Advanced search
1 file | 491.73 KB

A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study

Author
Organization
Abstract
Clinical studies have demonstrated the efficacy of stent supported coiling for intra-cranial aneurysm treatment. Despite encouraging outcomes, some matters are yet to be addressed. In particular closed stent designs are influenced by the delivery technique and may suffer from under-expansion, with the typical effect of "hugging" the inner curvature of the vessel which seems related to adverse events. In this study we propose a novel finite element (FE) environment to study potential failure able to reproduce the microcatheter "pull-back" delivery technique. We first verified our procedure with published in vitro data and then replicated the intervention on one patient treated with a 4.5 x 22 mm Enterprise microstent (Codman Neurovascular; Raynham MA, USA). Results showed good agreement with the in vitro test, catching both size and location of the malapposed area. A simulation of a 28 mm stent in the same geometry highlighted the impact of the delivery technique, which leads to larger area of malapposition. The patient specific simulation matched the global stent configuration and zones prone to malapposition shown on the clinical images with difference in tortuosity between actual and virtual treatment around 2.3%. We conclude that the presented FE strategy provides an accurate description of the stent mechanics and, after further in vivo validation and optimization, will be a tool to aid clinicians to anticipate the acute procedural outcome avoiding poor initial results.
Keywords
ASSISTED COIL EMBOLIZATION, CONE-BEAM CT, CEREBRAL ANEURYSMS, NEUROFORM STENT, THROMBOEMBOLIC EVENTS, GRAFT DEPLOYMENT, FLOW-DIVERTOR, FOLLOW-UP, APPOSITION, ENTERPRISE, Intra-cranial, Cerebral, Aneurysm, Stenting, Hugging, Apposition, Microstent, Incomplete

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 491.73 KB

Citation

Please use this url to cite or link to this publication:

Chicago
Iannaccone, Francesco, Matthieu De Beule, Stefan De Bock, IMJ Van der Bom, MJ Gounis, AK Wakhloo, Matthieu Boone, Benedict Verhegghe, and Patrick Segers. 2016. “A Finite Element Method to Predict Adverse Events in Intracranial Stenting Using Microstents: In Vitro Verification and Patient Specific Case Study.” Annals of Biomedical Engineering 44 (2): 442–452.
APA
Iannaccone, F., De Beule, M., De Bock, S., Van der Bom, I., Gounis, M., Wakhloo, A., Boone, M., et al. (2016). A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study. ANNALS OF BIOMEDICAL ENGINEERING, 44(2), 442–452.
Vancouver
1.
Iannaccone F, De Beule M, De Bock S, Van der Bom I, Gounis M, Wakhloo A, et al. A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study. ANNALS OF BIOMEDICAL ENGINEERING. NEW YORK: SPRINGER; 2016;44(2):442–52.
MLA
Iannaccone, Francesco, Matthieu De Beule, Stefan De Bock, et al. “A Finite Element Method to Predict Adverse Events in Intracranial Stenting Using Microstents: In Vitro Verification and Patient Specific Case Study.” ANNALS OF BIOMEDICAL ENGINEERING 44.2 (2016): 442–452. Print.
@article{7247108,
  abstract     = {Clinical studies have demonstrated the efficacy of stent supported coiling for intra-cranial aneurysm treatment. Despite encouraging outcomes, some matters are yet to be addressed. In particular closed stent designs are influenced by the delivery technique and may suffer from under-expansion, with the typical effect of {\textacutedbl}hugging{\textacutedbl} the inner curvature of the vessel which seems related to adverse events. In this study we propose a novel finite element (FE) environment to study potential failure able to reproduce the microcatheter {\textacutedbl}pull-back{\textacutedbl} delivery technique. We first verified our procedure with published in vitro data and then replicated the intervention on one patient treated with a 4.5 x 22 mm Enterprise microstent (Codman Neurovascular; Raynham MA, USA). Results showed good agreement with the in vitro test, catching both size and location of the malapposed area. A simulation of a 28 mm stent in the same geometry highlighted the impact of the delivery technique, which leads to larger area of malapposition. The patient specific simulation matched the global stent configuration and zones prone to malapposition shown on the clinical images with difference in tortuosity between actual and virtual treatment around 2.3\%. We conclude that the presented FE strategy provides an accurate description of the stent mechanics and, after further in vivo validation and optimization, will be a tool to aid clinicians to anticipate the acute procedural outcome avoiding poor initial results.},
  author       = {Iannaccone, Francesco and De Beule, Matthieu and De Bock, Stefan and Van der Bom, IMJ and Gounis, MJ and Wakhloo, AK and Boone, Matthieu and Verhegghe, Benedict and Segers, Patrick},
  issn         = {0090-6964},
  journal      = {ANNALS OF BIOMEDICAL ENGINEERING},
  language     = {eng},
  number       = {2},
  pages        = {442--452},
  publisher    = {SPRINGER},
  title        = {A finite element method to predict adverse events in intracranial stenting using microstents: in vitro verification and patient specific case study},
  url          = {http://dx.doi.org/10.1007/s10439-015-1505-2},
  volume       = {44},
  year         = {2016},
}

Altmetric
View in Altmetric
Web of Science
Times cited: