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Samenvatting (in Dutch)

In een wereld waarin computeronderdelen steeds kleiner en sneller worden, spelen magnetische

structuren een belangrijke rol. Bijvoorbeeld, in klassieke harde schijven wordt data opgeslagen

als uniform gemagnetiseerde gebiedjes (domeinen) op magnetische schijven. De uitdaging is

om deze gebieden zo klein mogelijk te maken en zo snel mogelijk te kunnen schrijven en uitlezen.

Iets futuristischer is een alternatief voor huidige geheugens dat een aantal jaar geleden werd

voorgesteld: het racetrack-geheugen. In deze toepassing wordt data opgeslagen in de richting

van de magnetisatie van de grensgebieden tussen twee domeinen, genaamd domeinmuren.

Deze domeinmuren kunnen door nanodraden met een typische doorsnede van enkele tientallen

nanometer bewogen worden aan voldoende hoge snelheden om competitief te zijn met huidige

geheugentechnologieën.

Een ander type magnetische structuren met veel toepassingen zijn magnetische nanodeeltjes.

Deze deeltjes bestaan uit een magnetische kern van enkele (tientallen) nanometer diameter

en eventueel een niet-magnetische coating die de deeltjes kan verhinderen om te clusteren of

die ze bio-compatibel kan maken. De deeltjes worden onder meer gebruikt in biomedische

toepassingen zoals hyperthermie, gerichte toediening van medicijnen en medische beeldvorming.

In gëıdealiseerde systemen zonder wanorde werken al deze toepassingen probleemloos. In wer-

kelijkheid is er echter altijd wanorde aanwezig. Wanorde is een breed begrip en hoeft ook niet

noodzakelijk een negatieve invloed te hebben. In dit doctoraatsproefschrift zullen verschillende

magnetische systemen met diverse vormen van wanorde besproken worden. Hieronder wordt

een kort overzicht gegeven.

Bij het onderzoeken van bovenvermelde systemen zijn micromagnetische simulaties een onont-

beerlijk hulpmiddel. Micromagnetisme is de theorie die de magnetische dynamica op nanometer

lengteschaal en picoseconde tijdschaal beschrijft. Enerzijds is deze schaal voldoende groot

om kwantummechanische effecten te mogen verwaarlozen en de magnetisatie als een continu
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vectorveld te benaderen. Anderzijds is ze kleiner dan de macroschaal waarop de magnetisatie

beschreven wordt door de wetten van Maxwell. Op deze tussenliggende schaal vinden we mag-

netische structuren en dynamica die interessant zijn voor verschillende toepassingen waarvan

hierboven enkele kort aangehaald werden. In Hoofdstuk 1 wordt een uitgebreide inleiding tot

micromagnetisme gegeven, waarbinnen de rest van dit proefschrift dan kadert.

Een eerste vorm van wanorde die we zullen beschouwen zijn imperfecte kristalstructuren,

waarin eventueel magnetische defecten aanwezig zijn. Wanneer dit type defecten voorkomt in

magnetische nanodraden spreken we van gedistribueerde wanorde. In Hoofdstuk 2 onderzoeken

we hoe dergelijke materiaaldefecten en/of polykristallijne materialen zo realistisch mogelijk in

micromagnetische simulaties opgenomen kunnen worden. Er wordt ook onderzocht wat het

effect van wanorde op de beweging van magnetische domeinmuren in dergelijke materialen is

en wat er precies gebeurt op het niveau van de lokale magnetisatie. Een belangrijk resultaat

dat we vonden in stroomgedreven vortexdomeinmuren, is dat de vortexkern aan defecten kan

ompolen wat zijn mobiliteit sterk bëınvloedt. Het gedrag van de domeinmuur wordt dan

bepaald door effectieve materiaalparameters die sterk kunnen verschillen van hun werkelijke

waarde. Onze bevinding kan zo een aantal tegenstrijdige experimentele resultaten verklaren.

Een tweede vorm van wanorde is temperatuur. Op de kleine tijd- en lengteschalen waarop wij

naar de magnetisatie kijken, spelen thermische fluctuaties een belangrijke rol. In Hoofdstuk 3

leiden we een bewegingsvergelijking af die de stochastische beweging van domeinmuren door

een nanodraad beschrijft en rekening houdt met zowel de invloed van temperatuur als van

materiaaldefecten. Deze bewegingsvergelijking wordt numeriek opgelost en haar oplossingen

worden vergeleken met micromagnetische simulaties. Nadat ze gevalideerd is, gebruiken we ze

om de beweging van domeinmuren te onderzoeken in het “creep-regime”. In dit regime wordt

de beweging van de domeinmuur volledig bepaald door het samenspel tussen de thermische

fluctuaties en het potentiaallandschap ten gevolge van de wanorde in het materiaal. In brede

nanodraden wordt hier (in overeenstemming met theoretische voorspellingen) typisch een sterk

niet-lineair gedrag opgemeten. In dunnere draden, waarvoor onze bewegingsvergelijking geldt,

is dit verrassend genoeg niet langer het geval en vinden we toch een lineaire relatie tussen

de snelheid en de drijvende kracht. Dit resultaat wordt ook ondersteund door beschikbare

experimentele data.

In Hoofdstuk 4 richten we onze aandacht op magnetische nanodeeltjes. De magnetische

dynamica van deze deeltjes wordt door hun kleine afmetingen volledig bepaald door thermische

fluctuaties. We stellen een nieuw micromagnetisch softwarepakket, Vinamax, voor dat speci-

aal ontwikkeld werd om nanodeeltjes efficiënt te kunnen simuleren. Dit pakket wordt eerst

gevalideerd en daarna gebruikt om de magnetische relaxatie van een ensemble van deeltjes te

onderzoeken. Nadat een ensemble in een extern veld gemagnetiseerd werd, zullen de thermische

fluctuaties de magnetisatie van de deeltjes terug willekeurig oriënteren. Het opmeten van dit

signaal noemt men magnetorelaxometrie. Door experimentele relaxometriedata te vergelijken

met micromagnetische simulaties kunnen we de Gilbert demping in nanodeeltjes, een waarde
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waarover in de literatuur bijna niets te vinden is, afschatten als ≈ 0.001. Vervolgens gebruiken

we Vinamax om de invloed van interacties tussen ijzeroxide nanodeeltjes te onderzoeken. Uit

dit onderzoek besluiten we dat significante interacties plaatsvinden vanaf een concentratie

van ongeveer 100 mmol/l ijzer. Magnetische ruis, het laatste onderwerp dat in dit Hoofdstuk

behandeld wordt, werd onderzocht tijdens een 3-maand-durend onderzoeksverblijf aan de

Physikalisch-Technische Bundesanstalt in Berlijn. Magnetische nanodeeltjes worden gewoonlijk

onderzocht door hun respons op een externe excitatie op te meten. In afwezigheid van dergelijke

excitatie wordt in een magnetisch afgeschermde omgeving echter toch nog een extreem kleine

ruis opgemeten ten gevolge van de thermische fluctuaties in de magnetisatie. We hebben een

theoretisch model opgesteld dat het experimenteel opgemeten spectrum van deze ruis kan

relateren aan de fysieke eigenschappen van de deeltjes. Voor alle opgemeten deeltjes waren de

eigenschappen, bepaald op basis van het ruisspectrum, in overeenstemming met deze bepaald

uit andere methodes zoals magnetorelaxometrie.

Ten slotte worden in Hoofdstuk 5 algemene conclusies getrokken en wordt toekomstig werk

dat op dit doctoraatsproefschrift kan voortbouwen besproken. In de toekomst kunnen we onze

aandacht bijvoorbeeld richten op een vorm van wanorde die in dit proefschrift niet uitgebreid

aan bod kwam (maar toch even werd aangeraakt in Hoofdstuk 4), namelijk geometrische

wanorde. Hierbij bevinden de nanodeeltjes zich op willekeurige posities. Wanneer de interacties

tussen de deeltjes sterk genoeg zijn, geven ze aanleiding tot een zeer merkwaardig gedrag

van de totale magnetisatie, genaamd “glasachtig” gedrag. Een tweede mogelijk onderwerp

voor toekomstig onderzoek zijn gefrustreerde systemen. Dit zijn systemen waarin zelfs in een

globaal energieminimum de lokale magnetisatie niet overal in haar energetisch voordeligste

toestand zit. Deze toestand is analoog aan waterijs en wordt daarom ook wel “spin-ijs”

genoemd. De magnetische dynamica van deze spin-ijs systemen resulteert uit het samenspel

van de gefrustreerde interacties tussen de individuele magnetische structuren en thermische

fluctuaties. Deze systemen zijn nog maar een paar jaar experimenteel toegankelijk en er staan

nog belangrijke uitdagingen in de weg om ze uitgebreid te onderzoeken met micromagnetische

simulaties. De technieken die uitgewerkt werden in dit doctoraatsproefschrift kunnen een

waardevolle bijdrage leveren om dit doel te bereiken.
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Preface

In a world of ever faster and smaller ICT devices, magnetic structures play an important

role. For example, in classic hard drives data is stored as uniformly magnetised areas, called

domains, on magnetic platters. The big challenge is to make these domains as small as possible

and to read and write them as quickly as possible.

Slightly more futuristic is an alternative memory technology which was presented some years

ago: the racetrack memory. In this device, data is stored in the direction of the magnetisation

of the boundaries between two domains, called domain walls. These domain walls can move

sufficiently fast through nanowires with a typical cross-section of a few tens of nanometers to

reach speeds competitive with current memory devices.

Magnetic nanoparticles are an other type of magnetic structures with a lot of applications.

They exist of a magnetic core with a diameter of a few nanometer and possibly a non-magnetic

shell which can make them bio-compatible or prevent them from aggregating. The particles

are used, among others, in medical applications like hyperthermia, drug targeting and medical

imaging.

All these applications work perfectly in idealised systems without disorder. However, in

reality there always is a certain degree of disorder present. Disorder is a broad concept and

shouldn’t necessarily have a negative influence. In this doctoral thesis we will discuss different

magnetisation systems with various kinds of disorder.

To investigate the above mentioned systems, micromagnetic simulations are an essential tool.

Micromagnetism is the theory which describes the magnetic dynamics at the nanometer length

scale and the picosecond timescale. On the one hand, this scale is large enough to neglect

quantum-mechanical effects and approximate the magnetisation as a continuous vector field.

On the other hand, it is smaller than the macroscale where the magnetisation is described

by the Maxwell equations. At this intermediate scale we encounter magnetic structures and
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dynamics that are interesting for several applications, some of which were briefly described

above. Chapter 1 contains an extensive introduction to micromagnetism, which provides the

framework for the rest of the thesis.

The first type of disorder we will consider are imperfect crystal structures, which may contain

magnetic defects. When these defects are abundant in magnetic nanowires, we talk about

distributed disorder. In Chapter 2 we investigate how such defects and/or polycrystalline

materials can be implemented in micromagnetic simulations. We also investigate the influence

of such disorder on domain wall motion and what happens physically on the level of the

local magnetisation. An important result we found in current-driven vortex domain walls is

that the vortex core can switch its polarity at defects which strongly influences its mobility.

Consequently, the domain wall behaviour is determined by effective material parameters

strongly deviating from their real values, which explains some contradictory experimental

results.

A second type of disorder is temperature. On the small time and length scales at which we

look at the magnetisation, thermal fluctuations play an important role. In Chapter 3, we

derive an equation of motion which describes the stochastic motion of domain walls through a

nanowire and takes both temperature and material disorder into account. We numerically

solve this equation of motion and compare its solutions to micromagnetic simulations. After

validating the equation, we use it to investigate domain wall motion in the “creep regime”. In

this regime, the motion of the domain wall is dominated by the interplay between the thermal

fluctuations and the potential energy profile due to the material disorder. In wide nanowires a

strong non-linear behaviour is expected (in agreement with theoretical results). Surprisingly,

in thin wires in which our equation of motion is valid, this is no longer the case and we find a

linear relation between the velocity and the driving force. This result is supported by available

experimental data.

In Chapter 4 we turn our attention to magnetic nanoparticles. The magnetic dynamics of

these particles is determined completely by thermal fluctuations due to their small dimensions.

We present a new micromagnetic software package, Vinamax, which was developed specifically

to efficiently simulate magnetic nanoparticles. First, we validate this package and then use

it to investigate the magnetic relaxation of an ensemble of nanoparticles. This relaxation

originates in the random reorientation of the magnetisation of the particles due to thermal

fluctuations, after they were magnetised in an externally applied field. The measurement

of this relaxation is called magnetorelaxometry. By comparing experimental relaxometry

data with micromagnetic simulations, we can estimate the Gilbert damping parameter in

nanoparticles, a value not found in literature, to be ≈ 0.001. Subsequently, we use Vinamax

to investigate the influence of interactions between iron-oxide nanoparticles. We conclude

that significant interactions take place starting from concentrations of approximately 100

mmol/l iron. Magnetic noise, the last topic of this chapter, was investigated during a 3-month

research stay at the Physikalisch-Technische Bundesanstalt in Berlin. Magnetic nanoparticles
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are typically investigated by measuring their response to external excitations. However, in

the absence of such excitations, one can still measure an extremely small noise signal in a

magnetically shielded environment due to the thermal fluctuations in the magnetisation. We

have developed a theoretical model which relates the noise spectrum to the physical properties

of the particles. For all measured particles, the properties determined from the noise spectrum

agreed with the ones determined from other methods like magnetorelaxometry.

Finally, in Chapter 5 we draw general conclusions and discuss possible future work building

on the results of this thesis. In the future, we might investigate a type of disorder which

was only considered briefly in Chapter 4, i.e. geometrical disorder. There, the particles are

located on random positions. When the interactions between the particles are strong enough,

they give rise to a strange magnetic behaviour, called “glassy” behaviour. A second possible

topic of future research is frustrated systems. In these systems, the local magnetisation never

is in its lowest energy state, not even when the system as a whole is in its global energy

minimum state. This state resembles water-ice and therefore is called “spin-ice”. The magnetic

dynamics of spin-ice systems result from the interplay between the frustrated interactions

between individual magnetic structures and thermal fluctuations. Only recently such systems

became experimentally accessible and significant challenges are hindering extensive micromag-

netic studies. However, the methods developed in this doctoral thesis can provide valuable

contributions towards this goal.



Contents 8



CHAPTER 1

Introduction

magnet, n. Something acted upon by magnetism.

magnetism, n. Something acting upon a magnet.

— Ambroce Bierce, the devil’s dictionary

1.1 The origin of ferromagnetism

Ferromagnetic materials, like iron, are materials which show a spontaneous magnetisation in

the absence of external fields. This effect originates in 1) the fact that the individual atoms have

a magnetic moment and 2) that these magnetic moments display a long-range ordering. In this

section we will explain where the magnetic moments come from and what causes their ordering.

Magnetism is related to the angular momentum of elementary particles[1]. In solids, the main

source of magnetic moment are the electrons. They have an elementary charge e and mass

me. They have two different angular momenta. First, there is the orbital moment. In the

classical picture, an electron orbits the nucleus and is bound to it by the Coulomb interaction.

This gives rise to a charge moving in a loop and thus a current loop, which has a magnetic

moment associated to it. Consequently, the magnetic moment M is proportional to the angular

momentum l.

M = γl (1.1)

with γ the gyromagnetic ratio, which equals − e
2me

for the orbital motion of electrons. The

orbital angular momentum is quantised in units of ~, so the natural unit for electronic

magnetism is the Bohr magneton,

µB =
e~

2me
= 9.274× 10−24Am2. (1.2)

9
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The electron also possesses an intrinsic angular momentum (called spin) unrelated to its

orbital motion. Because electrons are point particles, it is not meaningful to see them as

actually spinning particles; the electron spin actually is a relativistic quantum mechanical

effect unrelated to any actual spinning motion. This spin angular momentum also gives rise to

a magnetic moment. The gyromagnetic ratio γ for this moments equals − e
me

and consequently

spin angular momentum is twice as efficient to generate magnetic moment as the orbital

angular momentum. In most ferromagnetic materials like iron, the orbital angular momentum

is negligible because it is quenched as a result of the interaction between the electrons and the

crystal fields. In these materials, it is almost exclusively the intrinsic spin angular momentum

which is responsible for the magnetic moment.

Although all substances contain electrons, most of them are not magnetic. The reason is that

in most atoms the magnetic moment of one electron is cancelled out by the moment of an

other. Only when unpaired electrons are present, a net magnetic moment can remain.

We now know where the source of the magnetic moment lies, but not yet what causes its

ordering. In most materials, the individual magnetic moments do not interact with each

other and only line up in the presence of an external field, a phenomenon called paramagnetism.

The long-range ordering encountered in ferromagnetism is again a quantum mechanical effect

and originates in the half-integer spin of the electrons. Because they are fermions, electrons

have to obey Pauli’s exclusion principle which states that two electrons cannot be in the same

quantum state simultaneously. In practice this means that two electrons whose wave functions

overlap cannot have their magnetic moments aligned.

This condition can be fulfilled in two ways. On the one hand, the two electrons could have an

opposite spin, and have overlapping wave functions. On the other hand, the electrons could

have their spins aligned, but then their wave-functions are not allowed to overlap and the

electrons have to remain further apart. Due to the Coulomb repulsion the lowest energy state

corresponds to the latter state where neighbouring atoms have the same spin, and the energy

difference is called the exchange energy. The exchange interaction, further discussed in Section

1.3 thus lies at the origin of the ferromagnetic ordering.
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1.2 Historical overview of micromagnetism

Micromagnetism is the continuum theory of magnetic materials at the picosecond timescale

and nanometer to micrometer length scale. Its purpose was first described in the book

“Micromagnetics”[2], written by W. F. Brown

To understand ferromagnetic materials, we must examine them on a smaller

scale than that of ordinary observations. On one such scale we speak of domains;

on another, of lattice sites. This tract analyses them on an intermediate scale:

small enough to reveal details of the transition regions between domains, yet large

enough to permit the use of a continuous magnetisation vector rather than of

individual atomic spins.

Micromagnetism thus originates from a desire to understand ferromagnetic materials. The

first achievement towards this goal was made by Weiss already in 1907[3]. Until then it was a

mystery why some materials, for example iron, could sometimes display no net magnetisation

although it was known that they were magnetic materials. Weiss came up with the idea that a

ferromagnetic material can contain several uniformly magnetised domains . The magnetisation

can point in different directions in different domains. Furthermore, knowing that uncoupled

magnetic moments cannot give rise to the magnetisation observed in ferromagnets[4], he

argued that the magnetic moments within these domains all lie in the same direction due

to the influence of some unknown field, called the Weiss molecular field . At that time, the

only thing that was known about this field was that the magnetostatic interaction due to

the dipolar coupling alone is not sufficient for the observed long-range ordering. In 1928

Heisenberg realised that the quantum-mechanical exchange interaction lies at the origin of the

Weiss molecular field [5].

In the meantime, in 1919, Barkhausen discovered that when a magnet is brought in the vicinity

of another magnetic material, the magnetisation of this material changes in discrete jumps,

leading to the well-known Barkhausen noise[6], which can be made audible by an amplifier.

He explained this noise by attributing it to the switching of the individual domains. Today

we know that this is not completely correct as the jumps result from the motion of domain

walls between defects. Nonetheless, Barkhausen was correct in associating and explaining

his observations with the help of domain theory, already 12 years before domains were first

visualised by Bitter [7]. Simultaneously, Sixtus and Tonks investigated the reversal of magnetic

wires in their famous experiments[8] and concluded that it is not the domains themselves which

switch direction, but the boundaries between different domains which move and thus enlarge

the domains with an energetically favourable direction at the cost of oppositely magnetised

domains.

Also in the thirties, important theoretical insights were gained. Taking only material anisotropy

and the exchange interaction into account, Bloch was the first to investigate domain walls[9]

and calculated the size and shape of the boundary in between domains. In 1935 Landau and

Lifshitz [10] were a huge step ahead of their time by taking into account all energy terms (see
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Section 1.3) when they redid Bloch’s calculation for domain walls. Their insights not only

advanced the understanding of domain walls, but laid in fact the basis for all of micromag-

netism by deriving the now famous Landau-Lifshitz equation. This equation describes the

dynamics of magnetic moments while they minimise all these different energies. Following

the work of Döring [11], the last step towards a complete framework of micromagnetism

as it is still used today was done by Gilbert in 1955[12]. He investigated the description of

damping in ferromagnetic materials and reformulated the Landau-Lifshitz equation as the

Landau-Lifshitz-Gilbert equation.

As can be seen in the description above, the theory of micromagnetism gradually grew during

a time span of roughly 50 years. By the sixties, all elements for a complete framework were

there and Brown combined everything in a comprehensive overview[2]. Due to the complexity

of the micromagnetic equations, it is only possible to analytically solve (relatively) simple

problems. The most famous analytical calculation is the domain wall calculation of Landau

and Lifshitz [10]. A second example, which is still as relevant today as it was 50 years ago, is

the magnetisation of a single-domain particle [2, 13, 14]. Although it is possible to tackle more

difficult problems by carefully analyzing and simplifying the micromagnetic equations (e.g. the

1D-model for domain wall motion by Schryer and Walker [15]), the field of micromagnetism

did not advance very quickly. Only when increasingly faster computers became available, did

it become possible to numerically solve micromagnetic problems and compare their solutions

to their analytical counterparts. As Schryer and Walker [15] put it in 1974 (and 5 years after

computers were used to put a man on the moon!):

At the outset it was not at all clear how much could be accomplished with

the computer simulation with a reasonable investment of effort. The numerical

integration of the equations of motion presented in itself an interesting and difficult

problem. It quickly became apparent that unless the character of the motion was

reasonably simple, the integration would not be economically feasible.

However, they were successful in their endeavor to perform the first micromagnetic simulation.

Ever since, with the advent of increasingly faster computers, the field of micromagnetism has

taken a high flight. Recently, the possibility to calculate on graphics cards[16] has further

increased our possibilities to perform larger and larger simulations. This trend is presented

visually in Fig. 1.1, where the prevalence of the words “micromagnetic theory” and “micro-

magnetic simulations” are shown as function of time.
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Figure 1.1: The prevalence of the words “micromagnetic theory” and “micromagnetic simulations”

in the corpus “English” between 1940 and 2008, smoothed out over a 4-year period according

to google Ngram Viewer (https://books.google.com/ngrams). One can clearly see that, once

the theoretical framework of micromagnetism was established, it took almost until 1990 before

computers were fast enough to solve the micromagnetic equations and rapidly advance the field of

micromagnetism.
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1.3 Micromagnetic theory

We repeat that micromagnetism is a continuum theory of magnetisation. This means that

we deal with spatial scales larger than that of individual atoms. The magnetisation is thus

approximated as a continuum vector field M. The length of the magnetisation vector at

each point is assumed to be constant and equal to the saturation magnetisation, Ms. As we

are only interested in the direction of the magnetic moment at each point in space, we can

introduce the reduced magnetisation m = M
Ms

. By definition, the norm of m is thus equal to

one everywhere.

The field of micromagnetism can be divided into two areas: static micromagnetics, where we

are interested in the equilibrium configuration of the magnetic moments, defined as the state

with minimal energy. The second area is dynamic micromagnetics, where the time evolution

of the moments is investigated by solving the Landau-Lifshitz-Gilbert equation.

1.3.1 Micromagnetic energy terms

Static micromagnetics deals with finding the equilibrium magnetisation. This equilibrium

state is found by minimising the total energy of the system.

Etotal = Eexchange + EZeeman + Eanisotropy + Emagnetostatic + · · · (1.3)

In the following sections an overview of the different micromagnetic energy terms will be

given[17]. These energies are calculated as a volume integral of the local energy densities E
over the total considered volume V

E =
dE

dV
. (1.4)

The energy densities can be calculated at each point in space and have expressions which are

easy to interpret.

Exchange energy

The exchange interaction has a quantum-mechanical origin[5]. It is the result of the Coulomb

repulsion between different electrons and Pauli’s exclusion principle and tries to align neigh-

bouring spins. It can be derived from the Heisenberg exchange Hamiltonian

Ĥexchange = −2J σ̂i · σ̂j . (1.5)

In this equation, σ̂i and σ̂j are two neighbouring electron spins, and J is the strength of the

exchange interaction. A positive J results in a ferromagnetically ordered material and when

J is negative it is possible to find a ferrimagnetic or antiferromagnetic ordering.

In the continuum limit of micromagnetism, this leads to an exchange energy density of

Eexchange = Aex(∇m)2 (1.6)
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where Aex denotes the exchange stiffness constant and (∇m)2 is shorthand for

(∇m)2 = (∇mx)2 + (∇my)
2 + (∇mz)

2. (1.7)

The physical meaning of this expression is that there is an energy penalty whenever the

magnetisation does not vary as smoothly as possible. If the exchange interaction would be the

only interaction between magnetic moments, all equilibrium configurations would be states

with all moments lying parallel to each other. Of course, this is not the case in reality, and

due to the influence of other energy terms, the magnetisation will still vary on larger length

scales. In the absence of an external field, there is a lower limit to the length scale at which

the magnetisation can vary. This length is called the exchange length1,

lex =

√
2Aex

µ0M2
s

, (1.8)

with µ0 = 4π × 10−7 Tm/A the vacuum permeability . To vary the magnetisation on a smaller

length scale requires magnetic fields larger than Ms, which are impossible to find in magnetic

materials without applying external fields or taking other effective field terms into account2.

Zeeman energy

The Zeeman energy is the energy due to an externally applied magnetic field Hext. This

energy is minimised when the magnetisation is aligned with the external field. The energy

density is given by

EZeeman = −µ0M ·Hext. (1.9)

Anisotropy energy

The structure of the crystal lattice can impose preferred directions on the magnetisation via

spin-orbit coupling. In the simplest case, this anisotropy gives rise to one favourable direction.

This is called uniaxial anisotropy , and appears for instance in crystals with a hexagonal

structure.

The energy density for uniaxial anisotropy is given (up to the first order term) by

Eanisotropy = K
(
1− (m · u)2

)
. (1.10)

The anisotropy constant K (expressed in J/m3) can be either positive or negative. When

K > 0, the energy is minimised when the magnetisation is aligned with the anisotropy direction

u, which we then call an easy-axis. Alternatively, when K < 0, the magnetisation tries to

1Due to the way the exchange interaction is calculated in MuMax3, the finite difference cells in the

micromagnetic simulations should have a size which is preferably a bit smaller than the exchange length.
2e.g. for the anisotropy, discussed below, the characteristic length scale is given by

√
(Aex/K), with K the

anisotropy constant. When considering other interactions, the size of the finite difference cells thus has to

chosen accordingly.
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align with the plane perpendicular to the anisotropy axis to minimise the energy, which is

then called a hard-axis. This is visualised in Figs. 1.2 and 1.3.

u

Figure 1.2: The energy surface for uniaxial

anisotropy with u along the z-axis and K > 0.

The distance from the origin denotes the energy.

The energetically favourable direction is u.

u

Figure 1.3: The same energy surface as in

Fig. 1.2, here with K < 0. The energetically

favourable directions lie perpendicular to u.

A second case which is also often encountered (for instance in cubic crystals like iron) is cubic

anisotropy . Here, the energy density (up to the first order term) is given by

Eanisotropy =K
(
(c1 ·m)2(c2 ·m)2 + (c1 ·m)2(c3 ·m)2

+ (c2 ·m)2(c3 ·m)2
) (1.11)

with c1,c2 and c3, three mutually perpendicular anisotropy directions.

The preferred axes are shown for a positive and negative anisotropy constant in Figs. 1.4 and

1.5.

Figure 1.4: The energy surface for cubic

anisotropy with c1,c2 and c3 along the x, y and

z-axis respectively and K > 0. The distance from

the origin denotes the energy. (By RockMagnetist

(Own work) [CC0], via Wikimedia Commons)

Figure 1.5: The same energy surface as in Fig.

1.4, here with K < 0. (By RockMagnetist (Own

work) [CC0], via Wikimedia Commons)
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The anisotropies described above are examples of magnetocrystalline anisotropy . There also

exists shape anisotropy. This anisotropy introduces easy axes due to the shape of the material

and is magnetostatic in origin. Therefore it will be discussed in the next section.

Finally, surface anisotropy originates in the symmetry breaking in the crystal structure at the

surface. In contrast to the other energy densities described in this chapter, its energy is given

by an integral over the surface S of the sample:

Esurface anisotropy =

∫
S
Ks

(
1− (m · en)2

)
dS, (1.12)

where en denotes the direction perpendicular to the surface and typical values for Ks are 0.1

to 1 mJ/m2[1]. In thin films this anisotropy can align the magnetisation perpendicular to the

surface, leading to perpendicular magnetic anisotropy (PMA). As a side note, PMA can also

have a magnetocrystalline origin when a thin film of a PMA material is grown on a suitable

substrate which aligns its easy-axis perpendicular to the plane of the film.

The surface anisotropy can also influence the equilibrium state in materials with low Curie

temperatures or with a weak exchange energy [1, 18] (see Fig. 1.6).

Figure 1.6: Some magnetic configurations in ferromagnetic spherical nanoparticles with: (a)

no surface anisotropy, (b) and (c) perpendicular surface anisotropy of increasing strength and (d)

in-plane surface anisotropy. Reproduced from [18] and [1].

Chapters 2 and 3 mainly deal with the motion of domain walls in permalloy3 nanowires.

permalloy is an alloy of nickel and iron which was designed to have no magnetocrystalline

anisotropy. This makes it very easy to magnetise (or demagnetise), and is why it is called

a magnetically soft material . This contrasts magnetically hard materials which have large

3Most simulations in Chapters 2 and 3 are performed with the material parameters of permalloy. Without

further mentioning them everywhere, the parameters used are: spin polarisation 0.56, exchange stiffness constant

13× 10−12 J/m, saturation magnetisation 860 kA/m and Gilbert damping parameter α = 0.02 (Chapter 2) or

0.01 (Chapter 3).
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anisotropies, and are able to form strong permanent magnets.

Chapter 4 deals with magnetic nanoparticles. In these particles, the anisotropy is very

important, as it is mainly the ratio between the anisotropy energy and the thermal energy

which dictates the magnetic behaviour of these particles. For simplicity reasons, nanoparticles

are often assumed to have uniaxial anisotropy [19, 20] and for the particles considered in that

chapter the surface anisotropy is negligible.

Magnetostatic energy

The magnetostatic energy is the energy of magnetic moments in the magnetic field resulting

from all considered moments (including itself). This energy is minimised when all flux loops

are closed and there are no stray fields outside of the magnet.

The magnetostatic interaction is also called the dipole-dipole interaction because it arises from

the interaction between magnetic moments, which can be considered to be magnetic dipoles.

This interaction gives rise to the magnetostatic field which is also called the demagnetising

field , as it tries to close the flux loops which results in a zero net magnetisation outside the

magnet.

In the expression for the energy density,

Emagnetostatic = −1

2
µ0M ·Hdemag, (1.13)

the factor 1
2 is necessary to avoid counting the interaction between two moments double.

In Eq. (1.13), Hdemag is the demagnetising field

Hdemag =
µ0

4π

∫
V
Ms

[
3

(m · r) r

‖r‖5
− m

‖r‖3

]
dr. (1.14)

This expression can be derived from Maxwell’s equations [1] and shows that the demagnetising

field is the integral of all fields produced by all dipoles. The individual interaction between

two dipoles is relatively weak, and is always smaller than the exchange interaction on short

distances. However, unlike the exchange interaction which only acts between nearest neigh-

bours, the magnetostatic interaction is a long-range interaction. In Chapter 2.1 it will be

shown how this interaction is responsible for the formation of domains in magnetic materials.

Another consequence of this long-range interaction is that micromagnetic calculations are

computationally very challenging, which is discussed in further detail in Sections 1.3.3 and 4.2.

The demagnetising field Hdemag within a uniformly magnetised sample in the shape of an

ellipsoid is uniform[1] and can be written as

Hdemag = NM. (1.15)



Chapter 1. Introduction 19

In this equation, N is the demagnetising tensor. If the 3 main axes of the sample coincide

with the x,y and z axes of the coordinate system, N can be written in diagonal form and Nx,

Ny and Nz are then called demagnetising factors . These factors will be of use when describing

the motion of domain walls in Chapter 3. They depend on the shape of the sample, which we

illustrate with a few simple examples. The sum of Nx, Ny and Nz is always equal to 1. In

a spherical magnet, they should all be equal to 1/3 for symmetry reasons. Likewise, for an

infinitely long wire with circular cross-section, the demagnetising factor is 0 in the longitudinal

direction of the wire, while the demagnetising factors in the two directions perpendicular

to this direction are 1/2. Finally, in an infinite plane, only the demagnetising factor in the

direction perpendicular to the plane is different from 0 and thus equals 1. Consequently, the

demagnetising field and the energy it costs to point the magnetisation in a certain direction

depend on the shape of the sample. This shape anisotropy is responsible for the fact that the

magnetisation in a nanowire (apart from any domain walls) lies in the length direction of the

nanowire. This is consistent with the demagnetising factor 0 in this direction.

Other energy terms

Apart from the ones described above, there still exist other energy terms which we will not

discuss in detail as they are not important for the materials considered in this thesis. Two

often encountered examples are:

� Magnetoelastic energy : This energy term describes the interaction between strains in the

crystal lattice and the magnetisation. When a mechanical stress is applied to a magnetic

material, the (small) deformations in its crystal lattice can influence the localised electrons

and change the magnetisation. Also the inverse is possible; when a magnetic field is

applied to such materials, the magnetic force on the electrons can displace the atoms

in the crystal lattice and induce strains. This effect is called magnetostriction. The

magnetostriction in iron and nickel is oriented in opposite directions, and an alloy of

roughly 79% nickel and 21% iron (permalloy) does not show any magnetostriction at all.

� Dzyaloshinskii-Moriya interaction[21] (DMI): This interaction is an asymmetric exchange

interaction which tries to orient closest neighbours perpendicular to each other. The

DMI stabilises skyrmions [22]: bubble-like quasi-particles currently under investigation

as a possible alternative to domain walls in spintronics applications[23, 24]. It is present

in materials with no inversion symmetry or when the symmetry is broken at interfaces.

1.3.2 Dynamic micromagnetics

In the previous section we described the different micromagnetic energy terms. The minimisa-

tion of the total energy defines the ground state, which is the topic of static micromagnetism.

In this section the time dependent magnetisation, or dynamics, is described.

Landau and Lifshitz proposed that the time evolution of the magnetisation can be described

by considering the effect of a local effective field on the magnetisation. This effective field can
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be written as the derivative of the magnetic energy densities to the magnetisation,

Heff = − 1

µ0

dE
dM

. (1.16)

Without loss mechanisms, the magnetisation in an effective magnetic field will precess around

this field.4

Ṁ = −γM× µ0Heff (1.17)

The precession frequency (called the Larmor frequency) is then equal to

f =
γ0Heff

2π
≈ µ0Heff 28 GHz/T (1.18)

where γ0 = 2.21× 105 m/As is the product of the vacuum permeability µ0 and the gyromagnetic

ratio

γ =
ge

2me
(1.19)

where e and me are the charge and mass of the electron respectively and g ≈ 2 is the Landé

factor.

Without loss mechanisms, conservation of energy would allow this precession to continue

forever. However, in the real world, energy is dissipated by e.g. eddy currents and phonon

excitations via spin-lattice coupling. Landau and Lifshitz [10] took this damping into account

by adding a phenomenological torque to Eq. (1.17) which slowly damps the magnetisation

towards the effective field. The Landau-Lifshitz equation thus reads

ṁ = −γ0m×Heff − λm× (m×Heff). (1.20)

In 1955, Gilbert [12] introduced a different approach to describe the damping. Also phe-

nomenologically, but physically more intuitive, he assumed the damping to be proportional

to the time derivative of the magnetisation ṁ, with α (the Gilbert damping parameter) as

proportionality constant. Typically, an α of 0.01 is measured in permalloy, but this value can

be as high as 0.3 in materials with perpendicular magnetic anisotropy.

Using Gilbert’s approach, the Landau-Lifshitz equation can be written in its Gilbert form

(also called the Landau-Lifshitz-Gilbert equation)

ṁ = −γ0m×Heff + αm× ṁ. (1.21)

4In this thesis a time derivative will always be denoted with a dot, e.g. Ṁ stands for dM
dt

.
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Figure 1.7: The precession (red) and damping (blue) term in the Landau-Lifshitz-Gilbert

equation. (By CH. Becker (Physikalisch-Technische Bundesanstalt) [Public domain], via Wikimedia

Commons)

Both terms in Eq. (1.21) are intuitively explained in Fig. 1.7. The first term describes the

precession of the magnetisation around the effective field Heff . The second term describes the

damping of the magnetisation towards Heff . As shown in Fig. 1.7, this results in a spiralling

motion for a static effective field.

Although Eqs. (1.20) and (1.21) look different, they can easily be transformed into one another

by substituting λ and γ0 in the Landau-Lifshitz equation by γ0α
1+α2 and γ0

1+α2 , respectively.

Opposed to the original Landau-Lifshitz equation (without the correct rescaling of λ and

γ0), the precession frequency is dependent on the damping in the Landau-Lifshitz-Gilbert

equation. Consequently, they only describe the same physics in the limit of low damping. As

the phenomena investigated in this thesis have low damping, we will not explore the differences

between both in more detail, but conclude with the remark that the Landau-Lifshitz-Gilbert

equation is the only one describing physically correct behaviour in the limit of high damping.

Spin-transfer torque

In Section 1.3.1 an overview of all energy terms contributing to the effective field was given.

However, also the interaction between conduction electrons and the localised electrons re-

sponsible for the magnetisation can be taken into account in the Landau-Lifshitz equation

[25]. One important phenomenon explained by this interaction is the giant magnetoresistive

effect [26]. The interaction can be included as a spin-transfer torque.

Electrons possess a charge and a spin (due to their angular momentum). In an unpolarised

electrical current, only the charge of the electrons is of importance and both spin directions (up

or down) appear in equal amounts. In a spin-polarised current , this is no longer the case, and

next to charge, also angular momentum is transported. There, the spin polarisation determines

the relative abundance of one type of spin. In permalloy, typically a spin polarisation P = 0.56

is measured.
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Zhang and Li [27] proposed a theoretical framework which accurately describes the interaction

between a spin-polarised current and the magnetisation.

They added two spin-transfer torque terms to the Landau-Lifshitz-Gilbert equation describing

the exchange of angular momentum between the conduction and localised electrons to arrive

at

ṁ = γ0Heff ×m + αm× ṁ− [bJ · ∇] m + βm× [bJ · ∇] m. (1.22)

In this equation, J denotes the current density, β the degree of non-adiabaticity and

b =
PµB

eMs(1 + β2)
(1.23)

is a prefactor determined by P , the polarisation of the spin-polarised current, e, the electron

charge and µB, the Bohr magneton.

The first spin-transfer torque term in Eq. (1.22) is called the adiabatic spin-transfer torque. It

is assumed that the spin polarisation follows the magnetisation adiabatically, except for the

small degree of non-adiabaticity taken into account separately in the second term. This is the

non-adiabatic spin-transfer torque and is proportional to β. It is related to the spatial mistrack-

ing of moments between conduction electrons and the local magnetisation[27] and is also called

the field-like torque[28] because its effect on the magnetisation is similar to that of an exter-

nally applied field. The size of β[29] is still a topic of debate, which will be detailed in Chapter 2.

The exchange of angular momentum described by the spin-transfer torque allows to use

spin-polarised currents as a driving force in domain wall motion. Further details about

current-driven domain wall motion are given in Section 2.1.4.

Nonzero temperatures

The Landau-Lifshitz-Gilbert equation shown in Eq. (1.21) describes the dynamics of the

magnetic moments at zero temperature. However, magnets exist at nonzero temperatures . To

accurately describe magnetic dynamics also thermal fluctuations should be taken into account.

Brown [13, 30] developed the theory to include thermal fluctuations when he investigated

the thermal switching of single-domain particles, a topic which will be discussed in detail in

Chapter 4. Using the fluctuation-dissipation theorem, he determined the statistical properties

of the thermal fluctuations acting on a single-domain particle.

Lyberatos, in 1993[31], realised that this theory was also applicable to micromagnetic simu-

lations as each finite difference cell can be seen as a single-domain “particle”. He adapted

Brown’s equations and extended the effective field in the Landau-Lifshitz-Gilbert equation

with a stochastic thermal field Hth with the following properties.
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〈Hth〉 = 0 (1.24)

〈Hth,i(t)Hth,j(t
′)〉 = qδD(t− t′)δD,ij (1.25)

q =
2kBTα

Msγ0µ0V
(1.26)

The operator 〈·〉 denotes an average over time, 〈··〉 a correlation, δD the Dirac delta function

and the indices i and j go over the x, y and z axes in a Cartesian system. The thermal field

has zero average [Eq. (1.24)], is uncorrelated in time and space [Eq. (1.25)] and its size q is

given by Eq. (1.26). In this equation, kB denotes the Boltzmann constant, T the temperature

and V the volume in which the thermal fluctuations are considered.

Numerically, the thermal field is included in the effective field as:

Hth = η

√
2αkBT

µ0Msγ0V∆t
(1.27)

where ∆t is the time step used to integrate the micromagnetic equations and η denotes a

vector containing 3 random numbers η drawn from a normal distribution with zero mean and

standard deviation of one[32].

Equation (1.27) is determined so that the effect of the thermal fluctuations is independent

on the space discretisation. E.g. when splitting up a volume into two smaller volumes and

comparing the thermal fluctuations with those on the whole volume, one will on average

recover the same behaviour.

In Eq. (1.27), one also sees an inverse proportionality to the square root of the time step ∆t.

Similarly as with larger volumes, when averaged out over a larger time, thermal fluctuations

should become smaller. Again, this proportionality is determined so that the thermal fluc-

tuations over long times do not depend on the time discretisation in the simulations. It is

also the time step dependence of the thermal field which prohibits the use of solvers with an

adaptive time step. A more elaborate discussion on this topic can be found in appendix A.

The thermal fluctuations described above act on the same timescales as the other micromag-

netic torques, i.e. picoseconds. However, when looking at e.g. ensembles of nanoparticles,

macroscopic measurements are unable to capture any of these dynamics as they are averaged

out over many particles and longer timescales. What we are interested in here is not the fast

dynamics but the slower dynamics resulting from the thermally driven jumps over energy

barriers, which can happen on a timescale of nanoseconds up to millions of years. In our

simulations, however, we would rather not waste computational time by calculating billions of

fluctuations, of which only one will eventually result in a macroscopically observable change

in the magnetisation.
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An alternative approach is to describe the effect of thermal fluctuations as a jump noise pro-

cess[33–36]. Here, based on the energy landscape for each finite difference cell, the switching

time and final magnetisation direction are determined stochastically and thus only the resulting

changes in the magnetisation instead of all random thermal fluctuations are calculated. This

process is explained in further detail in Section 4.2, where an implementation for the stochastic

switching of magnetic nanoparticles is presented.

Finally, by construction, the Landau-Lifshitz equation or Landau-Lifshitz-Gilbert equation

conserve the norm of the magnetisation. However, close to the Curie temperature, this is

no longer physical. To account for these effects, a term perpendicular to the precession and

damping terms can be added to the equations. This term describes the variations in the norm

of the magnetisation and allows the extension of micromagnetism to temperatures close to or

even above the Curie temperature. The resulting equations, depending on the exact form, are

called the Landau-Lifshitz-Bloch equation [37] or Landau-Lifshitz-Baryakhtar equation[38].

These equations have been implemented in several micromagnetic software packages [39]. E.g.

in our group, Dvornik [40] transformed MuMax2 into hotspin[41] with this functionality. These

considerations are not only theoretically relevant, as recent technological advances such as

heat assisted recording[42] can only be simulated correctly with the inclusion of these terms.

Although it is possible to investigate domain wall motion in these high-temperature regimes

[43], in this thesis we restrict ourselves to temperatures well below the Curie temperature

where the Landau-Lifshitz-Gilbert equation is still valid.

1.3.3 Micromagnetic simulations

As mentioned before, due to the complexity of the micromagnetic equations, only very simple

problems can be analysed analytically. Even these problems require specialised methods

and great insight. More often than not, even after considerable simplifications, one finds

that the analytical solution to a problem simply does not exist or is too impractical to work with.

The logical way to circumvent these challenges is to use a numerical approach, and perform

micromagnetic simulations . Unfortunately, also in this respect micromagnetism is a challenging

topic. The reason for this is threefold:

1. The magnetostatic energy results from a long-range interaction. In contrast to the

anisotropy or exchange interaction which are local interactions, the magnetostatic energy

should be calculated between all magnetic moments.

2. Due to the small length scales on which the magnetisation can vary (typically the exchange

length is a few nm), a tiny spatial discretisation is necessary. To simulate a sample

of even a few µm, already millions of finite difference cells are needed. Alternatively,

when simulating magnetic nanoparticles, one is interested in averaged-out macroscopic

properties of large ensembles and also here large simulations are necessary.
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3. Finally, also the timescales on which the magnetisation varies are very small and typically

of the order of femto to picoseconds. Thus, even with optimised time integration schemes

(cf. Appendix A) simulations require a huge amount of time steps.

Especially the first point makes it hard to perform micromagnetic calculations. For instance,

to calculate the demagnetising energy by brute force, an O(N2) algorithm is necessary, as

compared to an O(N) algorithm required for the local energy terms. With the help of ingenious

algorithms, one can reduce this calculation to O(N logN), but still this is the most expensive

calculation in any micromagnetic code. There have been attempts to simplify these calculations

by approximating the long-range interactions by “equivalent” (pseudo-)short-range interactions

but these attempts proved futile and the conclusion was that it is not possible to cheaply

calculate the demagnetising field while maintaining the correct solution[44].

To be able to perform scientifically relevant simulations, the use of specialised software is

necessary. In Chapters 2 and 3 we use MuMax3 [45] for this purpose. MuMax3 is a full-blown

GPU-accelerated micromagnetic code. It calculates the demagnetising energy by performing a

fast Fourier transform (FFT) and is one of the fastest codes available.

As referenced, Fig. 1.8 shows the colour code for the direction of the magnetisation used in

the figures in the aforementioned chapters, where MuMax3 is used. The colours represent

only the direction of the magnetisation as the size is considered to be constant and equal to 1.

The hue represents the in-plane direction of the magnetisation vector, while white and black

represent the directions in and out of the plane of the magnet respectively.

Colour code

Figure 1.8: The colour code used in MuMax3 to represent the direction of the magnetisation

vector on each point in the simulated sample.

In Chapter 4, micromagnetic simulations are performed with the Vinamax code. The im-

plementation details and validation of this code are given in Chapter 4.2, and we will limit

ourselves here to the purpose of Vinamax and the differences between Vinamax and MuMax3.

As stated before, MuMax3 is a general purpose micromagnetic code, which uses a fast Fourier

transform (FFT) to calculate the demagnetising energy. This method is suboptimal in sparse

geometries. In Chapter 4, the system under study is a diluted ensemble of magnetic nanopar-

ticles. To simulate these in MuMax3 one would need to calculate an FFT over an almost

empty geometry. In contrast, Vinamax makes use of a fast multipole method , which only

calculates the demagnetising energy between particles, and allows for sparse and irregular
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geometries. As the magnetisation dynamics of these nanoparticles are rather slow and need

many averages in time and space to be comparable to experimental data, simulations quickly

tend to become extremely long. Its main purpose is therefore to validate higher level models (or

approximations) with the numerically calculated exact solutions for some well-chosen problems.



CHAPTER 2

Domain wall motion

Domains and walls, when they exist,

should in principle emerge from the theory.

— William Fuller Brown Jr.

2.1 Introduction

2.1.1 Magnetic Domains

As already stated in the historical overview, before the 20th century nobody could explain

why ferromagnetic materials sometimes display no net magnetisation. Although not known

why, it was known that the individual magnetic moments all lie parallel to their neighbours in

such materials. Weiss [3] resolved this apparent paradox by very carefully stating that the

magnetisation could point in opposite directions in different regions of the material, while it

is uniform within these regions. This statement was proven true when Bitter [7] applied a

suspension of iron-oxide nanoparticles to the surface of a magnetic material. The particles

are attracted to the stray fields at the edges of the different domains and thus visualise the

domain structure. Two examples, reproduced from the original paper by Bitter are shown in

Figs. 2.1 and 2.2.

27
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Figure 2.1: Patterns obtained on an iron-silicon

alloy in large fields. Reproduced from [7].

Figure 2.2: The narrow lines are the deposit

obtained on a crystal of nickel. Reproduced from

[7].

In their landmark 1935 paper[10] Landau and Lifshitz first discussed a realistic model of

domains based on the minimisation of the energy. Similarly, it will be explained how the

formation of domains can be energetically favourable[46] with the help of Fig. 2.3.

Figure 2.3: Possible magnetisations of a thin film magnet, showing the different domains, edge

charges (“N” and “S”) and stray fields. Reproduced from [47].

In Fig. 2.3 (a) a uniformly magnetised thin film is shown. One clearly sees that the stray

fields (arrows outside the magnet) are very large and must contain a lot of energy. In Fig.

2.3 (b) the magnet is split into two domains, and the energy in the stray field is roughly

halved. Subsequently, in Fig. 2.3 (c), the magnet is divided into even smaller domains and

the magnetostatic energy is further reduced. Finally, in Figs. 2.3 (d) and (e) small triangular

domains magnetised perpendicular to the others are introduced and there are no stray fields

left. Such a magnetic configuration is called a flux-closed magnetisation. Typical examples of

flux-closed states in thin films are the Landau state in square shaped samples (Fig. 2.4) and

the vortex state in disks (Fig. 2.5).
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Figure 2.4: A Landau state in a 400 × 400 ×
20 nm3 square permalloy film.

Figure 2.5: A magnetic vortex state in a permal-

loy disk with 400 nm diameter and thickness of

20 nm.

So far, it appears as if it is always favourable to add more and more domains to minimise

the energy. This evidently is not true, as we neglected the cost in exchange energy at the

boundaries of these domains. These domain walls are regions where the magnetic moments no

longer lie parallel to their neighbours. The energy in the stray field scales with the volume

of the magnet, while the energy in magnetic domain walls only scales with the surface. This

means that in large samples the magnetostatic energy is dominant (e.g. Fig. 2.7), while the

domain walls become energetically more expensive in smaller magnets (e.g. Fig. 2.6).

Figure 2.6: An equilibrium magnetisation state

in a 200×400×10 nm3 permalloy nanostructure is

uniform, apart from small domains at the edges.

Figure 2.7: An equilibrium magnetisation state

in a 400× 800× 20 nm3 permalloy nanostructure,

consisting of several domains and domain walls.

It can be shown that there exists a critical size under which the formation of domain walls

is not energetically favourable and the resulting magnetisation is uniform. In that case we

have a single-domain or monodomain configuration. For spherical magnets (e.g. magnetic

nanoparticles), Brown gave an analytical expression for this criterion[2, 48]. Using his

expression, we find that the nanoparticles under study in Chapter 4 can be assumed to be

monodomain for diameters smaller than approximately 40 nm (but this is a very general

number and is of course material dependent).
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2.1.2 Domain walls

We already established that magnetic domains exist and that their presence can be energetically

favourable. Their existence and size are dictated by the magnetostatic interaction. If this

were the only energy term, the boundaries between different domains, called domain walls

would be infinitely thin and the magnetisation would turn 180 degrees from one spin to the

next. Contrary, the exchange interaction prefers to vary the magnetisation as smoothly as

possible. The energy is thus minimal when domain walls extend as far as possible, while

changing the magnetisation direction very gradually. Finally, due to the anisotropy (including

shape anisotropy), an energy penalty is induced when the magnetisation is aligned along an

unfavourable direction. This results again in smaller domain walls. It is the interplay between

all three interactions that determines the size of a domain wall.

(a) (b)

Figure 2.8: The structure of a Bloch (a) and Néel (b) domain wall separating domains.

Figure 2.8 (a) illustrates how the magnetisation varies in a Bloch wall . This is a wall where

the magnetisation turns in the plane of the wall. This kind of wall generates surface charges

(or stray fields), which allowed Bitter to visualise them. However, when the thickness of the

film becomes very thin, the energy contained in these stray fields becomes too high compared

to the exchange energy and another kind of wall becomes energetically favourable: the Néel

wall . In this wall the magnetisation turns in the plane perpendicular to that of the wall, as

shown in Fig. 2.8 (b).

Domain walls in nanowires

Chapters 2 and 3 deal with the motion of domain walls through nanowires . These are magnetic

structures with a length (x-direction in Fig. 2.9) of several µm and a cross section of typically

100 to 500 nm (y-direction) by 1 to 10 nm (z-direction). The cross section of these wires is

rectangular, and the aspect ratio between the width and the thickness can be quite large,

making them essentially planar structures with a negligible thickness. This contrasts with

the normal meaning of a wire which has a circular cross section[49–51]. Technically, they are

nanostrips, but we prefer to stay with the term nanowire as it is commonly used throughout

literature[52–54] for such structures.
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z
y

x

Figure 2.9: A domain wall in a nanowire together with the Cartesian axes used throughout this

chapter.

Depending on the magnetic properties and geometry of the wire, there exist several possible

domain wall structures. This section contains an overview of the domain walls encountered in

this thesis. We will classify these domain walls by their topological charge (also called winding

number)[55, 56]. This quantity is defined as the number of times that the magnetisation turns

counterclockwise around a point. It is important as it is conserved and can be used to explain

what happens in domain wall dynamics[57]. For now, we will have a look at static pictures

and leave the dynamics for the next section, Section 2.1.4.

We first make a distinction between in-plane and out-of-plane (PMA) magnetised materials,

and begin our description with an in-plane material: permalloy.

In a permalloy (cf. page 17) nanowire there is no crystal anisotropy and the shape of the wall is

determined by the interplay between the exchange energy and the magnetostatic energy which

gives rise to a shape anisotropy. In nanowires with a small cross section (e.g. 100× 10 nm2)

the equilibrium domain wall is a V-shaped transverse domain wall .

In Fig. 2.10, such domain walls are shown. The left panels show tail-to-tail domain walls,

while the right panels depict head-to-head domain walls. These names indicate whether the

magnetisations outside of the domain wall point towards or away from each other. The “tip”

of the V-shaped domain wall contains a half antivortex core with topological charge -1/2, while

the other side has topological charge +1/2. As shown in the figure, for each configuration, the

magnetisation in the domain wall can point up or down. The transverse walls shown in Fig.

2.10 are symmetric transverse walls.

There also exist asymmetric transverse domain walls , of which an example is shown in Fig. 2.11.

There is no fundamental difference between both, in the sense that they can be transformed

into each other by a continuous transformation of the magnetisation without having to nucleate

or annihilate a topological defect. The difference between both is that they correspond to

different minima in the total energy landscape and thus can be distinguished quite clearly

from each other. In different geometries, different structures are the minimum energy state,

which is why they are also shown separately in the phase diagram in Fig. 2.14.



Chapter 2. Domain wall motion 32

+1/2

+1/2

+1/2

+1/2

-1/2

-1/2

-1/2

-1/2

Figure 2.10: The possible transverse domain wall configurations in a permalloy nanowire with

cross-sectional area of 100× 10 nm2. The numbers denote the topological charges. Notice that we

removed the edge charges at the left and right sides of the nanowire to simulate an infinitely long

wire. This is also the case in all the following figures, but will not be mentioned again.

+1/2 +1/2

-1/2 -1/2

Figure 2.11: An example of a symmetric (left) and asymmetric (right) transverse domain wall

in a permalloy nanowire with cross-sectional area of 400 × 10 nm2. The numbers denote the

topological charges. Both domain walls are stable and do not automatically relax into an other

state. Note however, that the ground state in this geometry is a vortex domain wall (see below).

A second structure, (which however is not an equilibrium state) is an antivortex domain wall .

This wall contains an antivortex core with topological charge -1. The possible configurations

are shown in Fig. 2.12. Again, we see there are head-to-head and tail-to-tail configurations

possible. On top of this we also see that antivortex cores have a polarity , i.e. the core points

either in (black) or out (white) of the plane of the nanowire.

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

+1/2

-1

-1

-1

-1

Figure 2.12: The possible antivortex domain wall configurations in a permalloy nanowire with

cross-sectional area of 100× 10 nm2. The numbers denote the topological charges.

When looking at nanowires with larger cross-sections, we see that the equilibrium shape first

becomes an asymmetric transverse domain wall, cf. Fig. 2.11, and for even larger structures

(e.g. 400× 10 nm2) the demagnetising field becomes so strong that the domain wall cannot

remain uniformly magnetised and transforms into a vortex domain wall . Such walls contain a

vortex core with topological charge +1. The size of this core is of the order of a few times

the exchange length [58]. Next to the polarity, vortices also have a circulation, i.e. the

magnetisation can rotate clockwise or counterclockwise around the vortex core. The product



Chapter 2. Domain wall motion 33

of the polarity and the circulation is the chirality or handedness. All possible configurations

are shown in Fig. 2.13. When we will consider the dynamics of vortex domain walls in Section

2.1.4, we will see that the circulation remains conserved, but the polarity [59, 60], and thus

the chirality can change sign.

-1/2

-1/2

-1/2

-1/2

-1/2

-1/2-1/2

-1/2

-1/2

-1/2

-1/2

-1/2 -1/2

-1/2

-1/2

-1/2

+1 +1

+1+1

+1 +1

+1+1

polarity=+1

polarity=-1

R

L

R

L

Figure 2.13: The possible vortex domain wall configurations in a permalloy nanowire with

cross-sectional area of 400× 10 nm2. The numbers denote the topological charges, and “R” and

“L” correspond to a right or left handed chirality.

The equilibrium shape of the domain wall depends on the geometry of the nanowire, and is

summarised for permalloy nanowires in the phase diagram shown in Fig. 2.14.

Figure 2.14: Phase diagram of the domain wall structure in strips of permalloy. Reproduced

from [61].
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For completeness we show the two possible domain wall configurations encountered in narrow

PMA nanowires in Fig. 2.15. They are classified based on whether the domain wall turns in

(Bloch wall) or out (Néel wall) of the plane of the wall.

Bloch domain wall

Néel domain wall

Figure 2.15: Four possible domain walls in a PMA material with cross-sectional area of

100× 1 nm2.

A final structure which can be encountered in PMA materials are skyrmions[22]. A skyrmion

is a magnetic bubble in which the magnetisation in the centre points in the opposite direction

as in its surrounding. A schematic of the spin configuration of a skyrmion is shown in Fig. 2.16.

Skyrmions are topologically protected in the sense that they are characterised by a topological

integer (its skyrmion number) which cannot be changed by a continuous transformation

of the magnetisation. Historically, the first skyrmions encountered were stabilised by the

magnetostatic interaction and were of the order of a few µm large. Recently, also skyrmions

stabilised by the Dzyaloshinskii-Moriya interaction were detected. These skyrmions are only a

few nm large and can be moved just like domain walls. Therefore they are being investigated

as possible alternatives to the domain wall based technologies discussed at the end of this

section.

Figure 2.16: A schematic of the spin configuration of a single skyrmion. The arrows indicate

the direction of the spins, and their colours represent the normal component to the plane, that is,

from up direction (red) to the down direction (blue). Reproduced from [22].

2.1.3 1D-model

Before the advent of extensive computational capabilities it was not possible to numerically

integrate the Landau-Lifshitz-Gilbert equation. Therefore, early micromagnetic research was
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focused on very specific topics where clever simplifications could be made. One successful

example was a model of Schryer and Walker [15] to describe the motion of Bloch walls, driven

by a uniform magnetic field, through a magnetic nanowire.

Their approach made an abstraction of the Bloch domain wall as a zero dimensional (0D)

point particle moving through a one dimensional (1D) nanowire, hence the name 1D-model .

Instead of keeping track of the directions of all magnetic moments in the domain walls, the

magnetisation within the domain wall is assumed to be uniform and the only remaining

parameters are the domain wall position x, the domain wall width ∆1D and the out-of-plane

(the plane of the sample) tilting angle Φ1D of the magnetisation.

This model was investigated by Thiaville[62] when the numerical results of micromagnetic

simulations became available. The new results were compared to the solutions of these equa-

tions and the latter turned out to be quite accurate. Surprisingly, they were also valid for

Néel walls, and to a certain extent even for vortex domain walls [52, 63].

The equations, as given by Thiaville in Ref. [62], but with the anisotropy limited to the first

order term are

Φ̇1D + αẋ/∆1D = γ0Hext,x, (2.1)

ẋ/∆1D − αΦ̇1D = γHK sin Φ1D cos Φ1D, (2.2)

∆̇1D = (12γ/αMsπ
2) [Aex/∆1D −K∆1D] . (2.3)

Where HK denotes the transverse anisotropy field 2K/µ0Ms. The derivation of these equations

is given in Refs. [15, 62] but lies beyond the scope of this work.

Later, Thiaville also extended this work to include a spin-polarised current as a driving

force[64, 65]. The expressions for the domain wall velocity and the time variation of Φ1D due

to the combination of an external field Hext,x and a spin-polarised current Jx are given by:

ẋ =
γ0∆1D

α
Hext,x −

β

α
bJx −

∆1D

α
Φ̇1D (2.4)

and

Φ̇1D =
γ0

1 + α2
Hext,x −

1

∆1D

β − α
1 + α2

bJx −
αγ0

1 + α2
HK

sin 2Φ1D

2
. (2.5)

One difficulty in the use of these equations is that there is no clear correspondence between

the quantities one can obtain from micromagnetic simulations (e.g. the average magnetisation

along different axes) and the variables x, Φ1D and ∆1D. Also, the internal structure of the

domain wall is assumed to be constant, while this approximation may sometimes prove to be

too crude.

In our group, Vandermeulen[66] has developed a 1D-model, starting from variables that are

easily derived from micromagnetic simulations. By comparing the resulting equations, it is

possible to derive their relation to the 1D-parameters, x, Φ1D and ∆1D. In the next section the
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derivation of this model is given for domain wall motion in an in-plane material like permalloy.

The model is also valid in PMA materials but requires a coordinate transformation which is

not shown here for clarity.

Derivation of the 1D-model

We define φ as the local out-of-plane angle of the magnetisation of a single cell. By using the

〈〈·〉〉 operator, which is defined as a spatial average over the entire simulation window we find

an average out-of-plane angle of the magnetisation

〈〈φ〉〉 = 〈〈arctan
mz

my
〉〉. (2.6)

The idea of the 1D-model is to reduce all information about the domain wall to a few variables.

The complete domain wall structure is thus approximated as a single macrospin. From this

assumption we can infer that

Φ1D = arctan
〈〈mz〉〉
〈〈my〉〉

, (2.7)

or

sin Φ1D =
〈〈mz〉〉

〈〈
√

(m2
y +m2

z)〉〉
, (2.8)

and

cos Φ1D =
〈〈my〉〉

〈〈
√

(m2
y +m2

z)〉〉
. (2.9)

Furthermore, instead of using the local effective field with all its energy terms, we define an

average effective field 〈〈Heff〉〉 containing only the externally applied fields along the unit vectors

(ex, ey and ez) and the demagnetising field, where Neff,x,y,z are the effective demagnetising

factors of the domain wall,

〈〈Heff〉〉 = Hext,xex +Hext,yey +Hext,zez

−Ms

D
(Neff,x〈〈mx〉〉ex +Neff,y〈〈my〉〉ey +Neff,z〈〈mz〉〉ez)

(2.10)

The demagnetising field is scaled with a geometry dependent factor D, which will be determined

later when we compare our final equations to Eqs. (2.4) and (2.5).

