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Abstract 

The objective of this work is to provide a ‘support tool’ to assess the burning rate of a pool fire in 

a well-confined and mechanically-ventilated room using a single-zone model based on 

conservation equations for mass, energy and oxygen concentration. Such configurations are 

particularly relevant for nuclear facilities where compartments are generally sealed from one 

another and connected through a ventilation network. The burning rates are substantially affected 

by the dynamic interaction between the fuel mass loss rate and the rate of air supplied by 

mechanical ventilation. The fuel mass loss rate  is controlled by (i) the amount of oxygen available 

in the room (i.e. vitiation oxygen effect) and (ii) the thermal enhancement via radiative feedback 

from the hot gas to the fuel surface. The steady-state burning rate is determined by the ‘interplay’ 

and balance between the limiting effect of oxygen vitiation and the enhancing effect of radiative 

feedback. An extensive sensitivity study over a wide range of fuel areas and mechanical 

ventilation rates shows that a maximum burning rate may be obtained. For the studied HTP 

(Hydrogenated Tetra-Propylene) pool fires, the maximum burning rate is up to 1.75 times the 

burning rate in open air conditions. 
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Nomenclature 

A  area (m
2
) 

cp  specific heat (kJ/kg.K) 

F  configuration factor (-) 

H  height (m) 

hc  convective heat transfer coefficient (kW/m
2
.K) 

hk  conduction heat transfer coefficient (kW/m.K) 

k  conductivity (kW/m.K) 

Lv  heat of vaporization of the fuel (kJ/kg) 
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mm  mass flow rate (kg/s) 

P  room pressure (Pa) 

fQ fQ f  heat release rate of fire (kW) 

''

Rq ''

Rq  radiative heat flux (kW/m
2
) 

T  temperature (K) 

TR  renewal rate (h
-1

) 

t  time (s) 

V  room volume (m
3
) 

VV  volume flow rate (m
3
/s) 

2OY  oxygen mass fraction (kg/kg) 

 

Greek 

cHD  heat of combustion of fuel (kW/kg) 

2OHD  heat of combustion per unit mass of oxygen (kW/kg) 

Δp  pressure difference (Pa) 

Δpmax  stall pressure of the fan (Pa) 

γ  isentropic coefficient of gas (-) 

ε  gas emissivity (-) 

ρ  gas density (kg/m
3
) 

σ  Stephan-Boltzmann constant (=5.67×10
-11

 kW/m
2
.K

4
) 

χ  combustion efficiency (-) 

 

Superscripts 

"   rate per unit area   

 

Subscripts  

a  ambient conditions 

b  burning  

ex  extraction  

F  Fuel 

in  inlet 

op  opening 

open  open conditions  
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v  vaporization 

w  walls (+ceiling and floor) 

0  initial condition 

¥   limiting rate  

 

1 Introduction 

In the design of fire safety systems it is essential to provide reliable estimates of 

the burning and heat release rates for the prediction of the fire-induced thermal 

environment and the subsequent tenability conditions and structural response. The 

burning behaviour of several types of fuels has been extensively investigated 

theoretically, numerically and experimentally in both open atmosphere and 

confined conditions. A large body of the literature has been devoted to a 

comprehensive characterization of naturally-ventilated enclosure fires (e.g. [1-

11]), whereas fewer studies have focused on mechanically-ventilated room fires 

(e.g. [12-17]). The latter configuration is particularly relevant for the nuclear 

industry where compartments are generally sealed from one another and 

connected through a ventilation network. It is highly valuable, however, to discuss 

first some findings from naturally-ventilated fires, as they will be addressed in the 

modeling proposed hereafter for mechanically-ventilated fires.   

The burning rate in an enclosure depends mainly on: 

· the available fuel area,  

· the pyrolysis and combustion properties of the fuel (e.g. heat of pyrolysis, 

vaporization temperature and heat of combustion), 

· the oxygen supply (i.e. ventilation conditions), and   

· the heat flux received from the flames and hot gases at the fuel surface. 

In a naturally-ventilated enclosure fire, after an initial fuel-controlled stage, the 

fire might reach ventilation-controlled conditions which are determined by the 

size of the vents (e.g. doorways). It has been established that the inflow of air is 

proportional to the ventilation factor expressed as 1/2

op opA H , where opA  is the area 

of the opening and 1/2

opH  is its height. The burning rate is then proportional to 

1/2

op opA H  in ventilation controlled conditions. This finding has been confirmed in a 

number of experimental studies [8-9, 18]. The burning rates in enclosure fires can 

be several times higher than in free-burn conditions due to the thermal feedback to 
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the fuel source. This has been confirmed by several studies, such as [1-2] . In [1], 

the radiative enhancement of burning rate was up to six times the ‘open’ burning 

rate for ethanol pool fires in a reduced-scale compartment. These experimental 

findings were reasonably predicted by a model including the thermal feedback 

process and the authors proposed a diagrammatic sketch showing the burning rate 

enhancement (see Fig. 1). In [2], methanol fires were studied in reduced-scale 

cubic compartments with a single rectangular opening, centrally located in one 

wall. The fuel tray, 0.15 m by 0.15 m, was located in the centre of the 

compartment floor. The internal dimensions of the cube sides were 0.15 m, 0.25 

m, 0.4 m, 0.5 m, 0.6 m and 0.7 m, respectively.  Similarly to [1], the results show 

that the burning rates increase substantially (e.g., up to 7 times the free-burn value 

in the 0.6 m cube) with increasing ventilation factor. When a critical value of 

1/2

op opA H is reached, the burning rate drops very sharply to values approaching 

asymptotically the open atmosphere value. This clear sudden drop was confirmed 

through many repetitions of runs. This phenomenon is referred to in [2] as a 

“critical phenomenon”.   
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Figure 1. Schematic diagram showing the variation of mass burning rate with ventilation factor 

and fuel bed area. The three solid lines represent three different fuel areas, AF. Adapted from [1]. 

 

The non-linear dynamics, flashover and instabilities occurring in compartment 

fires were later examined in [3], where a simplified model of fire growth was 

developed and a preliminary analysis of the dynamics was conducted. Similarly to 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



5 

the behaviour depicted in [2], a sudden drop  was predicted. Although consistent 

with the predictions, the small number of reduced-scale experiments presented in 

[4] makes the comparison rather limited. A more detailed and comprehensive 

model for a fully-developed fire has been developed in [7], based on a well-stirred 

reactor approach (i.e., the gas is assumed to have uniform properties throughout 

the compartment). A set of three conservation equations for mass, oxygen and 

energy is solved in conjunction with sub-models for (i) fuel response (to feedback 

enhancement and vitiated oxygen effects), (ii) near-vent mixing, (iii) vent flows, 

and (iv) flame extinction. The model in [7] has been reported to show good 

agreement with reduced-scale experiments.  

 

In [13], the burning rate in mechanically-ventilated fires has been investigated in a 

similar way to natural ventilation conditions by controlling the mechanical 

ventilation flow rates (which is analogous to the ventilation factor in natural 

ventilation cases). The rate of ventilation can be also expressed as a renewal rate 

(named here TR), calculated as the volumetric mechanical flow rate divided by 

the volume of the room (a closed vessel in this case). The burning rates of HTP 

(Hydrogenated Tetrapropylene) pool fires in a 120m
3
 room with renewal rates 

ranging from 1.5 to 8.4 h
-1

 have been reported in [13]. Two values for the fuel 

area, AF, were investigated: 0.2 m
2
 and 0.4 m

2
.
 
The measured burning rates in free 

atmosphere conditions vary between 25.7 and 28.8 g.s
-1

.m
-2

. For most of the 

compartment tests (i.e. PRS-SI-D1, PRS-SI-D2, PRS-SI-D5, and PRS-SI-D5a) the 

burning rate reaches a ventilation-controlled steady-state value (indicated in Table 

1) before extinction occurs by lack of fuel. Only for test PRS-SI-D3 extinction 

occurred due to lack of oxygen. Therefore, steady-state conditions were not 

reached. The value of 8 g/s indicated between brackets for PRS-SI-D3 in Table 1 

is rather an average MLR (Mass Loss Rate) during the burning period.  

An analysis of the experimental data provided in [13] has been performed in [14] 

by applying the well-stirred reactor approach developed in [7] in quasi-steady 

state conditions. The analysis relied on the assumption that “the room 

temperatures do not cause significant additional heat flux to the fuel surface and 

therefore additional pyrolysis”. This assumption remained valid for the range of 

fire sizes examined in [13].      
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Table 1.  Test data for the burning rates of HTP in [13]. 

 Test name AF (m2) VV (m3/s) TR (h-

1) 
FmFm (g/s) "

Fm"

Fm (g/m2.s) 

Free 

atmosphere 

PRS-SI-S1 0.2 - - 5.6 28.1 

PRS-SI-S2 0.2 - - 5.1 25.7 

PRS-SI-S3 0.4 - - 11.5 28.8 

PRS-SI-S4 0.4 - - 11.2 27.9 

Compartment PRS-SI-D1 0.4 0.155 4.7 4.1 10.3 

PRS-SI-D2 0.4 0.277 8.4 6.1 15.2 

PRS-SI-D3 0.4 0.049 1.5 (8.0) (20.0) 

PRS-SI-D5 0.2 0.151 4.6 2.8 14.0 

PRS-SI-D5a 0.2 0.053 1.6 2.3 11.4 

 

In the work presented in the present paper, we (i) apply the well-stirred reactor 

analysis [7] to a wider range of experimental conditions (i.e., fuel area and 

ventilation flow rates) in a confined and mechanically-ventilated single-room fire, 

and (ii) compare the outcome to the research findings discussed above for 

naturally ventilated enclosure fires. Although the limitations of the well-stirred 

reactor assumption have been carefully reviewed and examined (mainly from a 

structural analysis standpoint) in [19], it is believed here to provide useful 

additional insight into the fire dynamics. More specifically, the main motivation 

of the work is to provide guidance in the selection of ‘design’ fires when 

performing a Fire Hazard Analysis (FHA) for nuclear facilities. In “design” 

calculations for a FHA, the most common and simple approach consists of 

prescribing the heat release rate (HRR) curve of a fire in a CFD or a zone model 

code in order to have an evaluation of the subsequent thermal conditions. The 

HRR curve is estimated from experimental measurements in open atmosphere 

conditions for several combustibles. In nuclear facilities, these items could be, 

e.g., liquid fuel pools (such as HTP used for reprocessing), cable trays or 

electrical cabinets. Contrarily to the vitiation effect and the ventilation conditions, 

which are often taken into consideration, the thermal feedback effect and the 

subsequent enhanced burning rates are not systematically accounted for. As a 

result, “worst” case scenarios (where the HRR is significantly higher than in 

open-atmosphere conditions) might be overlooked. The proposed simple well-

mixed reactor approach in conjunction with a fuel response model can be used (as 
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shown in the section “Influence of ventilation and fuel area”) as a preliminary 

screening tool to evaluate the maximum burning rate that can occur in the case of 

fire in a well-confined and a mechanically-ventilated room, given the room 

dimensions and the normal operating ventilation conditions. The maximum 

burning rate value can then be fed into a more sophisticated code, such as a CFD 

code, in order to examine in more detail the fire dynamics without having to 

model air vitiation, pyrolysis, and/or the heat feedback to the fuel surface.  

 

The remainder of the paper is as follows. First, the model is described. Then, a 

validation is proposed based on the experimental data presented in Table 1. Next, 

the influence of high ventilation conditions and the fuel area is discussed for a 

wider range before addressing the main outcomes, limitations and future research 

needs in the ‘conclusions’ section.      

 

2 Numerical modelling  

2.1 Well-stirred reactor model 

2.1.1 Conservation equation for mass 

The well-stirred reactor model is based on the solution of three conservation 

equations for mass, oxygen and energy. 

The conservation equation for mass is expressed as: 

 

 F in ex

d
V m m m

dt

r
= + -F in exm m mF inF inm mm mF inF inF in   (1) 

 

where V is the volume of the room, ρ is the gas density, t is time, FmFm  is the fuel 

mass loss rate,  and inminm  and exmexm  are respectively the inlet and exhaust mass flow 

rates. 

The fuel mass flow rate is expressed as: 

 

 
''

F F Fm m A= ''

F F Fm m A''

F F FF F F  (2) 

 

where 
''

Fm ''

Fm  is the fuel mass loss rate per unit area and AF is the fuel area. 
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The inlet and exhaust mass flow rates are expressed as: 

 

 in in inm Vr= n inin in inm Vin in inin in inin iin iin iin in inVn in  and 
ex ex exm Vr= x exVx exex ex exm Vex ex exex ex exex eex eex eex ex exVx ex

 (3) 

 

where 
inVinVin

 and 
exVexVex

 are the volume flow rates at respectively the inlet and exhaust 

ducts.  For most calculations, the inlet gas density is taken as the ambient air 

density, ρa, and the exhaust gas density is taken as the gas density within the room 

(i.e. ρin = ρa and ρex = ρ). However, the pressure increase during the course of the 

fire may cause the inlet fan to reach its stall pressure (more details are provided in 

the section on mechanical ventilation). A further increase in pressure results in a 

reverse flow where the inlet fan acts as an exhaust. In this situation, the inlet 

density becomes equal to the gas density as for an exhaust fan (i.e. ρin = ρ). At 

extinction, a substantial underpressure may cause the exhaust fan to reach its stall 

pressure, making it act as an inlet fan. The density at the exhaust then becomes the 

ambient density (i.e. ρex = ρa ). In reality, the transition may not be as 

instantaneous as described in the model, especially in the presence of a complex 

ductwork for ventilation. However, it is believed that this will not have a 

significant influence on the end results for the steady-state stage. The gas 

temperature is computed from the density using the ideal gas equation: 

 

 
353.a aT

T
r
r r

= =   (4) 

 

where Ta is the ambient temperature. 

