakul (2008) in rice 

and by Balibrea et al. (2000) in tomatoes. 
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It is generally accepted that the elevation in the cellular osmolarity (ψπ) which result from the 

accumulation of compatibles solutes is associated to the influx of water into, or to a reduced 

efflux from, cell, thus providing the turgor necessary for the expansion of cell (Hare et al., 

1998). Salt stress caused an apparent decline in ψ and ψπ in the sensitive cultivar ‘Black 

Beauty’ while the tolerant cultivar ‘Bonica’ maintained stable values of ψ and ψπ under 

increasing salinity confirming the results of chapter 5. In this respect Bonica is more 

successful to maintain sufficient water influx than Black Beauty as for Bonica the tissue 

water content is hardly affected even under 160 mM NaCl.  

Carbohydrate accumulation can also induce a feed-back inhibition on photosynthesis. 

According to Krapp and Stitt (1995) and Krapp et al. (1991) higher concentrations of sucrose 

in the cytoplasm could generate a negative feed-back inhibition on carbon metabolism which 

contributes to a lower CO2 assimilation. Moreover the expression of Rubisco could be 

inhibited with a considerable accumulation of sugar in cytoplasm (Koch, 1996; Sawada et al., 

1992). Therefore the differences in sugars accumulation in cultivars differing in salt 

tolerance, in casu Black Beauty and Bonica, may explain tolerance differences between these 

cultivars. However, Bonica accumulates starch and also starch stacked in the grana may 

result in a negative feed-back on photosynthesis due to possible mechanical damage by large 

starch grains (Cave et al., 1981). In any case no differences in photosynthetic activity (An and 

At) for each salt level were observed between the cultivars (P > 0.05). 

Reduced stomatal conductance not only influences photosynthesis but will also affect the 

transpiration rates. Transpiration rate was indeed reduced under increasing salt stress in both 

cultivars as reported for many other species (Lakshmi et al., 1996; Marler and Zozor, 1996; 

Mickelbart and Marler, 1996; Tezara et al., 2002; Gibberd et al., 2002; Burmann et al., 2003). 

Surprisingly effects on WUE were limited while we expected an increase of WUE (Parida 

and Das, 2005; Sun et al., 2011). 

Munns and Tester (2008) defined that the ion-specific phase of plant response to salinity 

starts when salt accumulates toxic concentrations in the old leaves (which are no longer 

expanding and so no longer diluting the salt arriving in them as younger growing leaves do). 

The NaCl treatments caused an increase in Na and Cl concentration in both leaves and roots 

in ‘Bonica’ and’ Black Beauty’ and a decrease in foliar K in the sensitive cultivar ‘Black 

Beauty’. Indeed, the uptake of NaCl competes with that of others nutrient ions especially K 

leading eventually to potassium deficiency (Ball and Farquhar, 1984). As a result Bonica had 

lower Na/K and Na/Ca ratios compared to Black Beauty. These ion ratios are associated with 
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the relative salt tolerance in many species, where tolerant genotypes had lower Na/K and 

Na/Ca ratio (Perez-Alfocea et al., 1996; Yasser et al., 2006). A low Na/K ratio in the cytosol 

is essential for normal cellular functions of plants. While competing with K uptake, Na may 

block the K specific transporters under salinity. This contributes to a toxic level of Na as well 

as insufficient K concentration for enzymatic reactions and osmotic adjustment (Zhu, 2003; 

Yassar, 2006). 

Regulation of Na uptake by cells and long distance Na transport seems to be a crucial 

adaptation of plants to salt stress (Munns et al., 2000). When exposed to salinity plants 

accumulate Na in their roots and exclude it from the shoots they are referred to as Na 

excluders. In contrast, some species efficiently accumulate high amount of Na in the shoots 

and are known as Na includers (Ashraf, 2004). Comparative analysis of Na accumulation 

revealed that roots of Bonica accumulated approximately twofold more Na compared to the 

shoots suggesting that a mechanism of controlled long distance transport from roots to shoots 

may exists. In contrast, especially at 160 mM NaCl higher Na contents were observed in the 

shoots of Black Beauty. As ‘Bonica’ maintained a lower Na concentration in the leaves than 