Another quantity of interest is 〈〈δ〉〉, which is the amount of magnetisation which does not lie

along the axis of the nanowire, and thus is a measure for the size of the domain wall,

〈〈δ〉〉 ≡
〈〈m2

y +m2
z〉〉

〈〈m2
x +m2

y +m2
z〉〉

= 〈〈m2
y +m2

z〉〉. (2.11)
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When we take the average of the derivative of φ multiplied with δ we find

〈〈δφ̇〉〉 = 〈〈myṁz −mzṁy〉〉. (2.12)

By filling in Eq. (2.10) in the Landau-Lifshitz-Gilbert equation, we can find expressions for

ṁz and ṁy, and by substituting them in Eq. (2.12) we arrive at

〈〈δφ̇〉〉 =
γ0

1 + α2
Hext,x〈〈δ〉〉 −

2

Lx

β − α
1 + α2

bJx +
αγ0

1 + α2

[
−Hext,y〈〈mz〉〉

+Hext,z〈〈my〉〉 −
Ms

D
(Neff,z −Neff,y)〈〈my〉〉〈〈mz〉〉

]
+ asymmetric terms.

(2.13)

The explicit form of the asymmetric terms is not shown. These terms originate in asymmetries

in the domain wall shape and are negligible in the case of current-driven domain wall motion

and can be taken into account via an effective wall width in the case of field-driven domain

wall motion. This is explained in further detail in Section 3.2, where it will be of importance.

Similarly, 〈〈ṁx〉〉 can be determined to be

〈〈ṁx〉〉 =
γ0

α
Hext,x〈〈δ〉〉 −

1

α
〈〈δφ̇〉〉

− 2

Lx

β

α
bJx + asymmetric terms.

(2.14)

It is easy to see that the position x of the domain wall is proportional to the average

magnetisation along the nanowire axis,

x =
Lx
2
〈〈mx〉〉, (2.15)

with Lx the length of the simulation window.

Using this information and Eq. (2.14) we can write the domain wall velocity as

ẋ =
γ0Lx〈〈δ〉〉

2α
Hext,x −

β

α
bJx −

Lx〈〈δ〉〉
2α

〈〈δφ̇〉〉
〈〈δ〉〉

+ asymmetric terms. (2.16)

When comparing Eqs. (2.16) and (2.4) we derive the following relations between ∆1D, Φ̇1D

and their counterparts which can be extracted from simulations:

∆1D ≡
Lx〈〈δ〉〉

2
(2.17)

and

Φ̇1D =
〈〈δφ̇〉〉
〈〈δ〉〉

. (2.18)
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Similarly, we find

〈〈δφ̇〉〉
〈〈δ〉〉

=
γ0

1 + α2
Hext,x −

2

Lx〈〈δ〉〉
β − α
1 + α2

bJx +
αγ0

1 + α2

[
−Hext,y

〈〈mz〉〉
〈〈δ〉〉

+Hext,z
〈〈my〉〉
〈〈δ〉〉

− Ms

D
(Neff,z −Neff,y)

〈〈my〉〉〈〈mz〉〉
〈〈δ〉〉

]
+ asymmetric terms.

(2.19)

When comparing the last terms in Eqs. (2.19) and (2.5) we see the following correspondence:

HK
sin 2Φ1D

2
=
Ms

D
(Neff,z −Neff,y)

〈〈my〉〉〈〈mz〉〉
〈〈δ〉〉

. (2.20)

From Eqs. (2.8), (2.9) and (2.11), under the assumptions of the 1D-model, we find that

sin 2Φ1D

2
=
〈〈my〉〉〈〈mz〉〉
〈〈
√
δ〉〉2

. (2.21)

and thus that

D =
〈〈
√
δ〉〉2

〈〈δ〉〉
(2.22)

and

HK = Ms(Neff,z −Neff,y) (2.23)

To summarise, the equations equivalent to Eqs. (2.1) and (2.2) are given by:

〈〈δφ̇〉〉 =
γ0〈〈δ〉〉
1 + α2

Hext,x −
2

Lx

β − α
1 + α2

bJx +
αγ0

1 + α2

[
−Hext,y〈〈mz〉〉

+ Hext,z〈〈my〉〉 −Ms(Neff,z −Neff,y)
〈〈my〉〉〈〈mz〉〉〈〈δ〉〉

〈〈
√
δ〉〉2

]
+asymmetric terms

(2.24)

and

ẋ =
γ0Lx〈〈δ〉〉

2α
Hext,x −

β

α
bJx −

Lx
2α
〈〈δφ̇〉〉+ asymmetric terms (2.25)

where the correspondence between the variables from the 1D-model and the averages obtainable

from micromagnetic simulations are given by:

∆1D ≡
Lx〈〈δ〉〉

2
(2.26)

Φ̇1D =
〈〈δφ̇〉〉
〈〈δ〉〉

(2.27)

HK = Ms(Neff,z −Neff,y) (2.28)

Φ1D = arctan
〈〈mz〉〉
〈〈my〉〉

(2.29)

〈〈φ〉〉 = 〈〈arctan
mz

my
〉〉 (2.30)
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2.1.4 Domain wall motion

Domain walls can be driven by an externally applied field, a spin-polarised current or a

combination of both[67, 68].

Field-driven domain wall motion

Intuitively it is easy to understand how an externally applied field is able to move domain

walls. The magnetic domains aligned in the direction of the external field are energetically

favourable and tend to grow at the expense of domains aligned in other directions, thus moving

the domain walls in between.

We will analyse field-driven domain wall motion of a domain wall in a nanowire as depicted

in Fig. 2.9 with the help of Eqs. (2.24) and (2.25). In the absence of a spin-polarised

current and when neglecting the asymmetric terms, the out-of-plane tilting of the domain wall

(and thus 〈〈mz〉〉) will increase until both terms in Eq. (2.24) cancel each other out and Φ̇1D = 0.

In this dynamic equilibrium, which only exist for sufficiently small fields, Eq. (2.25) reduces to

ẋ = v =
γ0Lx〈〈δ〉〉

2α
Hext,x. (2.31)

From this equation we learn that once an equilibrium is reached, the velocity remains constant

and depends linearly on the external field. Therefore we use the notation for an averaged-out

domain wall velocity v instead of its instantaneous velocity ẋ.
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Figure 2.17: Mobility curve of a field-driven vortex domain wall in a permalloy (cf. page 17)

nanowire with cross section of 100× 10 nm2.
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In Fig. 2.17 the results of micromagnetic simulations are shown to illustrate this behaviour.

Up to a field of roughly 1.5 mT, the velocity indeed increases with the external field. However,

it does not display a perfectly linear dependency. This originates in the fact that the domain

wall slightly changes shape at higher velocities and thus 〈〈δ〉〉 is field dependent. The wall also

becomes asymmetric and the asymmetric terms in Eq. (2.25) cannot be neglected anymore. A

detailed comparison between the extended 1D-model, where we take these effects into account,

and the numerical results is given in Section 3.2.

At 1.5 mT, we see a sudden drop in the domain wall velocity, called the Walker breakdown

[15]. This breakdown corresponds to the field at which it is no longer possible for the torques

in Eq. (2.24) to compensate each other and the dynamical equilibrium (Φ̇1D = 0) is never

reached. What happens physically in this regime depends on the equilibrium domain wall

structure and thus the nanowire size.

Figure 2.18: Snapshots (3 ns apart) of a field-

driven (1mT) transverse domain wall below the

Walker breakdown in a permalloy nanowire. The

figures are centred around the domain wall during

its motion.

Figure 2.19: Snapshots (3 ns apart) of a field-

driven (1 mT) vortex domain wall below the

Walker breakdown in a permalloy nanowire. The

figures are centred around the domain wall during

its motion.
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We consider domain walls in nanowires with a cross-sectional area of 100 × 10 nm2 and

400 × 10 nm2 where the equilibrium domain wall is a transverse domain wall and a vortex

domain wall respectively.

Figures 2.18 and 2.19 show snapshots (3 ns apart) of the domain wall motion driven by a field

of 1 mT, in the linear regime below the Walker breakdown. The nanowires on the right are

twice as wide as the ones on the left, which is why there are twice as many small arrows in

the y-direction denoting the magnetisation direction.

When driven by the external field, the transverse domain wall (Fig. 2.18) does not transform;

only its out of plane component increases (not visible in the figure) but after a while an

equilibrium configuration is reached and the domain wall is driven smoothly forward with a

constant velocity.

The vortex domain wall (Fig. 2.19), on the other hand, does change shape. The vortex core

is pushed out of the nanowire and the wall is transformed into a transverse domain wall.

This transverse wall then behaves the same as the one shown in Fig. 2.18: an equilibrium

configuration is reached and the wall is driven forward by the external field.

Above the Walker breakdown the domain wall cannot adapt its shape to an equilibrium state

and Figs. 2.20 and 2.21 illustrate the dynamics in this regime.

In the 100 nm wide nanowire, an antivortex core is nucleated at the bottom, which then

traverses the nanowire to annihilate at the other side. At this point in time the domain wall

again is a transverse domain wall but with its magnetisation pointing the other direction.

Subsequently a new antivortex core is nucleated, now with the opposite polarity, which again

traverses the nanowire to annihilate at the other side. Above the Walker breakdown, the

domain wall thus displays periodic transformations between an antivortex and a transverse

domain wall configuration while it is driven forward.

In the 400 nm wide nanowire, something similar is observed. But, now the equilibrium domain

wall is a vortex domain wall. Similarly to what happens below the Walker breakdown, the

vortex core is pushed out of the nanowire and the domain wall transforms into a transverse

domain wall. However, now a new vortex core (again with the opposite polarity) nucleates and

is pushed to the other side of the domain wall where it is annihilated again. To summarise, the

domain wall displays periodic transformations between a vortex domain wall and a transverse

domain wall configuration during its forward motion.
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Figure 2.20: Snapshots (3 ns apart) of a field-

driven (2 mT) transverse domain wall above the

Walker breakdown in a permalloy nanowire. The

figures are centred around the domain wall during

its motion.

Figure 2.21: Snapshots (3 ns apart) of a field-

driven (2 mT) vortex domain wall above the

Walker breakdown in a permalloy nanowire. The

figures are centred around the domain wall during

its motion.

Current-driven domain wall motion

As explained in Section 1.3.2, a spin-polarised current can transfer angular momentum from

the conduction electrons to the local magnetisation. This mechanism can also be used to drive

domain walls: current-driven domain wall motion. This motion is quite similar to field-driven

domain wall motion. To avoid unnecessary repetition, the motion of transverse domain

walls will not be discussed explicitly. The differences between the current and field-driven

case are analogous to the changes observed in a vortex domain wall, which we will discuss below.

Similar to field-driven domain wall motion, for current densities below the Walker breakdown,

Eq. (2.25) reduces to

v = −β
α
bJx, (2.32)

where the notation Jx signifies a current density applied along the x-axis.
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As shown in Fig. 2.22 there is a very good agreement between the simulation results and the

theoretical predictions below the Walker breakdown. So, in contrast to field-driven domain

wall motion, there is almost no influence of the domain wall asymmetry.
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Figure 2.22: Mobility curve of a current-driven vortex domain wall in a permalloy nanowire

with cross section of 100×10 nm2. The red lines depict the results from micromagnetic simulations,

while the blue lines show the theoretical expectations from the 1D-model.

We consider a permalloy (cf. page 17) nanowire with cross-sectional dimensions of 400×10 nm2

in which the vortex wall is the stable equilibrium domain wall configuration [61]. The charac-

teristics of the domain wall motion are largely determined by the degree of non-adiabaticity β,

see Fig. 2.22. The adiabatic case (β = 0) shows an intrinsic depinning current threshold below

which the domain wall is not moving (this pinning mechanism is called intrinsic pinning) and

above which the domain wall moves at a speed dependent on the applied current. Similarly as

in Fig. 2.19, below the depinning current threshold the vortex domain wall transforms into a

transverse domain wall. Once the transverse domain wall is formed, the internal structure is

such that an equilibrium shape is obtained for which the effective field torques balance the

adiabatic spin-transfer torques resulting in zero net torque, and consequently no movement.

Also above the depinning current threshold (similar as in Fig. 2.21) a transverse domain wall

is formed. However, since the adiabatic spin transfer torques are larger, the transverse domain

wall can insufficiently adapt its internal structure to balance the spin transfer torques. As a

result the transverse domain wall becomes unstable, giving rise to the formation of a vortex

wall. Furthermore, the vortex core now has an opposite core polarity and travels towards the

opposite transverse direction while moving along the wire as shown in Fig. 2.23. This way

a periodic movement is observed which is characterised by successive vortex and transverse

domain wall formations. The vortex polarity determines the transverse direction in which the

vortex core moves. A vortex with negative polarity moves downwards, while a vortex with

positive polarity moves upwards.
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Figure 2.23: The path of a vortex core in a permalloy nanowire where the vortex domain wall

is driven by a spin-polarised current and β = 0.

When a non-adiabatic contribution to the spin transfer torque is taken into account with

β > α, two velocity vs. applied current regimes are separated by the Walker breakdown, as

shown in Fig. 2.22. Below the Walker breakdown the vortex domain wall again transforms

into a transverse domain wall. However, due to the extra non-adiabatic (field-like) torques this

wall is able to move along the wire without changing its shape, resulting in a constant velocity.

Above the Walker breakdown, again a periodic movement with a successive formation of vortex

and transverse domain wall structures takes place. The extra non-adiabatic contributions

to the torque give rise to a larger net velocity along the wire. Contrary to the β = 0 case,

a vortex with positive polarity now moves in the downward direction while an oppositely

polarised vortex moves in the upward direction (Fig. 2.24).

Figure 2.24: The path of a vortex core in a permalloy nanowire where the vortex domain wall

is driven by a spin-polarised current and β = 2α. The differences in the shape of the path of the

vortex core between this figure and Fig. 2.23 can be explained by the chirality of the vortex.

When β = α (Fig. 2.25), the net transverse torques (adiabatic and non-adiabatic) acting on

the core balance each other, resulting only in a longitudinal vortex movement along the wire

axis and consequently in a linear velocity vs. current characteristic.

Figure 2.25: The path of a vortex core in a permalloy nanowire where the vortex domain wall

is driven by a spin-polarised current and β = α.

(Anti)vortex core motion

As seen in the previous sections, the domain wall type, the (anti)vortex core polarity, and the

degree of non-adiabaticity influence the transverse direction in which the core moves while the

domain wall as a whole moves forward.

Here, these differences will be explained based on the torques in the Landau-Lifshitz equation.

We first look at the difference between a field driven vortex and antivortex domain wall. To

this end, we repeat Eq. (1.20), written in its explicit form

ṁ = − γ0

1 + α2
m×Heff −

αγ0

1 + α2
m× (m×Heff) . (2.33)
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The torques due to the first term in Eq. (2.33) are shown schematically in Figs. 2.26 and 2.27

for an antivortex and vortex domain wall respectively. The torques due to the damping term

all point in the positive x-direction (which is the direction in which the field was applied) and

are not depicted. For the antivortex domain wall, these torques result in an upward motion of

the antivortex core in the domain wall, in accordance with Fig. 2.20. For the vortex domain

wall, the vortex core moves diagonally in the direction of the “yellow region” in the bottom right.

For both domain wall types an opposite core polarity would result in a core motion in the

opposite direction. A change in chirality (in the case of a vortex wall) results in a diagonal

motion in the opposite x-direction but the same y-direction. Finally, when looking at a

tail-to-tail instead of a head-to-head domain wall with the same polarity (and chirality in the

case of a vortex wall), the x-direction of the core motion remains the same, but the y-direction

is switched.

Figure 2.26: A schematic overview of the torques (black arrows) corresponding to the first term

of Eq. (2.33) acting on the different regions of an antivortex domain wall driven by an externally

applied field in the positive x-direction. The direction of the core motion is depicted as a red

arrow.

Figure 2.27: A schematic overview of the torques (black arrows) corresponding to the first term

of Eq. (2.33) acting on the different regions of a vortex domain wall driven by an externally applied

field in the positive x-direction. The direction of the core motion is depicted as a red arrow.

Next, we turn our attention to a vortex domain wall driven by a spin-polarised current with

the electrons flowing in the positive x-direction. We will not repeat the argument for the case

of an antivortex domain wall as the reasoning is similar.

Equation (1.22) can be written in its explicit form as

ṁ = − γ0

1 + α2
m×Heff −

αγ0

1 + α2
m× (m×Heff)

− 1

1 + α2
[bJ · ∇] m +

β − α
1 + α2

m× [bJ · ∇] m,
(2.34)

where the second line contains the spin-transfer torque terms. The torques represented by the

first of these terms are shown schematically in Fig. 2.28 and result in a net motion of the
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vortex core in the positive x-direction (independent of its polarity or chirality). This result is

also visible in Fig. 2.25.

Figure 2.28: A schematic overview of the torques (black arrows) corresponding to the first

spin-transfer torque term of Eq. (2.34) acting on the different regions of a vortex domain wall

driven by an spin-polarised current with the electrons flowing in the positive x-direction. The

direction of the core motion is depicted as a red arrow.

The torques due to the term proportional with β − α are shown schematically in Fig. 2.29

for the case β > α. In this case, the vortex core moves diagonally to the bottom right, as

also shown in Fig. 2.24. When β = α these torques do not act on the core anymore, and

when β < α the core moves in the opposite direction because these torques also point in the

opposite direction. This can be verified by comparing the core motion in Figs. 2.23 and 2.24.

Figure 2.29: A schematic overview of the torques (black arrows) corresponding to the second

spin-transfer torque term of Eq. (2.34) acting on the different regions of a vortex domain wall

driven by an spin-polarised current with the electrons flowing in the positive x-direction with

β > α. The direction of the core motion is depicted as a red arrow.

Finally, based on these examples, it should be clear how to predict the core motion for other

domain walls e.g. with a different core polarity or chirality.

Domain wall based technology

By now, one could start wondering if this domain wall motion could be of any use in real-world

applications. In conventional electronics, where only electrical charges are transported, the

use of domain walls is rather limited due to the large external fields necessary to move them.

However, there exist practical applications, e.g. Novotechnik [69, 70] has made a spiral-shaped

sensor, in which domain walls are generated/annihilated depending on the angle between the

sensor and an external magnet. Because the electrical resistance of the nanowires discretely

changes with the number of domain walls, one can electrically measure the exact angular

position of the sensor. This sensor is for instance used in the automotive industry to determine

the position of the steering wheel.

The most promising uses of domain wall technology lie in spintronics applications. In these

applications, not only the charge but also the spin of the electron is used. As shown in Section
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2.1.4, a spin-polarised current can move a domain wall through a nanowire, without the need

for large magnetic fields.

An example of a possible memory device is the racetrack memory , presented in 2008 by

S. Parkin[53, 71]. As shown in Fig. 2.30, in this device the bits are represented by the

magnetisation of the domains ((anti)parallel to the longitudinal nanowire axis), see Figs. 2.30

(a) and (b). The position of these bits (domains) can be manipulated by a spin-polarised

current, applied along the nanowires length axis, to move them over a read or write head

[Fig. 2.30 (c) and (d)]. The read head measures the magnetisation direction with the help of

a TMR sensor. The write head applies a current through a conductor perpendicular to the

nanowire to generate stray fields which switch the data bit/magnetic domain to the desired

direction. By incorporating these nanowires into a 3D structure, high storage densities can be

reached, as shown in Fig. 2.30 (e).

Figure 2.30: The racetrack memory concept. Reproduced from [53].

In later versions, the racetrack memory concept was extended to PMA materials[72], versions

which exploited the Dzyaloshinskii-Moriya interaction [73] or even antiferromagnetically cou-

pled nanowires[74] to further improve its performance.

Today all computations are performed electronically, while most data storage is magnetic. In an

ideal configuration it should be possible to perform calculations as well as store data magneti-

cally. Therefore, an other popular use of domain walls in spintronics is domain-wall logic[75, 76].

There have been developments in this direction, i.e. the concept of domain wall logic gates

have been proven to work in simulations, or in some cases even experimentally[75, 77, 78].

In a first implementation these gates were quite bulky and relied on large external fields to

operate[75]. Recently however, also current-driven domain wall motion based logic gates were

presented where the magnetic bits were represented by the direction of the domains[77] or
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even the walls in between the different domains[79].

Figure 2.31: Micromagnetic simulations of current-induced motion of individual skyrmions in

500× 40× 0.4 nm3 Co stripes with Dzyaloshinskii-Moriya interaction of 1.4 meV per atom for the

interface atoms and the different spin current densities indicated. Reproduced from [23].

Although the racetrack memory might be commercially available within a few years for spe-

cialised purposes, one should be careful not to oversell these ideas[80]. There is a big difference

between laboratory controlled experiments of a proof of concept and a reliable and performant

commercially available device. Domain wall based technologies have been in the pipeline for

over 10 years now, but just like the now-obsolete bubble memory , there are difficulties in

achieving the necessary integration densities. However, these difficulties might be overcome

in the coming years with the recent realisation of stable skyrmions (only a few nm large) at

room temperature[81, 82]. People are already working on simulations of skyrmion racetrack

memories[23, 24, 83] (see Fig. 2.31) and even skyrmion-motion based logic[84].

The largest drawback all these devices share is that the required current densities are of the

order of 1012 A/m2. For comparison, the current density used in copper wires in household

appliances is typically of the order of 106 A/m2. These huge current densities result in a

large Joule heating of the nanowires. This effectively limits the use of these current densities

to pulses of only a few ns long without risking to destroy the nanowires. However, also in

this respect solutions exist. For instance, in electric field driven domain wall motion there is

no need for large current densities[85, 86] and finally, as mentioned in the beginning of this

section, in domain wall based sensors[87], the domain wall velocity is not critically important.