 

2.1.2 Oxygen concentration conservation 

The conservation equation for oxygen is expressed as: 

 

 
( )

2

2 2

2

, ,

O f

in O in ex O ex

O

d Y Q
V m Y m Y

dt H

r
= - -

D
fQ f

in O in ex O ex

Q
m Y m Yin O in ex O ein O in ex O e

H2 2, ,2 22 2in O in ex O ex2 22 2, ,2 22 22 2
-m Y m YY m

HH

Q
 (5) 
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where 
2OY is the oxygen mass fraction within the room and 

2 ,O inY  and 
2 ,O exY  are the 

oxygen mass fractions at respectively the inlet and exhaust ducts. The variables 

fQ fQ f  and 
2OHD denote respectively the heat release rate from the fire and the heat 

of combustion per unit mass of oxygen consumed. For most calculations these 

mass fractions are expressed as 
2 2, ,O in O openY Y=  and 

2 2,O ex OY Y=  (where 
2 ,O openY  is the 

oxygen mass fraction in open ambient conditions). However, when the inlet fan 

acts as an exhaust (as explained earlier), one obtains
2 2,O in OY Y= . Similarly, if the 

exhaust fan acts as inlet, the oxygen mass fraction is expressed as 
2 2, ,O ex O openY Y= . 

This modeled sudden transition is believed not to alter the results significantly as 

underlined for the density in the previous sub-section. 

 

2.1.3 Energy conservation 

The conservation equation for energy is expressed as: 

 

 
1

p in in p ex ex p F v f w

V dP
c m T c m T c m T Q Q

dtg
= - + + -

- v f wQv f wp in in p ex ex p F v f wT T T Qp in in p ex ex p F v f wp in in p ex ex p F v f wm T c m T c m T Qm T c m T c m T Qp in in p ex ex p F v f wp in in p ex ex p F v f wex ex p F v f wv f wQ Qv f wv f wQQv f wv f w   (6) 

 

where γ is the isentropic coefficient of the gas, P is the pressure inside the room, 

cp is the specific heat of gases, Tin and Tex are the temperatures at the inlet and 

exhaust ducts calculated from the densities, Tv is the vaporization temperature of 

the liquid, and wQwQw  is the heat loss to the boundaries. 

 

The heat loss to the boundaries is expressed as a series of natural convection 

(from the gas to walls, ceiling and floor) and conduction (through the solid 

boundaries): 

 

 ( ) ( )
1

1 1

w c k w aQ h h A T T
-- -= + -(w c k(( 1 1Q h( 1 1

w c kw c k( 1 1hh( 1 11 1

w c kw c kw c k(   (7) 

 

where hc is the convective heat transfer coefficient from natural convection (taken 

as constant, see Table 2), hk is the conductive heat transfer coefficient, and Aw is 

the surface area of the boundaries. For the conductive heat transfer coefficient, it 

is assumed that the solid boundaries are ‘thermally thick’ [18]: 
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1/2

,w w p w

k

k c
h

t

ræ ö
= ç ÷
è ø

  (8) 

 

where 
wk ,

wr  and ,p wc  are respectively the conductivity, density and heat capacity 

of the boundaries, and t is time.

The ‘thermally thick’ assumption is likely to be true for a compartment in nuclear 

power plants. However, it might not be applicable for other cases. 

2.2 Fuel response and mechanical ventilation sub-models  

2.2.1 Fuel mass loss rate  

The fuel mass loss rate per unit area (MLRPUA)  is expressed as: 

 

 2

2

''
'' ''

,

,

2.1 1.1
O R

F F open

O open v

Y q
m m

Y L

æ ö
= - +ç ÷ç ÷

è ø

''

Rq'' ''

F F open,mF F oF F o

æ
=F F openmmF F oF F o ç2 1

ææ
2 1ççç2.12.1çç   (9) 

 

where ''

,F openm''

F open,m  is the fuel mass loss rate per unit area (MLRPUA)  in free-burn 

conditions, ''

Rq ''

Rq is the net radiative heat flux at the fuel surface (assuming an 

absorptivity equal to unity) and Lv is the heat of vaporization of the liquid.  

The first term on the right hand side in Eq. (9) expresses the oxygen effect on the 

fuel mass loss rate (i.e. linear decrease) in vitiated conditions as proposed in [5]. 

The physical explanation proposed in [20] is the following. As the oxygen content 

in the vicinity of the fire decreases, the flame becomes less sooty, inducing less 

radiative feedback at the surface of the pool and subsequently a decreasing 

pyrolysis rate. The second term on the right hand side in Eq. (9) expresses the 

effect of thermal radiative feedback on the vaporization of the liquid as proposed 

in [7]. 