‘Black Beauty’, this cultivar may control long- distance more effectively than the salt 

sensitive ‘Black Beauty’. The exclusion of sodium from the leaves is the most common and 

important mechanism of salt tolerance in monocotyledonous plants. Na exclusion is a result 

of restricted Na uptake by the roots and low rates of transport in the xylem from the root to 

shoot (Munns et al., 2005; Xu et al., 2012). This Na exclusion system can be achieved by 

restricted loading of the xylem, or efficient removal of Na
 
from the upper part of the root 

system and the base of the shoot (Xu et al., 2012). However, when these toxic ions start to 

accumulate in the leaves another salt tolerance mechanism of many glycophytes is to exclude 

Na and Cl
-
 from the cytosol via compartmentalization into vacuoles (Martinez Rodriguez et 

al., 2008; Paranychianakis and Angelakis, 2008; Silveira et al., 2012). Although we have no 

data about a partial ion exclusion mechanism in our plants it might be possible that the 

capacity of ‘Black Beauty’ with respect to this salt exclusion system of the cytosol is less 

effective compared to Bonica.  

Salinity stress has been reported to affect a variety of morphological traits and to decrease 

almost all growth parameters, including shoot and root, leaf area, fresh and dry weight, plant 

height, yield and some yield quality attributes (Ersalan et al., 2008; Li, 2009; Tantawy et al., 

2009). The morphological observations in this study are very similar to those described in 

chapter 5 for ‘Black Beauty’ and ‘Bonica’. A level of 40 mM NaCl did not affect leaf 
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initiation and height or was even slightly stimulated in both cultivars, indicating that slightly 

older plants support already better salt stress as for younger plants (chapter 5) this effect was 

only seen for 20 mM and not 40 mM (chapter 5). However, at 40 mM salt stress affected 

already the fresh and dry matter production in ‘Black Beauty’ and ‘Bonica’. By increasing 

NaCl concentration, leaf initiation, and plant height and fresh and dry weight were strongly 

affected in the salt sensitive cultivar ‘Black Beauty’ and moderately affected in the salt 

tolerant ‘Bonica’. Besides, 80 mM NaCl level decreased tissue water content (TWC) in 

‘Black Beauty’ while ‘Bonica’ could maintain its TWC up to 160 mM NaCl as already 

observed in chapter 5. Munns and Tester (2008) showed that threshold for maintaining a 

constant TWC in most plants is approximately at 40 mM NaCl. Yet, depending on the salt 

stress trial (hydroponics or soil) and halophyte or glycophyte character of the species, 

threshold values range 200 mM NaCl in mangrove (Brugiera parviflora) (Parida et al., 2004), 

200 mM NaCl on jute species (Corchorus olitorius) (Chaudhuri and Chouhuri, 1997), 90 mM 

on Atriplex griffithii (Khan et al., 2000) and 40 mM on okra (Abelmoschus esculentus) (Ben 

Dkhil and Denden, 2010).  

6.5 Conclusion 

Photosynthesis is strongly affected by increasing salt stress in both cultivars though 

mitochondrial respiration remains unaffected in absolute values and the ratio Rd/An increases. 

Photorespiration is an alternative electron sink and at higher salt levels ‘Bonica’ use this 

pathway to a higher amount than ‘Black Beauty’. 

A differential reaction to increasing salt stress was found in the studied biochemical 

parameters. Higher oxidative stress as assessed by MDA levels was found in ‘Black Beauty’. 

Osmotic adjustment included higher proline and soluble carbohydrate levels in response to 

salinity in the sensitive cultivar ‘Black Beauty’. This might be explained by a different 

distribution of sodium and chloride in the shoots and roots. The tolerant cultivar ‘Bonica’ 

could better maintain lower salt levels in the shoots, restricting them to the root system 

compared to ‘Black Beauty’. The more tolerant character of Bonica to salt stress was also 

reflected in the superior growth performance for a similar salt level compared to ‘Black 

Beauty’. 
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Chapter 7 General conclusion and perspectives 

The water resources in Mediterranean countries are limited and are subjected to an increasing 

competition between agricultural, domestic and industrial uses. Climate warming will further 

enhance the need for irrigation but the high evapotranspiration rates, irrigation and reduced 

rainfall will contribute to salinization in these regions. The progression of this salinization is 

increasingly threatening agricultural production.  