2.1.5 Overview of this chapter

The first part of this section contained an overview of domains, domain walls, and their motion

in nanowires. We saw that this motion can be driven by an externally applied magnetic field or

a spin-polarised current and that a complete understanding of domain wall motion in magnetic

nanowires is required to enable future domain-wall based technologies to work reliably. As the

production process of these devices dictates that the nanowires contain material defects, it is

important that their effects can be taken into account.

In Section 2.2, we will investigate how defects can be implemented in micromagnetic simula-
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tions. Real defects give rise to a pinning potential which can be characterised in terms of a

depth and an interaction range. We will investigate how individual defects can be included by

comparing the numerical properties of simulated pinning potentials to experimental results

reported in literature. Alternatively, in polycrystalline samples, the grain boundaries are a

source of disorder. In the second part of this section a method to include material grains in

simulations is presented.

In Section 2.3, the developed methods to include defects will be used in micromagnetic simula-

tions of current-driven domain wall motion through disordered nanowires. Their influence

on the domain wall mobility will be investigated. We will see that the apparent size of the

degree of non-adiabaticity in current driven domain wall motion, which was a topic of debate

at the time we presented this research, can be influenced by disorder. Finally, simulations

of polycrystalline permalloy nanowires will be presented in which we again investigate the

domain wall mobility.

The methods and results presented in this chapter have been published in [88], [89] and [90]

and were added as features to MuMax3 [45].
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2.2 Simulating disordered nanowires

We ended Section 2.1.4 with an overview of domain wall based technological devices. In the

development of such devices, micromagnetic simulations play a crucial role. However, to be

useful these simulations should be as realistic as possible. For instance, the effects of mate-

rial imperfections and thermal fluctuations should be taken into account. In this section we

investigate how material defects or polycrystalline materials can be included in the simulations.

2.2.1 Defect characterisation

Several experiments to characterise the nature of trapping sites and to quantify their properties

have been conducted[91–93]. In these studies, it was found that defects give rise to potential

wells for domain walls, defined as local minima in the micromagnetic energy profile, which

can be characterised in terms of their depth and interaction range. We will numerically

investigate the properties of defects implemented in different ways and propose a method to re-

alistically include the influence of intrinsic defects in 2-dimensional (2D) numerical simulations.

Experimentally, the depth of a defect pinning potential is determined to be between 1 to 5 eV

[91–93], while its interaction range is of the same size as the diameter of the vortex core used

to probe the defect, i.e. approximately 20 nm[91, 93, 94].

In numerical simulations the energy of the system is easily accessible which makes measuring

the properties of the potential well a less challenging task than in experiments, where only

macroscopic quantities are measurable. This advantage is exploited to perform a systematic

study of different possibilities to include defects in simulations.

To determine the properties of the potential well in micromagnetic simulations we simulate

a disk (diameter: 750 nm, thickness: 10 nm) in which a defect is introduced in the cen-

tral region, see Fig. 2.32 (a). A magnetic vortex core is inserted 200 nm from the centre.

From that point, the vortex relaxes, following a spiralling trajectory towards the disk centre.

During this slow relaxation (over 400 ns) the total energy of the system is probed, see Fig. 2.32.

The depth of the potential well is extracted from the difference between the energy with

and without defect. The interaction range is measured from the centre of the defect and is

determined by the radius at 10% of its depth, as shown in Fig. 2.32.
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Figure 2.32: The magnetic energy of a vortex in a disk with (full line) and without (dotted

line) a defect, implemented as a region in the centre of size 10× 10 nm with the exchange stiffness

constant reduced by 70% at the boundaries. Without the defect the energy profile has a parabolic

shape. The defect causes an additional potential well to this, for which the depth and interaction

range are shown. Inset (a) depicts the initial magnetisation in the disk and the trajectory the

vortex core follows while it relaxes into the defect. Inset (b) depicts the energy of the system.

One way to simulate a defect is to focus on its physical size: the thickness of the film is not

everywhere the same. We perform 3-dimensional (3D) simulations of a disk in which the

thickness of the centre region is reduced to 2.5, 5 or 7.5 nm, corresponding with 1, 2 or 3

finite difference cells. We also investigated if we can replace these simulations by performing

an equivalent and faster 2D simulation in which the saturation magnetisation is reduced. A

second way to simulate a defect is to introduce a region with a reduced exchange stiffness

constant at the boundaries.

In the 2D simulations the disks are discretised using cells of 3.125× 3.125× 10 nm3. In the 3D

simulations the thickness of the disk is further discretised using cells with a thickness of 2.5 nm.

Simulations were performed for defect regions of different sizes of 1 × 1 up to 4 × 4 finite

difference cells with a reduction in the saturation magnetisation/exchange stiffness constant

at the boundaries ranging from 10 to 100% (see Fig. 2.33). In the simulations in which the

saturation magnetisation is reduced, the exchange length at the boundary of the defect region

is kept to its original value.

The results of the 3D simulations are shown as green points in Fig. 2.33 (a). It is observed

that the depth of the potential well rises as function of thickness reduction in the defect region

and is larger for larger defect regions.

An effort is made to investigate if these 3D simulations can be reduced to equivalent 2D
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simulations in which defects are simulated as regions with a reduced saturation magnetisation.

The depth of the resulting potential wells is linearly dependent on the reduction in saturation

magnetisation and is larger for larger defects, see Fig. 2.33 (a). To make the 2D simulations

equivalent to the 3D ones, it is not sufficient to reduce the saturation magnetisation as much as

the thickness reduction. There are two different approaches possible to make the simulations

equivalent. A first approach is to include regions with larger sizes in the 2D simulations.

A second approach is to reduce the saturation magnetisation more than the corresponding

reduction in thickness. To estimate the size of this reduction Fig. 2.33 (a) can be used as a

guidance.

For sizes larger than 1 × 1 finite difference cells a jump is observed for defects with the

saturation magnetisation set to 0. This jump is caused by the possible disappearance of the

vortex core in the defect. This phenomenon was also observed in [95] and is energetically

favourable as the vortex core (which contains a lot of energy) can disappear together with its

energy in the defect region.

The interaction range is weakly dependent on the thickness reduction and at first sight seems

to be dependent on the size of the defect. However, this dependency arises mainly because

the interaction range is measured from the centre of the defect. If the size of the defect is

deducted from the interaction range, it is found that the resulting distance is almost constant

and equal to the vortex core diameter. This observation is supported by Refs. [92] and [93]

where it is stated that the measured energy profile is convolved with the energy profile of the

vortex core, resulting in an interaction range of approximately the same size as the diameter

of the vortex core. The interaction ranges for the 3D simulations are approximately 20 nm,

which is a factor two larger than in the 2D simulations. This is consistent with the observation

that the vortex core is also larger in 3D simulations[96].

In the simulations where defects are implemented as regions with a reduced exchange stiffness

constant, it is found that the depth of the potential well slowly rises as a function of the

reduction in the exchange stiffness constant. It is again observed that larger defects give rise

to deeper potential wells. See Fig. 2.33 (b).

The interaction range is weakly dependent on the reduction in the exchange stiffness constant

and rises for larger defects. The seeming size dependency is again caused by the used method,

i.e. the interaction range is measured from the centre of the defect region and not from the edge.

Based on these results, the following methods to realistically include defects in micromagnetic

simulations are proposed: Firstly, defects can be included as regions with a size of approxi-

mately 10 by 10 nm (similar to the film thickness) with their saturation magnetisation reduced

by 50%. Alternatively, defects can be defined as regions with the exchange stiffness constant

reduced by 70% at the boundaries. The potential well caused by such defects is shown in Fig.

2.32 and has a depth close to the average of the experimentally measured values. For both
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approaches the interaction range is approximately the same as the vortex core diameter.
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Figure 2.33: The depth (dotted blue lines) and interaction range (full red lines) of the potential

well originating from simulated material defects of different sizes. Defects are simulated in two

different ways. (a) Firstly, the saturation magnetisation within a region is reduced. The green

points show the depth of the potential wells in the 3-dimensional simulations, where the reduction

in saturation magnetisation is equal to the reduction in the thickness of the defect region. (b)

Secondly, the exchange stiffness constant is reduced at the boundaries of a region.

Although theses results are based on a case study on permalloy nanowires, they can be

extended to other materials as we included defects in our simulations based on the physical

properties of real defects. For instance, the varying saturation magnetisation is equivalent

to a varying thickness and the reduced exchange coupling corresponds to misaligned crystal

lattices. These, together with possible variations in the anisotropy strength/direction in PMA

materials, are common defects in nearly all materials.

2.2.2 Polycrystalline materials

In contrast to the individual defects characterised above, disorder can also exist on the level

of the material grains.

Polycrystalline materials are crystalline materials without long-range order in the crystal

lattice. Typically, when a thin film is grown, a few seeds are present around which the other

atoms place themselves. In this way, a material grain grows until it finds a neighbouring grain.

Grain properties as grain size, thickness, etc. can vary, and there is a mismatch between the

crystal lattices at the grain boundaries . Numerical[88] as well as experimental[92, 93, 97] inves-

tigations show that distributed disorder gives rise to local pinning potentials. For a magnetic

vortex in permalloy (cf. page 17), the potentials have a depth of 1 to 5 eV[91–93], and an

interaction range approximately equal to the vortex core diameter since the measured potential

well is convolved with the vortex core profile [93, 97]. Because the trapping site density in

experiments is correlated with the grain density [97], the grain structure of the material is
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suspected as a possible source of disorder[93, 97]. In this section, we present a method to simu-

late the complete grain structure of polycrystalline materials in a computationally efficient way.

Figure 2.34: Uncoated electrical steel is an example of a polycrystalline material

where the different grains are visible by the naked eye. By Zureks (Own work) [GFDL

(http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

The grain structure of the polycrystalline material is implemented using a Voronoi tessellation,

in which each Voronoi cell represents a grain. This approach enables one to define both edge

roughness[98, 99] and material grains [100]. Subdividing the material in grains starts with defin-

ing randomly distributed points (Voronoi centres) across the simulation geometry. A Voronoi

cell consists of all points closest to a common Voronoi centre. To cover the infinitely long simu-

lation geometry we virtually divide the nanowire into a grid of square tiles, sufficiently large so

we can expect at least a few Voronoi centres per tile. Poisson statistics are used to determine

the number of centres in the tile, while their positions are uniformly distributed over the tile

using a random number generator with seed based on the tile index. This way we can map each

finite difference cell in the moving computational domain to a Voronoi cell without explicitly

storing the complete tessellation along the wire. Indeed, when shifting the computational

domain along the wire axis new grains can be inserted from the sides based on the tile index.

Also, as the simulation window might sometimes move backwards, this enables grains that

previously left the simulation window to re-enter. This implementation is sketched in Fig. 2.35.

Having subdivided the geometry, one can vary the local material parameters in and between

the grains. This way, grain dependent anisotropy directions can represent the different lattice

orientations in grains. The other possibilities are a grain dependent saturation magnetisation

representing thickness variations between grains[101] and a reduced exchange stiffness constant

at the grain boundaries representing a reduced magnetic coupling between neighbouring

grains[100].
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Figure 2.35: The different Voronoi centres (black cells) are generated within the different tiles,

with a random generator that uses the tile indices as a seed. For each finite difference cell the

Voronoi cell to which it belongs is determined by looking for the closest Voronoi centre in its own

tile (dark grey) and all neighbouring (light grey) tiles. In this way also Voronoi centres outside the

simulation window (blue) are found.

Figure 2.36: An example of a nanowire with a surface of 1600×200 nm2 subdivided into Voronoi

cells (gray scale) with an average diameter of 20 nm.

In the next section, we will investigate the influence of disorder on domain wall motion through

a nanowire. We will consider permalloy (cf. page 17) nanowires of thickness 10 nm and width

200 nm discretised in finite difference cells of size 3.125 × 3.125 × 10 nm3. In Fig. 2.36 an

example of the typical grain structure generated with Voronoi cells with an average diameter

of 20 nm is shown.
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2.3 Domain wall motion in disordered nanowires

2.3.1 Disordered nanowires with distributed local defects

Having investigated how defects can be included in magnetic nanowires, we will now investigate

what the influence of such defects on current-driven domain wall motion is. We recall from

Section 1.3 that it is necessary to add two spin-transfer torque terms (an adiabatic and a

non-adiabatic term)[27] to the Landau-Lifshitz equation to correctly describe the influence of

a spin-polarised current J on the magnetisation dynamics. In the resulting equation,

ṁ = γ0Heff ×m + αm× ṁ− [bJ · ∇] m + βm× [bJ · ∇] m, (2.35)

β denotes the degree of non-adiabaticity. Since the introduction of the non-adiabatic term,

there has been a lot of debate on the magnitude of β, with theoretically predicted values

ranging from β ≈ α[27, 102, 103] over β = 2α [65] to β = 4α [104]. Additionally, experiments

have been unable to converge to one value. In this section, we clarify some of these results by

explaining how disorder can influence these experiments. In Ref. [95] the effects of distributed

disorder, implemented as voids, on transverse domain wall dynamics have been studied. Here,

this study is extended to wider wires in which the vortex defines the equilibrium domain

wall state, and with disorder implemented as defect regions with a reduced exchange stiffness

constant at their boundaries.

We first turn our attention to the different experimental techniques used to quantify β. One

way is to measure the depinning field necessary to pull a vortex out of a pinning poten-

tial in the presence of a spin-polarised current [105–107]. A similar technique consists of

investigating the thermal hopping between pinning sites in the presence of a spin-polarised

current [108] where different values for β are estimated for the same material depending

on the magnetic structure: a vortex domain wall or a transverse domain wall. Another

approach is to determine local vortex core displacements due to spin-polarised currents in

the confining potential of e.g. a pinning site [109], a disk [110], or a square geometry [111].

A third set of experiments, only able to extract β/α, is based on measuring the distance a

domain wall is able to cover due to a current pulse with known amplitude and duration. Here,

resulting time and space averaged velocities are fitted to theoretical and/or simulated values

[112–115]. Apart from these methods to directly quantify β or β/α, electrical and magnetic

imaging techniques show domain wall transformations when an electric current is applied, indi-

cating β 6= α [63, 116, 117]. Table 2.1 gives an overview of experiments performed to measure β.
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Table 2.1: Overview of experimentally obtained values for β in permalloy.

Method β β/α Ref.

Current-assisted domain 0.040± 0.005 2* [105]

wall depinning from a 0.040± 0.005 2-4* [106]

pinning site 0.040± 0.0025 ≈ 5.3 [107]

Thermal depinning

vortex domain wall 0.073± 0.026 ≈ 9 [108]

transverse domain wall 0.01± 0.004 ≈ 1 [108]

Local vortex core 0.04 8* [109]

movements 0.15± 0.07 >10 [110]

0.15± 0.02 > 7 [111]

Vortex domain wall 0.01* 0.96± 0.02 [115]

motion in 0.008* 1 [114]

nanowires 0.007* 0.7 [113]

not mentioned 1 [112]

* based on estimated values of α

Even within the broad range of possible values reported, a clear discrepancy between measure-

ments based on domain wall motion and other methods is present, as these consistently report

lower values for β compared to the other methods.

Simulations investigating the effect of sample imperfections on the domain wall mobility have

mainly concentrated on nanowire edge roughness [98, 118, 119]. It is found that this suppresses

the Walker breakdown, allowing the domain wall to move faster for higher applied fields

or currents compared to the corresponding nanowire with perfect geometry. These studies,

however, neglect the influence of disorder distributed within the wire. Nevertheless, real

nanowires contain defects in their microstructure, e.g. surface roughness, which can act as

pinning centres for the domain walls. Here, we will investigate what influence these effects

have on domain wall dynamics.

We consider nanowires with dimensions 3 200× 400 × 10 nm3, discretised using finite difference

cells of 3.125 × 3.125 × 10 nm3. In the previous section we developed a method to include

defects in micromagnetic simulations. From experiments [92, 93, 97, 120, 121] it is known that

these defects are randomly distributed throughout the wire with densities Σ ranging from 690

to 2000µm−2. To include distributed defects in our simulations we introduce small regions

(9.375× 9.375 nm2 in size) with a reduced exchange length at their boundaries. By reducing

the exchange stiffness constant Aex to 30% of its normal value across the region boundaries, a

corresponding reduction in lex of roughly 50% was obtained.

In Fig. 2.37 the pinning potential for such a single region is shown, illustrating the correspon-

dence with experimentally determined depths of 2 eV. In the simulations we included random

distributions of these regions with densities ranging from Σ = 500 to 1500µm−2.
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Figure 2.37: The potential well of a defect of size 3× 3 finite difference cells, indicated by the

black square, interacting with a vortex core, with the exchange length reduced by roughly 50% at

the boundaries. The depth of the potential well is approximately 2 eV and the interaction range is

comparable to the size of the vortex core diameter[88].

Averaged velocities are extracted from 25 disorder realisations and for each realisation the

domain wall motion is simulated for 20 ns. Figure 2.38 shows averaged velocities v versus applied

current densities Jx. Comparing the domain wall velocity in the disordered nanowires (coloured

lines) to the non-disordered nanowire case (black lines) we observe two main differences:

1. For the adiabatic as well as for the non-adiabatic case a similar depinning threshold

appears at much smaller currents than the intrinsic depinning current threshold.

2. In the non-adiabatic case β = 2α, we see a suppression of the Walker breakdown.

The origin of this different behaviour can be found in the interplay between the defects and

the vortex domain wall, see Fig. 2.38. In a disordered nanowire (see Fig. 2.39), the vortex core

can switch polarity at a defect, implying a change in lateral propagation direction and thus

hindering the formation of the transverse domain wall. This polarity switching mechanism,

which was not found1 in Ref. [101], explains the absence of the Walker breakdown and the

much smaller depinning current threshold. The pinning mechanism itself is also affected by

the disorder: instead of the intrinsic pinning mechanism induced by the internal balancing of

the effective field and spin-transfer torques inside the domain wall found in a perfect nanowire,

disorder gives rise to an extrinsic pinning mechanism in which the vortex core gets pinned at

a defect. In the experimentally accessible current ranges, we observe an average motion of the

vortex core in the central region of the wire without the formation of transverse domain walls

due to successive core polarity switches at defects (Fig. 2.39). In the event the vortex core

1Personal communication with Stiles, M. D.



Chapter 2. Domain wall motion 59

does reach the edge of the nanowire, we observe that defects at the edges allow the nucleation

of a vortex core of opposite polarity, as is the case in wires with edge roughness [98]. This

resembles the motion of a vortex domain wall in a perfect wire for the case β = α (Fig. 2.25),

which explains the values of β/α derived from domain wall motion (cf. Table 2.1). Contrary to

these experiments, the other methods quantify β based on non-averaged local magnetisation

dynamics and thus are not affected by the polarity-switching mechanism described in this

section.
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Figure 2.38: Velocity vs. applied current density. Solid lines: velocity vs. applied current

density in a perfect nanowire (β = 0, α and 2α). Coloured symbols: velocity vs. applied current

density in nanowires with disorder for β = 0 (red) and β = 2α (blue). Irrespective of the used

value of β, the velocity curves tend to converge to a case corresponding to β = α in perfect wires.

For small applied current densities, extrinsic pinning of the vortex core on a defect takes place.

Figure 2.39: Snapshots of vortex domain wall motion in a disordered permalloy (cf. page 17)

nanowire, 400 nm wide and 10 nm thick. The successive magnetisation snapshots, at 3 ns time

intervals, show a vortex wall driven adiabatically (β = 0) with current density Jx = 10 A/µm2 in a

nanowire with disorder density Σ = 500µm−2. The vortex core trajectory is represented by the

white/black lines, indicating a positive/negative vortex core polarity.
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To understand the vortex core polarity switching mechanism, we first look into the switching

mechanism as observed in gyrating vortices in nanodisks[59]. There, the switching takes place

in different steps, as schematically shown in Fig. 2.40. When a vortex core (a) moves, an

area with opposite out-of-plane magnetisation is formed next to it (b),(c). When the vortex

core has a sufficiently high velocity, there is enough energy available for the nucleation of a

vortex-antivortex pair (d),(e). This pair splits up and the antivortex annihilates with the

original vortex (f),(g). This process releases energy as spin-waves and finally, only the new

vortex, with opposite polarity, remains.

For vortex domain wall motion in a perfect nanowire, this is not observed as the vortex core

never reaches the necessary velocity for the antivortex-vortex pair to nucleate. Instead, the

vortex core is pushed towards the nanowire edge and annihilates there. Also at the edge, a

new vortex core with opposite core polarity nucleates again.

In disordered nanowires, on the other hand, the lower exchange coupling at grain boundaries or

defect regions lowers the energy barrier which prevents the vortex-antivortex pair to nucleate.

Consequently, the vortex core can switch its core polarity via the mechanism described above

at these defects.

Figure 2.40: Schematic representation of the different steps in switching the vortex core polarity.

The arrows represent the in-plane magnetisation directions, while the red and blue dots represent

the oppositely pointing out-of-plane components. Reproduced from [59].

Next, we also investigated the effect of voids on the domain wall mobility and found qualitati-

vely the same mobility curves. Although the pinning potentials caused by realistic defects

are less deep[88] than their counterparts caused by voids, they also allow vortex core polarity
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switching. Therefore, they result in the same type of motion. We expect that all types

of defects that give rise to pinning potentials that are sufficiently deep (e.g. voids, grain

boundaries, thickness fluctuations, . . . ) allow vortex core polarity switching and consequently

lead to the same mobility.