 

The MLRPUA in free-burn conditions,
''

,F openm''

F open,m , is expressed according to [21] as: 

 

 ( )'' ''

, , 1 KD

F open Fm m e-¥= -('' ''

, , 1 KD

F open F, ,, ,m m e(1F open FF open F

-
¥m (1   (10) 
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where ''

,Fm ¥
''

,Fm ¥  is the limiting MLRPUA, K is an extinction coefficient and D is the 

diameter of the fire. 

 

The external radiative heat flux, ''

Rq ''

Rq , is expressed as: 

 

 ( )'' 4 4

R vq F T Ts e= -'' 4

R vq F'' 4'' 4

R vR vR vR v

'' 4'' 4F   (11) 

 

where F is the configuration factor (taken here as 1), σ is the Stefan-Boltzmann 

constant and ε is the gas emissivity. 

 

2.2.2 Burning rate and heat release rate  

In order to calculate the burning rate, the amount of mass of oxygen within the 

enclosure is tracked. If enough oxygen is available in the room to have all the 

vaporized fuel burning (i.e. fuel-controlled fire), the burning rate is calculated as: 

 

 ''

b F Fm m A= ''

b F Fm m A''

b F Fb F Fb F Fb F F   (12) 

 

When the fire becomes ventilation-controlled (i.e., depends on the amount of 

oxygen supplied by the mechanical ventilation system), the burning rate is 

calculated as: 

 

 
2 2

/b O O cm m H H= D D
2 2b O O2 22 2

//mb O Ob O O /D D/m Hm H /b O Ob O Ob O Ob O O /   (13) 

 

where 
2Om
2O2

m is the mass flow rate of oxygen within the enclosure. 

The heat release rate of the fire is then expressed as: 

 

 f b cQ m Hc= Df b cQ mf b cf b cf b cf b cf b cf b cmmf b cf b cf b cf b cf b cf b cHf b cf b cHf b cf b cf b cf b cf b cf b cf b cmf b cf b cf b c   (14) 

 

where χ is the combustion efficiency and cHD  is the heat of combustion of the 

fuel. 
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12 

2.2.3 Mechanical ventilation  

 

The volume flow rates at the inlet and exhaust ducts 
inVinVin

 and 
exVexVex

are modeled to 

follow quadratic curves and are expressed as: 

 

 ( ) max,

0, max,

max,

in

in in in

in

p p
V V sign p p

p

D -D
= D -D

D0, m(in i0, m0, m((Vin iin i0, m0, m0, m(D(V sign pV p(0, m0, m0, m(in iin i0, m0, m0, m0, m(   (15a) 

 

 ( ) max,

0, max,

max,

ex

ex ex ex

ex

p p
V V sign p p

p

D -D
= D -D

D0, m(ex e0, m0, m((V V0, m0, m(ex eex e0, m0, m0, m(D(V sign ps gn p(0, m0, m0, m(  (15b) 

 

where 0,inV0,inV0,  and 0,exV0,exV0,  are the volume flow rates at the initial (i.e. ambient) 

conditions, max,inpD and max,expD  are the stall pressures of the fans placed at the 

inlet and exhaust ducts and Δp is the pressure difference between the inside and 

the outside (i.e., at ambient conditions). 

 

2.3 Algorithmic structure of the code 

Figure 2 shows the algorithmic structure of the code. As mentioned above, the 

calculation procedure is based on the solution of three conservation equations for 

mass, oxygen concentration and energy and four sub-models (i.e. ventilation flow 

rates, fuel response model, burning rate and heat losses to walls). The connection 

between the sub-models and the conservation equations is clearly indicated in 

Figure 2 (with the arrows on the side). The calculation sequence (in chronological 

order) is indicated by a number preceding each step (i.e. solution of a sub-model 

or a conservation equation). The oxygen concentration and the burning rate are 

solved simultaneously by first considering both fuel-controlled and ventilation-

controlled conditions and then selecting the appropriate one as explained above. 

The simulation time for all the calculations presented here is 1 hour.    

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



13 

1- Ventilation flow rates 

2- Fuel response model

3- Mass conservation equation

4- Oxygen conservation equation

6- Heat losses to walls

7- Energy conservation equation

5- Burning rate

- Initial conditions

- Properties of the room

dimensions,

thermal  properties

- Fan parameters

- Fuel parameters

area 

properties (e.g. heat of vaporization)

Input parameters

Calculation procedure

 

 

Figure 2. Flow chart of the algorithmic structure of the code. 

 

 

3 Validation for low ventilation flow rates  

The validation proposed in this section is based on the experimental data 

presented in Table 1 [13]. 