Vegetables are typically crops that are irrigated as they have a high cash value. The vegetable 

sector has become one of the strategic sectors of the Tunisian economy. In this research we 

focused on salt acclimation strategies in eggplants as these are potentially promising crops for 

the Tunisian horticultural industry. Human and natural selection lead to a wide genetic 

diversity among cultivated and wild species of eggplants. Looking for varieties which are 

more tolerant to abiotic factors becomes an urgent and crucial need. Improving salt tolerance 

of genotypes is often inhibited by the lack of effective evaluation methods for salt tolerance 

among genotypes (Zeng et al., 2003). The use of biotechnological methods may speed up the 

selection process. Salt tolerance, however, shows the features of a multigenic trait, and 

quantitative trait loci (QTLs) associated with tolerance were identified in some major 

agronomic crops as barley, citrus, rice, and tomato. However, the fact that a QTL represents 

many genes remains a problem to find key loci within a QTL. In vitro selection of salt tolerant 

cell lines is used in tolerance programs in various species including solanaceous plants. To 

generate variation within existing eggplant cultivars the first approach in this work was to 

exploiting somatic variation by tissue culture. Therefore we started with the development of a 

reliable regeneration system. We evaluated different explant types, increasing concentrations 

TDZ up to 0.4 µM as well as light quality. Although callogenesis, indirect and direct 

organogenesis were obtained shoot proliferation was not very high and the rooting phase was 

not successful. As this strategy proved to be a lengthy and troublesome tactic the research 

continued with an in vivo approach.  

However, in field conditions the co-existence of multiple stresses is common. A tolerance 

strategy of plants to a specific stress can therefore better not be assessed in the field and the 

use of (semi) controlled conditions reduces the randomness of stress observed in field 
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conditions. In this study morphological, physiological and biochemical responses to 

increasing salinity levels was studied in four genotypes without prior knowledge of their 

tolerance level. Salt stress had a depressive effect on the studied parameters in all varieties 

though its degree depended on the variety and stress intensity. The observed responses lead to 

a better understanding of salt tolerance mechanisms in eggplant genotypes.  

It is generally recognized that the sensitivity of a plant to salinity is influenced by its 

developmental stage. The majority of species are more tolerant at germination, the young 

seedling stage is more sensitive during emergence and as plants develop more they become 

increasingly more tolerant to salt stress. Also in this study different developmental stages of 

eggplant and their susceptibility to salt stress were studied. 

Seed germination is one of the most crucial and decisive phases in the growth cycle of plant 

species as it determines plant establishment and the final yield of the crops. Germination is 

characterized by three phases. The first, imbibition involves rapid water uptake. In the second 

phase (lag phase), hydration of cotyledons and activation of preexisting enzymes may take 

place. In the third phase a further increment in water uptake marks the starting point of the 

growth phase, with enhanced cell division and radicle emergence. Therefore screening of salt 

tolerance at an early growth stage can be based on germination parameters and this we studied 

for four eggplant cultivars. Exposure to increasing NaCl concentrations did not only reduce 

the germination percentage but also decreased germination speed and rate as shown by the 

decrease in MDG and the increase in MGT under salt stress. Considering the germinations 

parameters under controlled saline conditions two groups with contrasting sensitivity 

responses were found. ‘Bonica’ and ‘Galine’ behaved as more tolerant cultivars while 

‘Adriatica’ and ‘Black Beauty’ were the more susceptible cultivars and already sensitive to 

moderate stresses. The sensitive cultivars supported only moderate salt stress up to 40 mM 

NaCl while the tolerance level of the tolerant group (‘Bonica’ and ‘Galine’) was up to 80 mM 