Finally, in contrast to our athermal simulations, a non-zero temperature results in thermally

activated depinning and finite but small velocities in a creep regime [122]. We checked the in-

fluence of temperature on the observed phenomena. However, apart from introducing non-zero

velocities slightly below the depinning current threshold (i.e. the creep regime investigated in

detail in Section 3.3), no influence was observed on the domain wall mobility in the flow regime.

2.3.2 Polycrystalline nanowires

In this subsection, we investigate the spin-polarised current driven transverse domain wall

motion with β = 2α through the polycrystalline nanowires described at the end of Section

2.2. Here, we will use an average grain size of 10 nm, corresponding to the thickness of the

nanowire. The simulated time frame is 500 ns and the moving window centred around the

domain wall is 1200 nm wide.

We initialise the magnetisation as a transverse domain wall, as this is the only stable state in

non-disordered nanowires below the Walker breakdown at non-zero current densities. The

mobility of this domain wall is simulated with different material grain parameters. First

we will study the influence of the grain boundaries by reducing the exchange stiffness con-

stant from 100% to 30% of the original value in steps of 10%. Secondly, the influence of

grain thickness fluctuations is studied by varying the saturation magnetisation within the

different grains. A maximum deviation ∆ of the average saturation magnetisation Ms is

considered from 0% to 25% in steps of 5%. In a given simulation, the saturation magneti-

sation for each grain is taken randomly from the set {Ms−∆, Ms−∆/2,Ms,Ms +∆/2,Ms +∆}.

The results of these simulations are shown in Figs. 2.41 and 2.42 and similarly as shown above,

show that disorder is able to pin the magnetic domain wall at low current densities. This

extrinsic pinning mechanism[95] gets stronger for larger reductions in the exchange coupling

and larger variations in saturation magnetisation as the depth of the corresponding pinning

potential increases[88].
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Figure 2.41: Velocity vs. applied current density of vortex domain walls in polycrystalline

nanowires with different reductions of the exchange stiffness at the grain boundaries. For increasing

exchange reductions a larger extrinsic pinning takes place, the slope of the mobility curve is reduced

and the Walker breakdown is shifted towards lower current densities.
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Figure 2.42: Velocity vs. applied current density of vortex domain walls in polycrystalline

nanowires with different variations in the saturation magnetisation. For larger reductions an

extrinsic pinning takes place and the slope of the mobility curve lowers slightly.

In Section 2.2 it was shown that a single defect simulated as either a region with reduced

saturation magnetisation or exchange coupling can give rise to equivalent potential wells.

However, depending on the simulation approach, the influence of the grains on the domain

wall dynamics differs: only grains simulated with a reduced mutual exchange coupling have a
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large effect at and above the Walker breakdown. Below the Walker breakdown, the domain

wall is of the transverse type and at the Walker breakdown a vortex core is nucleated at the

wire edge. As we discussed earlier, a reduction in exchange coupling facilitates the nucleation

of the vortex core, explaining the reduction in Walker breakdown current density in Fig. 2.41.

However, the effects are less pronounced than in Fig. 2.38 due to the smaller nanowire width

(only 200 nm) which stabilises the transverse domain wall. Compared to the reduced exchange

coupling, the effect on the core stability of variations in the saturation magnetisation is much

weaker, but leads to a stronger extrinsic pinning. However, the effect on the Walker breakdown

current density is negligible and we do not observe vortex core switching. Hence also the

domain wall velocity above the Walker breakdown is hardly affected, see Fig. 2.42. In real

materials, both effects are present and we conclude that our implementation of polycrystalline

materials gives rise to similar effects on the domain wall mobility as the distributed local

defects considered above.

The results presented in these sections show that realistic material defects can have a signifi-

cant influence on the domain wall mobility. Therefore, defects should be properly considered

when evaluating experimental data and when new concepts are introduced to enhance the

domain wall mobility[123], e.g. by the spin-Hall effect [124, 125] or the Rashba effect [126–129].
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CHAPTER 3

Domain wall motion at finite temperature

Nothing is more practical

than a good theory.

— Ludwig Boltzmann

3.1 Introduction

In Section 2.1.3, we introduced the 1D-model. We discussed how the 1D-model parameters

relate to quantities which can be extracted from micromagnetic simulations and showed how

it can explain and predict the motion of domain walls through magnetic nanowires. However,

the derived equations did not take thermal fluctuations or material imperfections into account,

while applications based on an accurate positioning of domain walls are inevitably influenced

by these sources of disorder.

In the previous chapter we studied the influence of disorder on domain wall mobility at zero

temperature. One of the conclusions was that at low driving forces, below the extrinsic

depinning current threshold, domain walls could get trapped in a potential well from which

they could never escape. Above the extrinsic depinning current threshold, the driving forces

are strong enough to overcome all energy barriers and the domain wall velocity is in good

agreement with the predictions from the 1D-model. In this high velocity regime, the domain

wall mobility is temperature independent[130].

In contrast, most experiments are performed at low velocities because of the high current

densities (of the order of 1 A/µm2) required to move domain walls. In this regime, where

extrinsic pinning takes place, the domain wall mobility is influenced by temperature: due to

thermal fluctuations domain walls are able to escape from potential wells and move further

until they are trapped again, resulting in a (slow) motion. The aim of this chapter is to study

65
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this thermally driven domain wall motion and extend the 1D-model to capture this complex

behaviour.

The chapter is organised as follows. In Section 3.1 the derivation is given of an equation of

motion which describes a magnetic domain wall moving along a disordered nanowire driven

by a spin-polarised current and an external field at a finite temperature.

In Section 3.2, we will analytically solve the high-friction limit of the equation of motion

in nanowires in the absence of magnetic defects and will validate the resulting predictions

for the domain wall mobility (which contains a drift and a diffusion component) against

micromagnetic simulations.

Finally, in Section 3.3, we will numerically solve the full equation of motion in a disordered

nanowire, and will validate it again by comparison to micromagnetic simulations. The numeri-

cal solution will then be used to investigate the creep behaviour of transverse domain walls

through disordered nanowires.

The results presented in this chapter have been published in [131] and [132].

3.1.1 Derivation of the equation of motion

We now extend the 1D-model to take disorder and thermal fluctuations into account. To this

end we will write both sources of disorder as a magnetic field contribution. Therefore, we extend

our notation from Hext,x to Hx, which contains more fields than only the externally applied

field Hext,x. The starting points for this derivation are Eqs. (2.24) and (2.25), describing the

velocity and time derivative of the out-of-plane angle of the magnetisation from the 1D-model,

respectively (cf. Section 2.1.3):

ẋ =
γ0Lx〈〈δ〉〉

2α
Hx −

β

α
bJx −

Lx
2α
〈〈δφ̇〉〉+ asymmetric terms (3.1)

and

〈〈δφ̇〉〉 =
γ0〈〈δ〉〉
1 + α2

Hx −
2

Lx

β − α
1 + α2

bJx

− αγ0

1 + α2
Ms(Neff,z −Neff,y)

〈〈my〉〉〈〈mz〉〉〈〈δ〉〉
〈〈
√
δ〉〉2

+ asymmetric terms.

(3.2)

For small angles Φ1D [Eq. (2.21)], we can approximate

〈〈my〉〉〈〈mz〉〉
〈〈
√
δ〉〉2

=
sin 2Φ1D

2
≈ Φ1D, (3.3)

in Eq. (3.2), and using the relation between Φ1D and 〈〈δφ̇〉〉 [Eq. (2.27)], we can write the

domain wall velocity [Eq. (3.1)] as

ẋ = −Lx〈〈δ〉〉
2α

Φ̇1D +
Lxγ0〈〈δ〉〉

2α
Hx −

β

α
bJx + asymmetric terms. (3.4)
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In the following we will not further explicitly write the asymmetric terms. We repeat that

they are negligible in the case of current-driven domain wall motion and will be taken into

account when necessary in Section 3.2.

Similarly as to Ref. [133], we find that the time-derivative of Eq. (3.4), which is the acceleration

of the domain wall, is given by

ẍ = −Lx〈〈δ〉〉
2α

Φ̈1D. (3.5)

Taking the time derivative of Eq. (3.2) and using the small angle approximation [Eq. (3.3)]

we find

Φ̈1D =
−αγ0

1 + α2
Ms(Neff,z −Neff,y)Φ̇1D. (3.6)

When substituting Eq. (3.6) in Eq. (3.5), we find

ẍ =
αγ0

1 + α2
Ms(Neff,z −Neff,y)

Lx〈〈δ〉〉
2α

Φ̇1D. (3.7)

Substituting Φ̇1D from Eq. (3.4) again in Eq. (3.7) finally leads to

ẍ =
−αγ0

1 + α2
Ms(Neff,z −Neff,y)

[
ẋ−Hx

Lx
2α
γ0〈〈δ〉〉+

β

α
bJx

]
(3.8)

3.1.2 Field contributions

We now take a closer look at the contributions to Hx. Apart from the contribution due to an

externally applied field Hext,x, Hx has two other contributions: one due to the thermal field

and one due to the potential energy profile.

Thermal field

As we recall from Section 1.3.2, the x-component1 of the thermal field has the following

properties:

〈Hth,x〉 = 0, (3.9)

〈Hth,x(t)Hth,x(t′)〉 = qδD(t− t′), (3.10)

q =
2kBTα

µ0γ0MsV
. (3.11)

The thermal field Hth,x can thus be written as

Hth,x = η

√
2kBTα

Msγ0µ0〈〈δ〉〉V dt
, (3.12)

with η a Gaussian distributed random variable with mean 0 and standard deviation 1.

1In Section 3.2 we will prove that only the x-component of the thermal field influences the domain wall

motion.
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Potential energy profile

The second contribution to Hx is due to the potential energy profile U . When this energy

profile is not flat, a field will act on the particle to push it towards the (local) energy minimum.

The size of this field can be determined as

HU =
−Lx

2Msµ0V

∂U

∂x
. (3.13)

To extract the potential energy profile from micromagnetic simulations, one can track the

micromagnetic energy in the simulation while a domain wall, driven by a spin-polarised current

large enough to overcome all energy barriers, moves through the disordered nanowires. The

Gilbert damping parameter should be set sufficiently high so that all excess energy dissipates

and the domain wall instantaneously adapts its shape to the disorder. This way the micro-

magnetic energy (consisting of the sum of all local micromagnetic energy densities) closely

follows the potential energy profile of the disordered wire and possible deformations in the

domain wall are taken into account.

One example of a system with a periodic energy profile is shown in Fig. 3.1 (a). Similarly as in

other studies[134, 135], we included periodic defects 50 nm apart in a permalloy (cf. page 17)

nanowire with cross-sectional dimensions of 100× 10 nm2. The defects, shown as black squares,

are finite difference cells2 with their exchange coupling reduced by 50%. They give rise to

potential wells with a depth of 0.1 eV and the resulting energy profile, described by

U = 0.05 eV cos

(
(x− 20 nm)2π

50 nm

)
, (3.14)

is shown in Fig. 3.1 (b).
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Figure 3.1: (a) The transverse domain wall in the middle of the computational domain. The

defects are shown as black finite difference cells and are 50 nm apart. (b) The potential energy

profile.

2The nanowire was discretised in finite difference cells with size 3.125× 3.125× 10 nm3.
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3.1.3 Equation of motion

By substituting the field contributions Hx = Hext,x +Hth,x +HU described in Eqs. (3.12) and

(3.13) in Eq. (3.8) and rearranging the prefactors we obtain the equation of motion.

mẍ = −Γẋ− Lx∂U

V ∂x
+ Θη

√
T/dt− JxΞ + 2µ0MsHext,x. (3.15)

In this equation, m, Γ, Θ and Ξ are defined as

m =
4(1 + α2)µ0

γ2
0(Neff,z −Neff,y)〈〈δ〉〉Lx

, (3.16)

Γ =
4Msµ0α

〈〈δ〉〉Lxγ0
, (3.17)

Θ =2

√
2Msµ0kBα

γ0〈〈δ〉〉V
, (3.18)

Ξ =
bβMs4µ0

γ0〈〈δ〉〉Lx
. (3.19)

m represents the domain wall mass, Γ is a measure for the friction the domain wall experiences

during its motion through the nanowire and Θ and Ξ are prefactors related to the thermal

fluctuations and current density, respectively.

3.1.4 Domain wall mass

The domain wall mass, m, is equal to the Döring mass[11],

mD =
2(1 + α2)µ0Ms

γ2HK∆1D
, (3.20)

which can easily be seen when substituting HK = Ms(Neff,z −Neff,y) and ∆1D = Lx〈〈δ〉〉/2.

This domain wall mass, typically expressed in kg/m2, was found by Döring from energy

considerations: starting from the principle that the energy of the wall should scale as mv2

2

when the wall is driven with velocity v, he deduced Eq. (3.20). It is noteworthy that we found

the same expression derived in a completely different way.

3.1.5 High-friction limit

In the most general case, the equation of motion, Eq. (3.15), is a second order differential

equation containing two stochastic terms: one uncorrelated term due to the thermal fluctuations

and one autocorrelated term describing the energy profile. The complexity of this equation

impedes an analytical solution. However, in its high-friction limit [136, 137], it is possible to

solve the equation of motion for small and large driving forces. In the high-friction limit, the

inertia of the domain wall is negligible and Eq. (3.15) reduces to a first order differential

equation

Γẋ = −Lx
V

∂U

∂x
+ Θη

√
T/dt− JxΞ + 2µ0MsHext,x. (3.21)
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This equation is equivalent to Eq. (3.1) without asymmetric terms and with

Hx = Hext,x +Hth,x +HU (3.22)

and

〈〈δφ̇〉〉 = 0. (3.23)

In Ref. [136] a similar equation is analytically solved for small driving forces with a spatially

correlated disorder U ∼ ‖x − x′‖γc . As we will see later [see Fig. 3.8 (c)], in our case, the

autocorrelation goes to zero on a finite length scale, thus γc < 0 and the analytical solution

for the domain wall velocity at small driving forces is given by[136]

v =
−ΞJx + 2µ0MsHext,x

Γ
exp

(
− ε2

k2
BT

2

)
, (3.24)

where ε is the standard deviation of the random potential energy U .
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3.2 Domain wall motion in non-disordered nanowires

In this section we will look at the motion of magnetic domain walls at finite temperatures in

the absence of magnetic defects. To analyse the motion of the domain wall we employ Eq.

(3.1), repeated below:

ẋ =
γ0Lx〈〈δ〉〉

2α
Hx −

β

α
bJx −

Lx
2α
〈〈δφ̇〉〉+ asymmetric terms, (3.25)

where Hx contains an externally applied magnetic field Hext,x and a thermal field Hth,x,

described by Eq. (3.12).

Equation (3.25) shows that in general, the domain wall velocity is not only determined by

the direct action of a driving field or current, but is also affected by the time variation of

the magnetisation tilting 〈〈δφ̇〉〉 and the asymmetry of the domain wall. In this study we will

restrict ourselves to the regime below the Walker breakdown, where the domain wall tilting is

fixed, resulting in a vanishing third term of Eq. (3.25).

3.2.1 Zero temperature

We aim to quantitatively describe the domain wall motion. To this end, we interpret the

results of micromagnetic simulations3 of the motion of the transverse domain wall shown in

Fig. 3.2 within the framework of the 1D-model.

z
y

x
Figure 3.2: The transverse domain wall positioned in the centre of the computational region.

The colours and arrows represent the direction of the magnetisation. Note the absence of closure

domains at the outer edges due to charge compensation. The lengths of the wire in the direction

indicated by the axes in the coordinate system are 800, 100 and 10 nm respectively.

Figure 3.3 clarifies the combined action of a constant field along the nanowire and a current

on the domain wall at 0 K and with β = 0. Recall from Fig. 2.22 that a spin-polarised

current with β = 0 does not result in a net velocity of the domain wall under the intrinsic

depinning current threshold. When also an external field is applied, the velocity of the do-

main wall increases with increasing field strengths up to the Walker breakdown, see Fig. 3.3 (a).

3To simulate domain wall motion in an infinite wire, we restrict the computational region to an 800 nm wide

window centred around the moving domain wall. Magnetic charges at the window edges are compensated. The

cross section of the wire is 100× 10 nm2. Typical material parameters for permalloy (cf. page 17) were used,

with α = 0.01.
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Figure 3.3: Field and current-driven domain wall motion at zero temperature. Both driving

forces are applied along the nanowire. (a) The velocity as function of field strength for different

current densities. The data points show the micromagnetic results, while the lines show the

theoretically expected values from Eq. (3.25) with (full lines) and without (dotted lines) taking

the asymmetry into account. (d) presents the data from (a) in a different way, to clarify that

the velocity of the domain wall slightly goes down as function of current density at a fixed field

strength. (b) and (e) Lx〈〈δ〉〉, a measure for the width of the domain wall. Increasing fields and

current densities decrease the width of the domain wall. (c) and (f) show the asymmetry of the

domain wall as function of field and current density (note the difference in scales). Current-driven

domain walls remain symmetric up to the Walker breakdown while field-driven domain walls

become more asymmetric with increasing field strengths. The full black line illustrates that the

asymmetry scales linear with field at low field strengths with a slope of 0.352 nm/mT.

Based on Eq. (3.25), we expect for a rigid, symmetric domain wall a linear dependency of the

domain wall velocity on the external field. However, the domain wall width Lx〈〈δ〉〉 decreases

with larger fields as shown in Fig. 3.3 (b). Introducing this field dependency in Eq. (3.25)

leads to the dotted lines in Fig. 3.3 (a), showing that the reduction in domain wall width
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alone cannot explain the reduction in velocity. Indeed, the asymmetry of the wall significantly

influences the dynamics. In Fig. 3.3 (c) Lx〈〈mxδ〉〉 vs. applied field is shown. This quantity

represents the net magnetisation component along the nanowire axis within the domain wall,

and is a measure for the domain wall asymmetry as it is zero for a symmetric domain wall

and large for an asymmetric one. Panel (c) clearly shows that the wall gets increasingly

asymmetric for larger fields.

To take this asymmetry into account we assume a linear dependency on the field [see Fig. 3.3

(c)] with a slope ∼ χa, which can be interpreted as a susceptibility along the x-axis. This

allows us to include the asymmetry in Eq. (3.25) by defining an effective wall width 〈〈δeff〉〉,

〈〈δeff〉〉 ≡ 〈〈δ〉〉 (1− χa) ≈ 0.74〈〈δ〉〉. (3.26)

This value accommodates for the difference between the dotted lines and simulation data in

Fig. 3.3 (a). In other models [52, 64, 65, 68] a similar rescaling is done by adopting different

definitions of the domain wall width or by using the width as a fitting parameter, implicitly

taking the asymmetry into account. In the following we remove the asymmetric terms from

the equations as these effects are now included in 〈〈δeff〉〉.

Figures 3.3 (d) to (f) show similar simulation results, now with varying Jx (β = 0). In panel

(d) the offset in velocity at Jx = 0 A/µm2 is determined by the applied field and 〈〈δeff〉〉 at this

field. With increasing current density the domain wall velocity gradually goes down. This is

explained by the reduction in domain wall width for increasing current, as shown in panel (e).

Panel (f) shows that currents have a much smaller influence on the domain wall asymmetry

and can be neglected.

3.2.2 Nonzero temperatures and β = 0

To isolate the effects of temperature, we performed a set of simulations, applying no external

field and only an adiabatic spin-polarised current (β = 0). In the absence of temperature no

net motion of the domain wall is expected under the Walker breakdown[63, 89] as is clear

from Eq. (3.25). Hence, all domain wall dynamics can be attributed to thermal effects.

In our simulations, we have applied a current density Jx =1 A/µm2 at 300 K for 100 ns on

the transverse domain wall shown in Fig. 3.2. In Fig. 3.4, 1000 paths of the domain wall are

shown, each simulated with a different thermal field realisation. The red line highlights one

typical path.
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Figure 3.4: The left side of the figure shows the positions as function of time for 1000 domain

walls in a magnetic nanowire at 300 K, and Jx = 1 A/µm2 (β = 0). One randomly chosen path

is highlighted in red. The right side shows the distribution of their final positions, with a fitted

Gaussian curve centred at 0, proving that the motion is diffusion with no average displacement.

On the right side of Fig. 3.4, the distribution of the final domain wall positions after 100 ns

is shown. The combined action of thermal fluctuations and current does not give rise to

an average domain wall motion: the data is described by a Gaussian with zero average.

Consequently, the motion can be interpreted as a random walk resulting in diffusion and

characterised by a mean square displacement 〈x2〉.

To investigate the influence of current on the diffusion, we performed similar simulations

varying Jx from 0 to 10 A/µm2 (close to the Walker breakdown current density of ±14 A/µm2).

For each current density, 500 thermal field realisations are simulated. The results are shown

in Fig. 3.5 (a), where the red dots represent 〈x2〉/t, as this quantity is independent of the

simulation time.

As a function of current density almost constant values of 〈x2〉/t are found, indicating that,

apart from the indirect effect due to a decrease in Lx〈〈δ〉〉 for higher current densities [as shown

in Fig. 3.3 (e)], the current density does not influence the diffusion characteristics.