Before addressing the compartment fires, the limiting burning rate and extinction 

coefficient in Eq. (10) have been calibrated against the mass loss rate values for 

free atmosphere conditions displayed in Table 1. The obtained values used 

throughout the calculations presented in the present paper are  

''

, 0.070Fm ¥ =
''

, 0.07FmFF ¥ = kg/m
3
.s and K = 2 m

-1
. Furthermore, a period of 100 s is prescribed 

in the model for the MLR (Mass Loss Rate) to reach steady-state. The extinction 

by lack of fuel is not taken into account in this study. The purpose is to focus on 

ventilation-controlled steady-state burning rates. Figure 3 shows a comparison 

between the measured and modeled transient MLR profile in free atmosphere 

conditions. 
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Figure 3. Comparison between the measured and modeled transient Mass Loss Rates (MLR) 

profiles in free atmosphere conditions.  

 

 

3.1 Configuration 

The geometrical configuration considered in this work is shown in Fig. 4. It 

consists of a well-confined and mechanically-ventilated room. The ventilation 

system consists of an inlet fan and an exhaust fan that releases smoke to the 

atmosphere (ambient conditions). A pool fire is placed at floor level.  
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(a)Top view of the fire room 

 

 

(b) Side view of the fire room  

 

Figure 3. Experimental set-up used in [13-14]. 

  

 

The stall pressures of the fans ( maxpD in Eqs. (15)) were not provided in [13-14]. 

Values between 250 Pa and 800 Pa have been prescribed in the simulations, 

revealing that there is no significant impact the steady-state heat release rate 

values. 

 

Table 2 provides the list of remaining parameters as used in the model.  
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Table 2. Specified parameters for the model. 

Compartment parameters  

V = 120 m3 Room volume  

A = 150 m2 Room surface area 

Fuel parameters  

Lv = 361 kJ/kg Heat of vaporization [15] 

cHD = 42000 kJ/kg Heat of combustion [15] 

Tv = 461 K (188°C) Temperature of vaporization [16] 

2OHD = 13100 kJ/kg Heat of combustion per unit mass of oxygen 

Fluid parameters  

ar = 1.154 kg/m3 Ambient air density 

Ta = 306 K Ambient air temperature 

cp = 1 kJ/kg.K Specific heat of air 

Heat transfer parameters  

hc = 10 W/m2.K  Convective heat transfer coefficient 

wk = 1.5 W/(m.K) Conductivity of concrete [15] 

,p wc = 736 J/(kg.K) Specific heat of concrete[15] 

wr =2430 (kg/m3) Density of concrete [15] 

γ = 1.4 isentropic coefficient of the gas  

s = 5.67×10-8 W/m2K4 Stephan-Boltzmann constant 

c = 1 Combustion efficiency 

e = 1 Layer emissivity 

 

3.2 Results 

First, a detailed account of the results for the PRS-SI-D1 test is given. Figure 5 

shows that the peak MLR is overestimated in the transient stage. However, good 

agreement is obtained for the steady-state ventilation-controlled stage. The 

ventilation flow rates, pressure, oxygen concentration and average gas 

temperature profiles displayed in Fig. 6 are qualitatively well reproduced. For 

instance, the model is able to predict ‘well’ the pressure increase and reverse flow 

at the inlet during the transient stage. Similarly to the MLR profile, the predicted 

four quantities shown in Fig. 6 are in good quantitative agreement with the 

experimental data.     
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Figure 5. Comparison between the experimental and predicted transient MLR profiles for the PRS-

SI-D1 test. 
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Figure 6. Comparison between the experimental (dashed lines) and predicted (solid lines) transient 

profiles for the PRS-SI-D1 test. (a) Ventilation flow rates. (b) Pressure. (c) Oxygen concentration. 

(d) Gas temperature. 
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The transient MLR profiles of the other tests, displayed in Fig. 7, also show a 

good agreement with the experimental data. However, extinction due to lack of 

oxygen in PRS-SI-D3 was not predicted.  
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Figure 7. Comparison between the experimental (dashed line) and predicted (solid line) transient 

MLR profile  for (a) PRS-SI-D2, (b) PRS-SI-D3, (c) PRS-SI-D5, (d) PRS-SI-D5a. 

 

The steady-state predictions for the burning rate are shown in Fig. 8 and Table 3. 

These results show that a relatively good agreement is obtained for all tests 

(except for PRS-SI-D3 where extinction due to lack of oxygen was not predicted). 

It is noteworthy that Melis et al. [14] examined additional experimental data (not 

shown here) where the air inlet was placed at a low position. They concluded that, 

in such configuration, the available oxygen near the flame base is significantly 

higher than the mean oxygen concentration, inducing therefore a behaviour more 

similar to naturally-ventilated fires. Such an effect cannot be predicted with the 

well-stirred reactor approach as presented here. This is therefore to be considered 

as a limitation of the present model.   
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Figure 8. Comparison between the experimental and predicted steady-state MLR for four 

compartment fires considered in this study. 