NaCl though small variation depending on the parameter are present (Table 7.1). These initial 

germination observations were further confirmed by the young seedling growth under 

controlled conditions: increasing salt negatively affected fresh weigh, dry weigh, tissue water 

content, height and leaf number. In general the young seedling growth parameters were 

already influenced at slightly lower salt levels compared to the germination parameters. This 

reflects an avoidance strategy of seeds to prevent germination under stressful environment. 
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Table 7. 1: Sensitivity of the studied in vitro germination and growth parameters to salt stress (+++: very high sensitivity; ++:high sensitivity; +: 

moderate sensitivity; 0: no sensitivity). Values between brackets give the salt level (mM NaCl) where the studied parameter was significantly reduced 

compared to the control treatment (Chapter 3 and 5) 

 Germination parameters  Seedling biomass Biomass vegetative phase 

 Adriatica Black 

Beauty 

Bonica Galine   Adriatica Black 

Beauty 

Bonica Galine Adriatica Black 

Beauty 

Bonica Galine 

Critical salt level for significant decrease  Critical salt level for significant decrease  Critical salt level for significant decrease 

Final seed 

germination 

++ 

(40) 

++ 

(40) 

+ 

(40) 

+ 

(40) 

 FW ++ 

(20) 

++ 

(20) 

+ 

(40) 

+ 

(40) 

++ 

(20) 

++ 

(20) 

+ 

(20) 

+ 

(20) 

MDG +++ 

(40) 

++ 

(80) 

+ 

(160) 

+ 

(160) 

 DW ++ 

(20) 

++ 

(20) 

+ 

(40) 

+ 

(40) 

++ ++ + + 

MGT ++ 

(40) 

++ 

(40) 

+ 

(80) 

+ 

(80) 

 WC/TWC ++ 

(40) 

++ 

(80) 

0 0 +++ +++ 0 0 

Effect at 160 mM salt stress 

 Shoot 

length 

++ 

(80) 

++ 

(40) 

+ 

(160) 

+ 

(160) 

++ 

(40) 

++ 

(20) 

+ 

(80) 

+ 

(80) 

Final seed 

germination  

+++ +++ ++ ++  Number of 

leaves 

++ 

(40) 

++ 

(40) 

0 0 ++ 

(40) 

++ 

(80) 

+ 

(80) 

+ 

(80) 

MDG  +++ +++ ++ ++           

MGT  +++ +++ ++ ++           
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Although this germination and young seedling experiment under controlled conditions does 

not fully reproduce the field behaviour of plants, it discriminates tolerance levels between the 

cultivars. With respect to the observed effects on biomass susceptibility levels are very 

similar to those of the pot experiment during the vegetative phase (Table 7.1). It might 

therefore be a very useful screening technique to test relative cultivars tolerances. As Bonica 

is the main cultivar used in Tunisia, new introductions could be screened in comparison with 

Bonica and only cultivars with a similar behaviour or higher tolerance should be withhold for 

further field testing.  

The first weeks of the production cycle of eggplants is the vegetative phase. Good leaf 

development (source) is necessary to support the following generative phase (sinks). In this 

thesis we focused strongly on effects of salt stress during the vegetative phase. For the 

experiments we used pot experiments, so that the salt stress was gradually imposed to the 

plants and adaptive strategies could be established. 

It is generally accepted that increasing NaCl level, especially in the sensitive cultivars is 

expected to greatly disrupt metabolic homeostasis and therefore, could induce alterations at 

the physiological and biochemical levels (Bray et al., 2000). These alterations may be 

generated by three major hazards: (1) water stress caused by more negative water potential 

(elevated osmotic pressure) in the root environment; (2) specific ion toxicity associated with 

excessive Cl
-
 or Na

+
 uptake (Ashraf and Harris, 2004); and (3) nutrient ion imbalance when 

the excess of Na
+
 or Cl

- 
leads to a decline of the uptake of K

+
, Ca

2+
, Mg

2+
and PO4

-
 or to the 

impaired internal distribution of one or other of these ions (Gorham et al., 1985). 