The domain wall tilts out of the plane of the nanowire until it reaches a tilting determined

by the current density. Here, at zero temperature, all torques cancel out and the wall does

not move[63]. Thermal fluctuations give rise to an additional field torque responsible for the

motion of the domain wall. These thermal fluctuations are independent of the current density

and thus give rise to similar diffusion. Repeating these simulations at different temperatures

shows that 〈x2〉/t scales linearly with temperature as expected[138] [cf. Fig. 3.5 (b)].
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Figure 3.5: (a) The domain walls’ mean square displacement over time averaged over 500

realisations as function of current density at 3 different temperatures. The coloured dots with

error bars show the simulated data with β = 0, while the full lines show the theoretical curves

expected by Eq. (3.27). The results represented by the black triangles will be discussed in Section

3.2.3 and show the mean square displacement corrected for the drift velocity for simulations with

β = 2α. The error bars on these values are comparable to their counterparts for β = 0 but are

not shown for clarity. (b) The mean square displacement over time as function of temperature

at Jx = 0 A/µm2. The full line is a fit to the data and shows that there is a linear temperature

dependency.

Now, we will introduce thermal fluctuations in the 1D-model to explain our observations.

Contrary to the fields used in Fig. 3.3, the thermal field acting on the domain wall fluctuates

in time, and has no preferential direction. The spread on the domain wall positions[138] is

described by 〈x2〉 =

〈(∫ t
0 ẋdt

′
)2
〉

which can be quantified by substituting ẋ from Eq. (3.25),

〈(∫ t

0
ẋdt′

)2
〉

=

〈(∫ t

0

Lxγ0〈〈δeff〉〉
2α

Hxdt
′
)2
〉

=

〈
L2
xγ

2
0〈〈δeff〉〉2

4α2

(∫ t

0
Hth,xdt

′
)2
〉

=
L2
xγ

2
0〈〈δeff〉〉2

4α2
qt =

γ0kBLx〈〈δeff〉〉
2αMsµ0LyLz

Tt.

(3.27)

Here, we assumed that the domain wall tilting follows the thermal fluctuations sufficiently fast

to neglect4 〈〈δeff φ̇〉〉, corresponding to the high-friction limit of the equation of motion. The

4 In Eq. (2.24), we saw that Hext,y and Hext,z, and thus also the y and z components of the thermal field
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volume of the domain wall V = 〈〈δeff〉〉LxLyLz. Note that this volume is dependent on the

current density [cf. Fig. 3.3 (e)]. As expected for normal diffusion, 〈x2〉 grows linearly in time.

To summarise our results for β = 0: the full lines in Fig. 3.5 (a) show 〈x2〉/t given by Eq.

(3.27). For experimentally relevant (low) current densities there is an almost perfect agreement

between theory and simulation. Furthermore, Eq. (3.27) predicts that 〈x2〉 linearly depends

on temperature, which is also confirmed by our simulations. Moreover, the model takes small

domain wall deformations into account via 〈〈δeff〉〉. These deformations result in nonlinear

deviations for large current densities also found in the simulations shown in Fig. 3.3 (a).

The remaining slight difference between the full lines and the data points is explained by

the fact that we assumed a linear scaling of the asymmetry with the externally applied field,

while Fig. 3.3 (c) shows that this approximation is only valid for small fields. Alternatively,

this might indicate that we are operating at the limit of where the high-friction limit is still valid.

3.2.3 Nonzero temperatures and β = 2α

In a last set of simulations, we applied a spin-polarised current with degree of non-adiabaticity

β = 2α, and investigated the domain wall motion at different temperatures, again considering

500 realisations per data point. When β 6= 0, we expect a net velocity of the wall for any

Jx > 0 A/µm2.

We have performed micromagnetic simulations at 5 different current densities. For all temper-

atures (T = 100, 200 and 300 K) these give rise to the same values (shown as data points in

Fig. 3.6). These points also coincide with the domain wall velocity at 0 K described by Eq.

(3.25). The fact that all data coincides confirms that the drift velocity of the domain wall is

unaffected by temperature[130].
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Figure 3.6: The drift velocity of current-driven domain walls with β = 2α at different tempera-

tures. The data points (coinciding for all temperatures) are in almost perfect agreement with the

theoretically expected velocities from Eq. (3.25), represented by the full line.

At nonzero temperatures, the domain wall motion also has a diffusion component, next to

only contribute to 〈〈δφ̇〉〉. The excellent correspondence between the theory, where we neglect these terms, and

the full micromagnetic simulations proves that only the x component of the thermal field gives rise to motion

of the domain wall, and that the high-friction limit is a valid approximation in this system.
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a drift component. This diffusion components, 〈x2〉/t (corrected for the drift velocity) are

shown as black triangles in Fig. 3.5 (a), indicating that the adiabatic and non-adiabatic

systems exhibit identical diffusion properties. Hence, we can conclude that the diffusion is

solely determined by the domain wall shape and the temperature [cf. Eq. (3.27)] and is not

affected by the drift velocity.

To conclude, in this section we have investigated the influence of temperature on transverse

domain wall dynamics in magnetic nanowires. Temperature is included in the micromagnetic

simulations and the 1D-model as a randomly fluctuating field acting on the finite difference

cells and domain wall volume respectively. In general, the domain wall motion contains a drift

and a diffusion component. We verified that the drift velocity of the domain wall is unaffected

by temperature and found that the domain wall diffusion gives rise to a mean square domain

wall displacement which grows linearly with time, indicating normal diffusion. The diffusion

is solely determined by temperature and the domain wall shape. The domain wall drift and

diffusion do not influence each other and can be quantitatively predicted by the 1D-model,

extended with a thermal field.
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3.3 Domain wall motion in disordered nanowires

3.3.1 Introduction

In this section we will include disorder in our analysis of domain wall motion at nonzero

temperatures. Driven extended elastic systems in disordered media, such as domain walls in

ferromagnets [122, 139], and periodic systems such as vortex lattices [140] are pinned at zero

temperature. At finite temperatures T > 0, smaller than the depinning temperature Tdep,

and driving forces f , smaller than the depinning force fdep, they exhibit a creep[141] regime.

This originates in the slow thermally activated motion of the elastic system over large energy

barriers, leading to a highly non-linear response of the form

v ∼ exp

[
−
(
Tdep

T

)(
fdep

f

)µcreep]
, (3.28)

where v and µcreep are the velocity and the creep exponent, respectively [141]. In particular, for

1D elastic lines such as domain walls in ferromagnetic thin (PMA) films, compelling evidence

for the validity of Eq. (3.28) exists, with µcreep assuming the value 1/4 [122, 139].

Controlling the motion of domain walls (and other magnetic solitons like skyrmions [23]) in

narrow ferromagnetic structures is currently receiving a lot of attention as possible building

blocks of future information and communications technology (ICT) components, including

memory devices [53, 73, 142, 143] and logic gates [75, 79]. Disorder, necessarily present in

such systems, could hamper the controllability of domain walls in the devices as it introduces

a stochastic component in the domain wall dynamics [95, 144], but may in some cases also

positively affect the device specifications [98]. In addition to disorder, also temperature adds

a stochastic component in the domain wall dynamics. Both stochastic effects complicate the

control of the domain wall motion in the creep regime.

Although domain wall based devices are not meant to be used in the creep regime, high current

densities make it challenging to operate them at high speeds (i.e. in the domain wall flow

regime) due to Joule heating [53]. Additionally, stray fields originating in the surrounding elec-

tronics can exert small forces on the domain walls. Therefore, understanding and controlling

the effects of disorder and thermal fluctuations on the domain wall dynamics subjected to small

driving forces, the creep regime, is important for the design of future domain wall based devices.

In Ref. [145], Kim et al. experimentally showed that in PMA materials the creep scaling

law, Eq. (3.28), breaks down when the nanowire dimensions are reduced (see Fig. 3.7). In

Ta/Pt/Co90Fe10/Pt nanowires, narrower than about 300 nm, domain walls could no longer be

described as elastic lines, as assumed in the derivation of Eq. (3.28); rather, they behaved like

compact objects jumping across energy barriers resulting in a creep motion strongly deviating

from Eq. (3.28), as illustrated in Fig. 3.7.
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Figure 3.7: Non-equilibrium criticality of domain wall speed along ferromagnetic nanowires

with different widths. The red lines are the best fit to the creep scaling law [Eq. (3.28)] with

µcreep = 1/4. Reproduced from [145].

3.3.2 Micromagnetic simulations

Previous micromagnetic studies on domain wall motion have resulted in a deep understanding

of the underlying dynamics [63] and a 1D-model, which accurately predicts the domain wall

velocity in the absence of disorder or thermal effects[52]. As also shown in the previous sections,

these simulations have been extended with thermal fluctuations [131], disorder[89, 98, 100, 101]

or a combination of both[119, 146]. However, the extremely low domain wall velocities in the

creep regime made a thorough micromagnetic study with proper statistics computationally

very challenging. This explains why up to now only phenomenological descriptions proved

feasible [146].

In this section, we numerically explore the creep regime of domain walls in an in-plane magne-

tised system. Based on micromagnetic simulations and the numerical solution of the equation

of motion, Eq. (3.15) we are able to collect enough data to properly probe the domain wall

dynamics deep in the creep regime.

We analyse the current driven creep motion of domain walls in disordered permalloy (cf.

page 17) nanowires, starting with extensive micromagnetic simulations, i.e. numerically

solving the Landau-Lifshitz-Gilbert equation extended with spin transfer torque terms [27].

The system is shown in Fig. 3.8: a transverse domain wall in an infinitely long permalloy

nanowire with cross-sectional dimensions of 100× 10 nm2 simulated in a moving window with

length 800 nm, centred around the domain wall. Temperature fluctuations are included as a

stochastic thermal field Hth [Eq. (3.12)], contributing to the effective field Heff .
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Figure 3.8: Description of the setup to simulate transverse domain wall dynamics in disordered

permalloy nanowires. (a) The computational window with length Lx, width Ly and thickness Lz

of 800, 100 and 10 nm respectively for a permalloy nanowire centred around the transverse domain

wall. The local magnetisation direction is depicted by the arrows and colour (see accompanying

colour code). At the left- and right edges of the window magnetic charges are compensated to

simulate an infinitely long nanowire. (b) Material grain distribution in the computational window.

The effect of disorder is simulated by reducing the exchange stiffness at the grain boundaries.

The domain wall covers a large amount of material grains. (c) Energy profile U resulting from

the convolution of the domain wall magnetisation with the disorder. The standard deviation ε is

33 meV. (d) Autocorrelation R(s) of the energy profile, where s denotes distance.

As discussed in detail in Section 2.2, various ways exist to include disorder in micromag-

netic simulations[88, 90, 95, 100, 101, 147]. Although holes in the material have been used

previously[95], more sophisticated approaches introduce the influence of material grains by

spatially varying the strip thickness[88] or saturation magnetisation [88, 100, 101], or consider-

ing a reduced exchange coupling between the grains[88, 100]. In PMA materials, an additional

variable anisotropy strength and direction can be used[100]. Alternatively, disorder can also



Chapter 3. Domain wall motion at finite temperature 81

be taken into account as an effective field term in Eq. (1.21) [147].

Here, we consider a polycrystalline permalloy (cf. page 17, α = 0.01) nanowire, in which the

material grains are generated with a Voronoi tessellation, see Fig. 3.8 (b). At grain boundaries,

the exchange stiffness constant is reduced by 20%. This implementation introduces an energy

profile U consisting of stochastic potential wells with depths up to 0.1 eV and standard

deviation ε = 0.33 meV, see Fig. 3.8 (c). While the grains have an average size of 10 nm (the

strip thickness), the space scale at which the energy varies corresponds to the convolution of

the 100 nm wide domain wall with the disorder. This is reflected in the autocorrelation

R(s) =
〈(Ux)(Ux+s)〉

ε2
(3.29)

of U (with zero mean and standard deviation ε [Eq. (3.29)]) which goes to zero on a length

scale comparable to the domain wall width [Fig. 3.8 (d)]. Such an energy profile is in corre-

spondence with experimental data[91–93].

Using MuMax3, we performed extensive simulations of current-driven domain wall motion

through the nanowire described above for current densities ranging from 0.1 A/µm2 to 4 A/µm2,

β = 0.01 and temperatures of 250 K and 300 K. For each temperature and current density com-

bination we performed 5 simulations with different realisations of the thermal field. Depending

on the velocity of the domain wall, the simulation time ranged from 5µs to 100µs: at 250 K,

for Jx ∈ [0.2, 2.4] A/µm2 and at 300 K for Jx ∈ [0.14, 2.4] A/µm2 the simulated time was

50µs, while it was 5µs for larger current densities. At 300 K, for the lowest current densities

of Jx = 0.12 A/µm2 and 0.1 A/µm2, the corresponding simulation times were 75µs and 100µs.

The simulations were performed with the second order Heun’s method with a fixed time step of

50 fs. In Fig. 3.9 each data point shows the average domain wall velocity over five simulations

with different temperature realisations. The panels at the right show the domain wall paths for

some representative current densities. In the flow regime (e.g. Jx = 4 A/µm2) the disorder nor

the thermal fluctuations have a noticeable effect on the domain wall motion. At intermediate

current densities, in the depinning regime (e.g. Jx = 1 A/µm2), only a small number of pinning

potential wells are strong enough to temporarily pin the domain wall. This introduces some

variance in the domain wall velocities. In the creep regime (e.g. Jx = 0.1 A/µm2), the domain

walls repetitively pin for several microseconds, resulting in average domain wall velocities

down to 1 m/s. In order to collect enough data (i.e. successive pinning and depinning events)

increasingly long time windows are simulated for decreasing current densities (see Fig. 3.9).

This way, with a simulation speed of 5µs per day5, the simulation of each one out of the five

realisations contributing to the data point at Jx = 0.1 A/µm2 takes 20 days. This definitely

puts a computational limit to the full micromagnetic approach and calls for a more simplified

description to further probe the low velocity creep regime.

5Using a GeForce GTX970 GPU.
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3.3.3 Equation of motion

To address the low current density regime, we employ the equation of motion derived in

Section 3.1, repeated below.

mẍ = −Γẋ− Lx∂U

V ∂x
+ Θη

√
T/dt− JxΞ + 2µ0MsHext,x (3.30)

Equation (3.30) describes a magnetic domain wall moving along a disordered magnetic nanowire

with energy profile U as shown in Fig. 3.8 (c). The domain wall is driven by a current density

Jx and an external field Hext,x at a finite temperature. The domain wall mass m was found

to be 2.91µg/m2 for the studied system. Γ is a measure for the friction, while Θ and Ξ

are prefactors related to the thermal fluctuations and the current density, respectively. In

this equation of motion, all model parameters can be easily extracted from micromagnetic

simulations without any fitting. For example, 〈〈δ〉〉 = 〈〈m2
y +m2

z〉〉 = 0.0739 is a measure for

the domain wall volume relative to the volume V of the computational window and Neff,y

and Neff,z are demagnetizing factors determined by the shape of the domain wall, respectively

quantified as 0.88 and 0.08.

This allows us to validate Eq. (3.30) by direct comparison of its solution with the full micromag-

netic simulation data shown in Fig. 3.9. The full black lines are obtained from the numerical

integration6 of the equation of motion [Eq. (3.30)] using the energy profile U extracted from

the micromagnetic simulations and show an excellent agreement with the micromagnetic model.

The now fully validated Eq. (3.30) requires much less computational power to evaluate and

thus allows us to investigate current regimes which are inaccessible by full micromagnetic

simulations. Figure 3.10 (a) presents the mobility curves, i.e. v/Jx, for current densities

between 0.01 A/µm2 and 10 A/µm2 and temperatures ranging from 200 K to 500 K. It appears

that the domain wall velocity scales linearly with the current density for low and high current

densities, with a nonlinear regime in between. In the flow regime at high current densities,

the linear scaling of the velocity with current density is expected [62, 63]. We identify the

intermediate regime (roughly between 0.5 A/µm2 and 5 A/µm2) as the depinning regime.

Although it is nonlinear, it does not follow the creep scaling law [Eq. (3.28)], see inset Fig.

3.10 (a). The linear regime at low current densities is surprising as it deviates from the creep

scaling law found for extended domain walls.

6The equations were numerically integrated with Euler’s method by time stepping them with a fixed time

step of 50 fs until either a distance of 1 mm was covered or 0.01 s of simulated time was reached.
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Figure 3.9: Micromagnetic simulations of current-driven transverse domain wall motion reveal a

low-current density creep regime, and allow to validate the equation of motion of the domain wall.

Results of the micromagnetic simulations (data points) and the numerical solution of the equation

of motion (full black lines) at 250 K and 300 K. The error bars correspond to the uncertainty

(standard deviation/
√
N with N the number of realisations) on the simulated velocities. The

uncertainty on the solution to the equation of motion is negligible. The right side shows the 5

paths corresponding to the different temperature realisations at Jx = 0.1 A/µm2, 1 A/µm2 and

4 A/µm2 at 300 K.
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Figure 3.10: A linear creep regime emerges for low current densities and applied fields. (a)

Numerical evaluation of the equation of motion at different temperatures T . Note the linear

regimes at low and high current densities. The solution in the high-friction limit (hfl) is shown for

T = 300 K (green triangles). The inset shows the velocity as function of current density at 300 K.

For the intermediate, non-linear regime a creep scaling law [eq. (3.28)] is fitted to illustrate that it

cannot explain our data. (b) domain wall paths corresponding to the circled data points in panel

(a) with T = 100 K, 200 K, 300 K. (c) Temperature dependence of the domain wall velocity for

Jx = 0.1 A/µm2. Data points show the numerical evaluation of the equation of motion and its

high-friction limit. The solid line shows the theoretical prediction in the high-friction limit, based

on Eq. (3.24) i.e. v = v0 exp(−ε2/k2BT 2) with v0 = 3.769 m/s and ε = 33 meV. (d) Experimental

data from Ref. [145]. The red curve proves the linear dependency of v on the driving force (here,

the applied field H), measured in a 159 nm wide PMA nanowire. This contrasts the green curve

measured for a wider strip (756 nm) where the classical creep scaling law, Eq. (3.28), is recovered

at small driving forces. To illustrate the six orders of magnitude difference in domain wall velocities

between the in-plane magnetised simulated system [panel (a)] and the experimental PMA-system

[panel (d)] representative domain wall velocities in the respective linear creep regimes are indicated.

3.3.4 High-friction limit

We repeat from Section 3.1.5 that in the high-friction limit the domain wall velocity scales

linearly with small driving forces (Jx and Hext,x)[148], with the velocity given by Eq. (3.24),

repeated below
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v =
−ΞJx + 2µ0MsHext,x

Γ
exp

(
− ε2

k2
BT

2

)
. (3.31)

In the high-friction limit, v/Jx at T = 300 K is 7µm3/µAs in the linear regime, as indicated

in Fig. 3.10 (a). This numerical solution of Eq. (3.21) agrees with the analytically predicted

value but clearly differs from the solution of the complete equation of motion where v/Jx =

4µm3/µAs at T = 300 K, as also indicated in the same figure. This means that the domain

wall mass cannot be neglected in our in-plane magnetised system. However, studies suggest

that in PMA materials the domain wall mass can be neglected[149] due to the combination

of a very small domain wall width and a high Gilbert damping parameter α [typically an

order of magnitude larger than in permalloy (cf. page 17)]. This makes the high-friction limit

valuable in the study of the creep regime of domain walls moving in narrow nanowires. For

completeness, Fig. 3.10 (c) shows the temperature dependency of the domain wall velocity

in the high-friction limit for Jx = 0.1 A/µm2 predicted by Eq. (3.24) (full black line) and

numerically obtained by solving Eq. (3.21) (blue dotted line).

3.3.5 PMA materials

Most experimental data on domain wall creep in PMA materials is obtained in wide strips

where the description as an elastic line moving through a two-dimensional landscape is valid,

and generally a good agreement with the creep scaling law [Eq. (3.28)] is found[122, 139, 150–

154]. However, for sufficiently narrow nanowires, a deviation from the creep scaling law is

experimentally observed[145]. In Fig. 3.10 (d), we plot the original field driven data for the

159 nm and 756 nm wide Ta/Pt/Co90Fe10/Pt nanowire reported in Ref. [145]. For the 756 nm

wide nanowire, the creep scaling law fits the data very well. This is in sharp contrast with the

159 nm wide nanowire where v depends linearly on the applied field for low fields, in agreement

with Eq. (3.24). This provides experimental evidence for the existence of the linear creep

regime at small driving forces in case of compact domain walls, behaving like point particles

in a one dimensional random energy profile.

We now compare the velocities of the domain wall at comparable driving forces in the linear

regime for the experimental field-driven and numerical current-driven systems, respectively

and see that they differ about 6 orders of magnitude, as shown in panels (a) and (d) in Fig.

3.10. This mainly originates from the small domain wall widths in PMA materials, resulting

in significantly stronger pinning than in permalloy (cf. page 17) nanowires [155]. Although

it is possible to perform micromagnetic simulations to investigate the energy profile [100],

the low domain wall velocities prohibit full micromagnetic simulations in the creep regime of

PMA systems. Even on the timescales made accessible by numerically solving the equation of

motion [Eq. (3.30)] it is impossible to collect enough data on thermally assisted domain wall

motion. Based on the small driving force and the high friction limit of the equation of motion

[Eq. (3.24)] we can however estimate a lower limit of 90 meV for the variation ε of the energy

profile in the experimental PMA system of Ref. [145].
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3.3.6 Periodic potential energy profile

Until now, we investigated polycrystalline nanowires with random disorder. Here we will look

at the system with a periodic energy profile presented in Section 3.1.2. The domain wall has a

tendency to get pinned in the energy minima, and in absence of any driving forces relaxes

towards these positions.