 

 

Table 3. Model predictions and deviations for the steady-state MLR for the 5 compartment fires 

considered in this study.  

Test name 
Exp. data 

(g/s) 

Prediction 

(g/s) 

Relative 

deviation (%) 

Absolute 

deviation (g/s) 

PRS-SI-D1 4.1 3.7 -10 -0.4 

PRS-SI-D2 6.1 5.5 -10 -0.6 

PRS-SI-D3 - 1.5 - +1.5 

PRS-SI-D5 2.8 3.0 +7 +0.2 

PRS-SI-D5a 2.3 1.5 -35 -0.8 

 

 

Finally, it is noted that the temperatures measured in [13] remained below 475 K 

[14]. Knowing that the vaporization temperature of HTP is 461 K, one can 

conclude that the thermal feedback effect in [13] is negligible, if not inexistent. 

Such low temperatures are the result of small fuel areas (0.2 and 0.4 m
2
) and 

limited ventilation flow rates. In the next section the analysis is extended (using 

the developed single-zone model) to a wider range of fuel areas and ventilation 

flow rates in order to examine the interaction and influence of these two key 

elements on the burning rate for more severe conditions.    
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4 Influence of high ventilation flow rates and fuel area 

The sensitivity analysis for the ventilation flow rates and fuel areas proposed in 

this section is based on the same geometrical configuration [13-14] as displayed in 

Fig. 3 and using the same parameters of Table 2. 

4.1 Mechanical ventilation effect 

The surface area of the pool fire is taken here as 0.5 m
2
. The initial ventilation 

flow rates are varied between 0.1 and 10 m
3
/s. In all cases the initial air intake and 

extraction flow rates are equal. Furthermore, the stall pressures of the fans are 

taken as max 01000p VD = 0V0 . Such an approach allows covering the full extent of 

ventilation conditions given by the variation of ventilation flow rates as a function 

of pressure. Figure 9 shows an example of inlet fan curves considered for initial 

flow rates between 0.1 and 5 m
3
/s.   
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Figure 9. Inlet fan curves considered in the sensitivity study for initial flow rates between 0.1 and 

5 m3/s.  

 

The results of the effect of the ventilation flow rates on the burning rates are 

displayed in Fig. 10. These results show that when the ventilation flow rates are 

increased, the burning rates increase to reach, at 2.3 m
3
/s, a value that is almost 

1.75 times higher than the free-burn one. When increasing the volume flow rate 

beyond the critical value of  2.3 m
3
/s, the heat release rate (HRR) sharply 

decreases to the free-burn value, similarly to the ‘sudden drop’ as observed and 

described for naturally-ventilated enclosure fires [1-2]. 
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Figure 10. Influence of the mechanical ventilation flow rate on the steady-state HRR for a fuel bed 

area of 0.5 m2.   

 

Such behaviour is the result of a competition between the enhanced burning due 

to increased oxygen (allowing higher fuel MLR as result of the thermal feedback), 

and the mixing effect of hot gases with incoming fresh air which reduces the mean 

temperature within the enclosure and hence the thermal feedback effect to the fuel 

surface. In the next sub-section, this behaviour is examined for a wider range of 

fuel areas.       

4.2 Fuel area effect 

The fuel area has been varied between 0.4 and 1 m
2
 for ventilation flow rates 

between 0.1 and 10 m
3
/s. The results displayed in Fig. 11 show a clear analogy 

with the schematic diagram of Fig. 1 for naturally ventilated fires. For fuel areas 

between 0.5 and 1 m
2
, the same behaviour as explained in the previous sub-

section is obtained. For the smaller fuel area of 0.4 m
2
, there is no peak in the 

burning rate. The burning behaviour is similar to open atmosphere conditions, 

because there is no oxygen limitation in this case. For fuel areas beyond 1 m
2
, a 

ventilation flow rate higher than 10 m
3
/s was required to depict the sudden drop in 

the burning rate and the asymptotic behaviour to reach the free-burn value.  
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Figure 11. Predicted variation of the steady-state HRR with ventilation flow rates and fuel bed 

area. 

 

Interestingly, as shown in Fig. 12, the ratio of maximum HRR  rate to the open 

atmosphere HRR (i.e. HRRmax/HRR_open) reaches a maximum constant value 

around 1.75 for fuel areas higher than 0.4 m
2
. As suggested in [2] for naturally 

ventilated fires, this can be explained by an established equilibrium between the 

rate of fuel gas supply and the rate of air supplied by ventilation. 
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Figure 12.  Ratio HRRmax/HRRopen as a function of the fuel bed area. 
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This is useful information in practice. Indeed, the ventilation flow rates delivered 

by the fans and the full ventilation network (with the pressure losses between 

branches and nodes) have maximal (nominal) values. Thus, the maximum steady-

state burning rate can be estimated by performing a sensitivity study on the fuel 