Chlorophyll fluorescence was used to evaluate photosynthesis dysfunction and to 

discriminate salt tolerance levels between four eggplant cultivars (Chapter 4). The salt stress 

induced a significant and early reduction of ΦPSII indicating a decrease in electron transport 

through PSII in ‘Adriatica’ and ‘Black Beauty’ (respectively 6 and 8.4 g Na/100 g leaf DW at 

160 mM NaCl). ΦPSII was not affected in ‘Bonica’ and ‘Galine’ (respectively 2.2 and 2.5 g 

Na/100 g leaf DW at 160 mM NaCl) up to 25 days of salt stress indicating a more optimal 

functioning of PSII under salt stress. Moreover the linear electron flow rate continued at an 

effective rate in these cultivars.  

Photosynthesis is one of the primary processes in plant metabolism (Chapter 6). Under 

increasing salt stress both Black Beauty and Bonica closed progressively their stomata to 

avoid excessive water loss. This in turn resulted in comparable lower assimilation rates 

despite the fact that Black Beauty and Bonica have a different accumulation pattern for leaf 

sodium. For both cultivars high correlations were found between leaf sodium and both total 
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and net photosynthesis. Comparing leaf sodium levels of chapter 4 and 5 (CF measurements) 

and chapter 6 (photosynthesis and CF measurements) leaf sodium levels were lower for the 

second experiment and differences between cultivars were less pronounced (respectively 3.8 

and 1.3 g Na/100 g leaf DW for Black Beauty and Bonica at 160 mM NaCl). This might 

explain why in chapter 6 gas exchanges and also chlorophyll fluorescence parameters did not 

discriminate between these two cultivars. To have a better insight in the response of 

photosynthesis to salt stress it might be interesting to study responses of both the effect of salt 

levels and PEG treatment (osmotic stress) on photosynthesis as we cannot exclude that the 

reduction in photosynthesis was more due to osmotic effects than to ionic effects.  

Both cultivars could maintain their mitochondrial respiration rates (chapter 6) similar to the 

control plants. Maintenance of ATP provision and oxidation of redox equivalents to support 

photosynthesis is a crucial role for mitochondria under stress conditions (Jacoby et al., 2011). 

Photorespiration in C3 plants may be considered as an alternative sink for light-induced 

electron flow during periods of restricted CO2 availability in the chloroplast due to closed 

stomata. Furthermore there is a close cross-regulation with other metabolic pathways so as to 

maintain redox homeostasis under oxidative stress conditions (Foyer et al., 2009). Based on 

our observations Bonica enhanced more the photorespiratory pathway, which is one way to 

regulate oxidative stress, than Black Beauty under the highest salinity level.  

Free radical-induced peroxidation of membrane lipids is associated with oxidative stress and 

MDA is widely used as an indicator of the extent of oxidative damage. We used this 

biochemical indicator both at seedling stage and at the vegetative stage. The responses were 

similar in the three salt stress experiments: susceptible cultivars (‘Adriatica’ and ‘Black 

Beauty’) accumulated high levels of MDA and tolerant cultivars (Bonica and Galine) did 

hardly increase MDA levels for a same salt stress level. This response reflect the capacity of 

the tolerant cultivars to better exclude Na and Cl
-
 from the cytosol via compartmentalization 

into vacuoles in comparison to the sensitive ones (‘Adriatica’ and ‘Black Beauty’). Besides 

tolerant genotypes regulated their osmotic potential more effectively by mitigating the uptake 

of Na and Cl
-
 and a simultaneous uptake of more essential ions such as K (Table 5.3). Also 

tolerant cultivars maintained a lower Na concentration in the leaves than sensitive ones while 

the inverse was found in the roots, this suggest that the tolerant cultivars have a more 

effective long-distance control and prevent translocation to the leaves.  

Increasing salinity affects the soil matrix potential and plants need to maintain their internal 

water potential below that of soil to maintain turgor. On the one hand the inorganic ions that 
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accumulate in the cells will contribute to the cellular osmolarity though plants will also by 

their biochemical pathways accumulate compatibles solutes to maintain the influx of water 

into, or to a reduced efflux from cells, thus providing the turgor necessary for the expansion 

of cell. Most plants growing in a saline environment accumulate low molecular weight water-

soluble metabolites in the cytosol such as proline. Proline accumulation is a common 

physiological response and this response was also found in the salt susceptible eggplant 

cultivars this as well at the seedling stage as in the vegetative stage. Proline accumulation was 

not found in the tolerant cultivars. A major function of proline is osmoprotection but also 

radical scavenging.  

Also sugars that accumulate in response to stress can function as osmolytes to maintain cell 

turgor and have the ability to protect membranes and proteins from stress damage. Sugar 

accumulation has been associated with salinity tolerant mechanisms in many species. In this 

experiment, increasing salt stress led to an increasing sucrose, glucose and fructose levels in 

the sensitive cultivars ‘Adriatica’ and ‘Black Beauty’ therefore mobilizing their starch 

contents to maintain these high levels. In contrast, no accumulation but rather a decline in 

sucrose, glucose and fructose content was observed in the tolerant cultivars ‘Bonica’ and 

‘Galine’ combined with starch accumulation. Especially this starch accumulation is not well 

understood as when reported in plants it is mainly linked with source-sink imbalances and 

resulting negative feed-back effects on photosynthesis. Growth reduction is also observed in 

the tolerant cultivars although not to the same extend as in the susceptible cultivars and this is 

reflected in a relative high plant tolerance index. Therefore it cannot be excluded that this 

reduced vegetative growth/reduced sink activity lead to the accumulation of starch as no need 

to increase the osmotic potential and to convert starch to soluble sugars was present. Yet, 

further research is needed to underbuild this hypothesis. 

This study clearly showed that variation in salt tolerance in eggplant cultivars is also 

associated with variation of different physiological traits. Consequently, different parameters 

need to be investigated to understand how salt tolerance is established in the eggplant 

genotypes and to discriminate their relative salt tolerance levels.  

A specific methodology depending on the growth stage (germination or vegetative stage) can 

be used. Certain of our assessed methods could be an easy and economical way for large 

scale screening as for instance in breeding and or selection programs. Yet for a good 

understanding combined physiological and biochemical traits should be considered in 

screening salt tolerance of eggplant genotypes rather than only a single specific trait. Our 

research showed that efficient screening procedures for germplasm evaluation could be based 
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on germination or on chlorophyll fluorescence but also that tolerance of eggplants is related 

to the concentration of sodium in the shoot. Another easy to measuring parameter is the leaf 

water content under increasing salt stress which stability or decrease was linked to tolerant or 

susceptible cultivars. This last aspect is to our knowledge not described in salt stress research 

though these responses are known with respect to drought stress responses (isohydric, 

anisohydric behaviour). 

Although this study gives already a good insight in the responses of eggplant genotypes to 

salt stress, the experiments were conducted in controlled and semi-controlled environments 

where the interaction with other climatic variables was limited. The next step should 

therefore be to study the behaviour of the same varieties in the field conditions to interprete 

the interactions with high light intensities and/or elevated temperatures. 

Although during the vegetative phase already a clear distinction between tolerance levels can 

be made further research should also investigate the effect of salt stress on the production 

potential in eggplant varieties. This requires assessing the impact of salinity on flowering and 

fruiting stages more specifically on the pollen fertility and abortion/necrosis of young fruits 

which could adversily affect yield. More in-depth studies could assess the impact of salt on 

the pollen tube growth and stigma receptivity. Precocious flowering under limited salt stress 

might also be interesting to study as this might be a tool to control the vegetative/generative 

balance in soilless culture systems. The study of the yield component is agronomically 

important as it will allow identifying the reduction rate caused by salinity in tolerant varieties 

and susceptible varieties. In addition not only total production but also fruit quality 

parameters (fruit development, average fruit weight) should be evaluated.  

A more fundamental perspective could be the study of how sodium enters and is transported 

in eggplants as our study clearly discriminated in two different uptake and distribution 

patterns indicated by absolute Na values on the one hand and by the K/Na ratio on the other 

hand. If molecular markers could be defined for this trait then this would open possibilities 

for mass selection in breeding programmes as most breeding companies have the potential for 

high-throughput screening. 

Breeding companies could also invest in high throughput phenotyping for salt tolerance in 

eggplant by analysing the seed germination parameters using leaf image analysis (RGB 

cameras) or to evaluate the effect on the photosynthesis by using image chlorophyll analysis.  
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