area for the “nominal” ventilation flow rate. Figure 13 shows the results of such a 

study for two initial ventilation flow rates: 1 and 5 m
3
/s. For the 1 m

3
/s curve there 

is a strong increase in the HRR up to a fuel area of around 0.5 m
2
. Then, the 

steady-state HRR decreases very slightly with increased fuel area. The 5 m
3
/s 

curve shows that the burning rate for fuel areas below 0.7 m
2
 remains below the 

free-burn value due to a vitiation effect. However, between 0.7 m
2
 and 1.2 m

2
 the 

thermal feedback effect is stronger than the vitiation effect, yielding burning rates 

significantly higher than the free-burn values (up to 1.75 times). When the fuel 

bed area becomes too large (in this case beyond 1.2 m
2
) the burning rate is mainly 

controlled by the oxygen supply through the ventilation system and drops to a 

value below the free-burn conditions again.  

 

Summarizing, the present model can be used as screening tool to determine the 

‘worst case’ scenario in terms of HRR as mentioned before. 
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Figure 13.  Steady-state HRR as a function of the fuel area for two ventilation flow rates. 
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5 Conclusion 

A single-zone model for fire dynamics in a well confined and mechanically-

ventilated room has been developed as a support tool to be considered prior to 

more detailed and time consuming CFD calculations. The model solves three 

conservation equations for (i) mass, (ii) oxygen concentration, and (iii) energy, in 

conjunction with a fuel response model and a quadratic model for the mechanical 

ventilation. The fuel response model incorporates the limiting oxygen effect and 

the thermal effect (i.e., radiative feedback to the fuel surface). As output, the 

model provides the temperature, oxygen concentration and pressure within the 

room and, most importantly, the burning rate (or HRR).  

The model was first evaluated based on experiments for pool fires of 0.2 and 0.4 

m
2
 with limited ventilation conditions. A relatively good agreement with the 

experimental data was obtained (with deviations within ± 10 % for most of the 

experimental data).  

The model results were examined afterwards for a broader set of conditions (in 

terms of mechanical ventilation and fuel area). The extensive sensitivity study 

illustrated a balance between the (1) fuel mass loss rate and (2) the supply of air 

delivered by the fans. Depending on these two parameters and on the properties of 

the room (i.e. volume, surface area, and thermal boundary conditions) there is a 

maximum burning rate that cannot be exceeded. This is an important result that 

can be used to estimate the maximum HRR in design calculations (‘worst case’ 

conditions).  

The sensitivity study was particularly interesting when the volume flow rates, as 

delivered by the fans, were varied. It was shown that the steady burning rate 

increases with increased air volume flow rates up to a critical value, beyond which 

it drops abruptly and approaches asymptotically the burning rate value in open 

atmosphere conditions.  
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Figures legends 

Figure 1. Schematic diagram showing the variation of mass burning rate with ventilation factor 

and fuel bed area. The three solid lines represent three different fuel areas, AF. Adapted from [1]. 

Figure 2. Flow chart of the algorithmic structure of the code. 

Figure 3. Comparison between the measured and modeled transient Mass Loss Rates (MLR) 

profiles in free atmosphere conditions.  

Figure 4. Experimental set-up used in [13-14]. 

Figure 5. Comparison between the experimental and predicted transient MLR profiles for the PRS-

SI-D1 test. 

Figure 6. Comparison between the experimental (dashed lines) and predicted (solid lines) transient 

profiles for the PRS-SI-D1 test. (a) Ventilation flow rates. (b) Pressure. (c) Oxygen concentration. 

(d) Gas temperature. 

Figure 7. Comparison between the experimental (dashed line) and predicted (solid line) transient 

MLR profile  for (a) PRS-SI-D2, (b) PRS-SI-D3, (c) PRS-SI-D5, (d) PRS-SI-D5a. 

Figure 8. Comparison between the experimental and predicted steady-state MLR for four 

compartment fires considered in this study. 

Figure 9. Inlet fan curves considered in the sensitivity study for initial flow rates between 0.1 and 

5 m3/s.  

Figure 10. Influence of the mechanical ventilation flow rate on the steady-state HRR for a fuel bed 

area of 0.5 m2.   

Figure 11. Predicted variation of the steady-state HRR with ventilation flow rates and fuel bed 

area. 

Figure 12.  Ratio HRRmax/HRRopen as a function of the fuel bed area. 

Figure 13.  Steady-state HRR as a function of the fuel area for a three ventilation flow rates. 
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Table 1.  Test data for the burning rates of HTP in [13]. 

Table 2. Specified parameters for the model. 

Table 3. Model predictions and deviations for the steady-state MLR for the 5 compartment fires 

considered in this study.  

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65