Such systems are useful in e.g. the racetrack memory [53, 73], where the domain wall mag-

netisation represents bits and thus contains the information to be stored. In order to reliably

read and manipulate this information it is crucial that the domain walls can be positioned

accurately on a read or write head. A second concern is to maintain enough distance between

the different domain walls in order to keep them from collapsing due to thermal diffusion (see

Section 3.2) and corrupting the data. It has been shown [135] that periodic imperfections in

the nanowire, like notches [156] can be used to achieve these goals, as the domain walls get

pinned to these minima in the energy profile.

We will use Eq. (3.30) to study the motion of current driven transverse domain walls in a

periodic energy profile. We compare micromagnetic simulations with numerical solutions to

the equation of motion and a general theoretical result for the Brownian motion of particles in

a periodic potential[148]. At zero temperature there are two qualitatively different solutions

to Eq. (3.30)[148] with a periodic energy profile U .

Firstly, there exists a locked state, in which the driving force is too low to let the domain

wall escape from the potential wells. In this case the wall will come to rest in an equilibrium

position where the driving force and the force due to the potential well are balanced, and the

average velocity is zero.

Secondly, a running state exists in which the wall gains enough speed to overcome the barriers

in between the potential wells and keeps moving along the nanowire. In this state, the velocity

will oscillate depending on the position in the periodic energy profile but will be nonzero

on average[134, 148]. The threshold current density between these two regimes depends on

the initial velocity and position of the domain wall, giving rise to a hysteresis effect in the

velocity as function of current density. This is illustrated in Fig. 3.11, where the results of

micromagnetic simulations of current driven domain wall motion through the periodic energy

profile presented in Section 3.1.2 are shown.

In this figure, the red curve corresponds to the velocity of the domain wall initialised at rest in

the bottom of a potential well. The green curve is generated by first letting the domain wall

get into a running state by driving it with a high current density (Jx = 6 A/µm2), and then

bringing the current density down to the value shown on the x-axis. The blue line corresponds

to the numerical solution of Eq. (3.30). The numerical solution is only shown for the domain

walls initialised in the running state because, when it is initialised at rest and the current

density is switched on, the internal magnetisation of the domain wall changes. In this case,
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the domain wall is not a rigid object, and not suited to be described by a 1D-model. Although

the qualitative picture remains the same, the depinning current threshold does not correspond

with the one determined from micromagnetic simulations. Therefore, we have not shown the

numerical solution to Eq. (3.30) for the case where the domain wall is initialised at rest.
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Figure 3.11: Velocity as function of current density for current driven domain wall motion

in a periodic potential energy profile described by Eq. (3.14). The results from micromagnetic

simulations are shown in red for a domain wall initialised at rest in a potential well and green for

a domain wall initialised in a running state. The blue line corresponds to the numerical solution of

Eq. (3.30) for a domain wall initialised in the running state.

A second difference between the micromagnetic simulations and the numerical solution to Eq.

(3.30) is seen around 2 A/µm2 and from 4 to 5 A/µm2. As shown in Fig. 3.11, at these current

densities, there is no linear relation between the velocity and the current density. Instead, we

see that the velocity remains almost constant. These plateaus in the velocity correspond to

internal resonances in the magnetisation of the wall: As the domain wall moves through the

potential energy profile, the magnetisation within the wall tilts forward and backward. One

period of this oscillation corresponds to the time it takes to move one notch further forward.

This is shown schematically in Fig. 3.12. These internal magnetisation changes are only

accounted for in the full micromagnetic simulations and are not taken into account in Eq. (3.30).

Figure 3.12: Schematic representation of the domain wall magnetisation fluctuations while the

wall moves forward through the periodic potential profile.

At nonzero temperatures, next to the locked and running states, a third state, called the

bistable regime, exists [148]. Here, a domain wall, initially in a locked state, can overcome an

energy barrier with the help of thermal fluctuations. It then has enough potential energy to

keep on moving, just as in the running state until the thermal fluctuations randomly trap the

domain wall again in a potential well. Because the domain wall randomly switches between

both states, this is called the bistable regime. In this regime, finite velocities are found for all
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current densities. However, due to the large number of realisations necessary to determine

the average velocity in such a system, it was not possible to perform full micromagnetic

simulations and only the numerical solutions7 of Eq. (3.30) are shown in Fig. 3.13 (a). At

high current densities, the expected linear dependency between the domain wall velocity and

the current density is recovered. At lower current densities, a clear transition is seen to the

bistable regime which at the lowest current densities also shows a linear v vs Jx dependency,

in correspondence with the behaviour in random potentials[132, 145]. Panels (b) to (d) show a

typical domain wall path at different current densities. For the system under study the height

of the energy barriers was 100 meV. This is four times higher than the thermal energy kBT

at room temperature (≈ 25 meV). Therefore the transitions between the locked and running

state follow each other rapidly and are difficult to see. In Fig. 3.13 (e) to (g), we show the

results of the same calculation, repeated at 75 K. Now, there are much less transitions and all

regimes are clearly discernible. Finally in panel (a), at 300 K, also the result of our calculation

in a random potential energy profile from Fig. 3.10 is repeated. There, ε = 33 meV, while it is

35meV for the periodic potential energy profile. Although, the average velocities in the linear

regimes are comparable, we see that the nonlinear transition between them is much steeper in

the periodic energy profile.
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Figure 3.13: (a) The solution of Eq. (3.30) in a periodic potential energy profile described by Eq.

(3.14) at 75 and 300 K, together with the solution in the random energy profile at 300 K repeated

from Fig. 3.10. At high and low current densities we see a linear velocity vs. current density, in

correspondence with our results in nanowires with random disorder. Panels (b) to (g) show the

paths corresponding to current densities Jx = 0.5, 3 and 8 A/µm2 at different temperatures.

7The equation of motion [Eq. (3.30)] was numerically solved with Euler’s method by time stepping it with a

fixed time step of 50 fs for 1 µs. Extra realisations were performed until the uncertainty on the average velocity

was smaller than 1%, with a maximum of 10 000 realisations.
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3.3.7 Conclusion

The creep motion of rough 1D lines in large geometries displays a highly non-linear behaviour.

In smaller geometries, this scaling law is expected to break down. We have shown that the

velocity of compact domain walls displays a simple linear dependence on the driving force. To

this end, we compared full micromagnetic simulations, which make no a-priori assumptions

about the domain walls, to the solutions of an equation of motion which assumes the domain

wall can be described by a point particle. The results of both approaches are consistent,

proving that the motion of the domain walls can indeed be described as a point particle moving

through a disordered energy profile. This allowed us to investigate domain wall motion in

regimes inaccessible to full micromagnetic simulations, where we could compare our results

with existing experimental data. In periodic potential energy profiles, the domain wall motion

is described well by our equation of motion when the domain wall is rigid. However, in such

energy profiles the domain wall magnetisation sometimes exhibits internal resonances which

are only accounted for in the micromagnetic simulations. Maybe this limitation of the current

1D-model can be overcome by extending it with an extra parameter proportional to the tilting

of the domain wall in the plane of the nanowire.
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CHAPTER 4

Magnetic nanoparticles

One person’s data is another person’s noise

— K. C. Cole

4.1 Introduction

In this chapter we turn our attention to the magnetisation dynamics of magnetic nanoparticles .

As the name suggests these are magnetic structures a few (10-100) nanometer in size. They

consist of a single magnetic core covered by a non-magnetic shell (single core particles) or,

alternatively, of several cores encapsulated by the same shell (multicore particles). Typically,

iron oxides like magnetite or maghemite[1] are used for the cores, while the shells are made

of biocompatible coatings like dextran. The latter allows for the safe use of the particles in

biomedical applications.

The nanoparticles are assumed to be small enough for the magnetisation to point in the

same direction throughout the whole particle, i.e. they are single-domain particles. This

contrasts the topic from the previous chapters where we investigated the motion of the walls

between different magnetic domains. At first, both topics seem unrelated. However, on closer

inspection they have a lot in common. For instance, the description of thermal fluctuations in

micromagnetism, as used in Chapter 3, historically originated in the work of Brown [13, 30]

who developed this theory to explain the thermal switching of magnetic nanoparticles.

The central concept throughout this thesis is disorder. In the previous chapters, we investigated

different possible sources of disorder. In Chapter 2, the effect of material imperfections was

investigated and in Chapter 3, we added a stochastic thermal field as a second source of

disorder. In this chapter we will further investigate these thermal fluctuations. Due to the

extremely small geometries in nanoparticles these fluctuations play an important role in the

91
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magnetisation dynamics.

The introduction of this chapter contains an overview of the historical and theoretical back-

ground of magnetic nanoparticles and an introduction to magnetorelaxometry.

In Section 4.2, the implementation and validation of Vinamax will be presented. Vinamax is a

simulation tool for nanoparticles and has been published in [157].

In the next section Vinamax is used to investigate the concentration dependence of the iron

oxide magnetic nanoparticles on the Néel relaxation time constant τN. The results presented

in this section have been published in [158].

In the last section of this chapter, Section (4.4), we present a new technique to characterise

magnetic nanoparticles. Typically, the dynamic behaviour of magnetic nanoparticles is in-

vestigated by measuring their response to externally applied magnetic fields. In contrast,

we present a study of the magnetic fluctuations in an ensemble of magnetic nanoparticles

recorded in the absence of any external excitation. Several samples of magnetic nanoparticles

with varying particle size, composition and environment were investigated. We interpret the

thermal magnetic noise spectrum to estimate particle size distributions and compare these to

the distributions derived from magnetorelaxometry measurements of the same samples. The

results presented in this section have been published in [159].

4.1.1 Historical background

We begin our discussion with a historical and theoretical background of magnetic nanoparticles.

The longstanding fascination with magnetic nanoparticles was summarised by Temple et

al. in Ref. [160]: Almost uniquely, micro and nanoscale magnetic particles have held cross-

disciplinary interest for leading physicists, chemists and biologists alike for more than half a

century[161–163]. In fact, as early as 1930, “Fine ferromagnetic particles” were already a topic

of interest. In that year, Frenkel and Dorfman stated that sufficiently small particles should be

uniformly magnetised[164]. Indeed, when the size of a magnet is very small, the magnetostatic

energy is not large enough to compete with the exchange energy or anisotropy energy. As

explained in Section 2.1, only above a certain size is it energetically favourable to form domains.

This idea could have been proven already in 1935 when Landau and Lifshitz calculated the

energy of a non-uniform state in spherical particles. However, they neglected to compare this

energy to the one of a uniformly magnetised state. In 1940, Brown [165] noticed that domain

theory fails to describe the magnetisation in long thin samples but did not see the implications

of this result. Only around the fifties did Guillaud [166], Kittel [167], Néel [168] and Stoner

and Wolfarth[169, 170] more or less independently introduce the concept of a single-domain

particle. This is commonly defined as a particle which is in a state of uniform magnetisation

at any field[161]. Finally, in 1968 Brown [171] proved that the state of lowest free energy is

one of uniform magnetisation if r < rc0 and one of nonuniform magnetisation if r > r′c, where
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rc0 and r′c are certain definite values of the radius r, and where rc0 < r′c. This means that

there exist a critical size under which the uniform magnetisation is always the lowest energy

state and another size above which it never is. For sizes in between these limits it is possible

that the ground state in the absence of an external field is a state of uniform magnetisation

while it is not in the presence of an externally applied field. This theorem is also subject to

some limitations:

1. The theorem only deals with the ground state. However, the system might be in some

metastable state at higher energies. In fact, without this possibility, we would never

observe hysteresis. The transition between different states at different energies is not

trivial and will be discussed later.

2. This theorem was deduced without taking into account any possible surface anisotropy.

However, in some particles this extra energy term can alter the energy landscape and

thus change the results significantly.

The increased knowledge (in part catalysed by the advent of micromagnetic simulations) about

magnetic nanoparticles opened the door to use them in practical applications[19, 172]. Starting

from the nineties, but especially in recent years[173], magnetic nanoparticles have gained a lot

of interest due to their appealing properties for (mostly biomedical) applications. For instance,

when exposed to an alternating magnetic field, they generate heat which can be used in the

destruction of cancer cells [174]. Furthermore, when equipped with a suitable coating, they can

be ideal drug carriers [175] or disease detectors [176]. Finally, the combination of the small sizes

enabling virtually full body coverage and the large magnetic moment enabling non-invasive

detection, makes them excellent candidates for use in imaging applications[177–181]. However,

for these applications to work reliably, the magnetic behaviour of the nanoparticles should be

fully understood. Before looking more closely at some of these applications, we will discuss

the theoretical background of nanoparticle magnetisation.

4.1.2 Theoretical background

The key to understanding the magnetisation dynamics of magnetic nanoparticles lies in the

energy landscape of these particles. Figure 4.1 illustrates the notations adopted in this chapter.

mu

z

Figure 4.1: Schematic overview of a magnetic nanoparticle discussed in this section. The uniaxial

anisotropy axis u and the angle θ between the z-axis and the magnetisation m are shown.
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As mentioned in Chapter 1, we will consider several energy terms which together dictate

the magnetisation of these particles: the uniaxial anisotropy energy and the Zeeman energy.

Here, we consider an ensemble of non-interacting nanoparticles, so that the magnetostatic

energy can be neglected. For simplicity, the anisotropy axes u lie along the same direction as

the direction in which the external field is applied and the magnetisation is measured: the z-axis.

We thus remain with the anisotropy energy

Eanisotropy = KV sin2(θ) (4.1)

and the Zeeman energy

EZeeman = −V HextMs cos(θ). (4.2)

Figure 4.2 shows the energy of a nanoparticle in an external field for 5 different anisotropy

strengths.
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Figure 4.2: The energy for uniaxially anisotropic nanoparticles (r =8 nm) in an external field of

12.5 mT for various anisotropy strengths.

For perfectly isotropic particles (red line), the Zeeman energy is the only relevant energy term.

We see that there is only one minimum in the energy landscape, which lies in the direction in

which the external field is applied. For increasing anisotropy strengths we see that the energy

orthogonal to the uniaxial anisotropy axis goes up, and starting from roughly 5 kJ/m3 a local

minimum at θ = π appears. There exist simple analytical models[182] which predict the equilib-

rium magnetisation. Here, we will discuss two of them as they will be useful in the next sections.

First we will look at the energy landscape of an ensemble of isotropic nanoparticles. This

energy landscape is determined completely by the external field Hext and thus the Zeeman

energy [Eq. (4.2)].
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The equilibrium magnetisation in the presence of an external field was determined in 1905 by

Langevin. His argument went as follows[1]: the probability that the magnetisation points in a

certain direction is the product of a Boltzmann factor,

exp

(
−µ0V HextMs cos(θ)

kBT

)
, (4.3)

which takes the ratio between the thermal and Zeeman energy into account, and a geometric

factor

2π sin(θ). (4.4)

The ensemble average magnetisation along the z-axis is given by

〈mz〉 =

∫ π
0 cos(θ) exp

(
−µ0V HextMs cos(θ)

kBT

)
2π sin(θ)dθ∫ π

0 exp
(
−µ0V HextMs cos(θ)

kBT

)
2π sin(θ)dθ

. (4.5)

If we substitute

ξ =
µ0MsV Hext

kBT
(4.6)

and solve the integrals [Eq. (4.5)] the resulting magnetisation 〈mz〉 is given by the Langevin

function L(ξ),

L(ξ) = coth(ξ)− 1

ξ
. (4.7)

When we consider anisotropic particles (with uniaxial anisotropy), the energy landscape

is changed by the inclusion of the anisotropy energy term, and thus also the equilibrium

magnetisation is influenced. In the limit of infinitely strong anisotropy, the only two occupied

states will be the ones parallel and antiparallel to the anisotropy axis (the “up” and “down”

directions respectively), which is why this is called the two-state approximation, corresponding

to the Brillouin theory for spin 1/2.

The partition function of this system reads

Z = exp

(
−MsV Hext

kBT

)
+ exp

(
MsV Hext

kBT

)
. (4.8)

The probabilities to find a moment in the up and down direction then are

Pu =
exp(−ξ)
Z

(4.9)

and

Pd =
exp(ξ)

Z
(4.10)

respectively, where we used the same definition for ξ as above [Eq. (4.6)]. The equilibrium

magnetisation, defined as Pu-Pd then is

〈mz〉 = tanh(ξ) (4.11)
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Figure 4.3: M(H) curves of two idealised systems. The Langevin function describes the magneti-

sation of isotropic particles while the hyperbolic tangent describes the magnetisation for anisotropic

particles in the two-state approximation. In the limit of small fields, the susceptibility for isotropic

particles is ξ/3 [with ξ as defined in Eq. (4.6)] and gradually goes to ξ in the limit of large

anisotropy.

As one can see, the equilibrium state of these particles is unmagnetised in the absence of an

external field (ξ = 0, and magnetised in the presence of an external field. The magnetisation

thus displays a type of paramagnetism. However in contrast to atomic paramagnetism, the

magnetic moment of magnetic nanoparticles can easily be as large as 105 Bohr magnetons

coupled by the exchange interaction. Therefore this type of paramagnetism is called super-

paramagnetism, a term introduced by Bean in 1955[183].

We have discussed the equilibrium magnetisation of a superparamagnet. However, we are

also interested in how (and how fast) a sample relaxes towards its equilibrium magnetisation.

There are two different relaxation processes. In the first process, the particle itself rotates.

This is called Brownian relaxation as it is based on the random thermal motion of the

nanoparticle. This rotation randomises the magnetisation direction of the nanoparticles and

thus demagnetises a sample in the absence of an external field. This happens on a timescale

called the Brownian relaxation time τB:

τB =
3pVh
kBT

(4.12)

In this equation, p denotes the viscosity of the fluid containing the nanoparticles, and Vh is

the hydrodynamic volume of the nanoparticles. If the nanoparticles consist of (a) magnetic

core(s) and a non-magnetic shell, the hydrodynamic volume is the total volume of the core(s)

and shell together. Note that this Brownian motion was first discovered by R. Brown in 1827

and later modeled by Einstein[138] and has nothing to do with W. F. Brown who developed

the theory behind the thermal fluctuations driving the next relaxation mechanism.
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The second relaxation mechanism is called Néel relaxation[184] and originates in the random

thermal fluctuations of the magnetic moment of the particle itself. The typical timescale at

which this happens in the absence of an external field is called the Néel relaxation time τN

τN = τ0 exp

(
KVc
kBT

)
(4.13)

In this equation, Vc denotes the volume of the nanoparticle core and τ0 stands for the inverse

of twice the attempt frequency and is typically taken as a constant in the range of 10−8 to

10−12 s. Although τ0 is considered fixed, it is actually dependent on the properties of the

nanoparticles. Néel tried to explain[184] the relation between τ0 and the (material) properties

of the nanoparticles, and Brown refined Néels work to arrive at[30]

τ0 =
1 + α2

2αγ0

√
2πkBT

µ0H3
KMsV

(4.14)

with HK = 2K/µ0Ms. We will return to this attempt frequency in Section 4.3, where we will

determine τ0 for a specific nanoparticle sample based on magnetorelaxometry data.

The ratio between the energy barrier and the thermal energy in the system in Eq. (4.13)

relates the relaxation time to the anisotropy strength. If the thermal energy is too low to

overcome the energy barrier within the time frame of the experiment, the magnetisation of

the nanoparticle is considered blocked . Due to the exponential temperature dependency, there

exist a transition temperature under which the magnetisation is blocked and above which it is

able to freely rotate within the timescale of the experiment. The temperature at which this

transition takes place is called the blocking temperature.

We finish this theoretical background by stating that the dipolar interactions between particles

were neglected so far. Taking these into account considerably complicates the picture as also

the position of each individual particle influences the magnetisation. In Section 4.3, these

effects will be numerically investigated.

4.1.3 Applications

In recent years, many biomedical applications based on nanotechnology [185] in general and

magnetic nanoparticles [19, 173] specifically have emerged. Examples of applications under

development are:

� Targeted drug delivery [186, 187]. Medicines attached to nanoparticles are administered

locally by guiding them towards the desired regions with external fields.

� Disease detection[188, 189]. When nanoparticles are coated with a biochemical marker

which attaches them to certain cell types, e.g. cancer cells, the magnetic field of the

particles allows to monitor the position of these cells.
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� Hyperthermia[190–192]. Once magnetic nanoparticles are attached to e.g. cancer cells,

they can be heated in an oscillating field and destroy the cells.

Most applications require an accurate knowledge of the spatial distribution of the magnetic par-

ticles [193, 194] and thus require a nanoparticle imaging technique [195, 196]. Some promising

imaging techniques are Magnetic Particle Imaging [181], magnetorelaxometry [20] and Electron

Paramagnetic Resonance[197] (which in the context of ferromagnetic materials is often called

ferromagnetic resonance[198]). While each method has its distinct advantages, none of them

is able to quantitatively reconstruct the spatial particle distribution in vivo. While magnetic

particle imaging has a sub-millimeter resolution[199], its field of view still is quite small and it

has a large power consumption. Electron paramagnetic resonance can accurately determine

the total magnetic nanoparticle concentration in the sample, but currently only allows to

recover the 1D spatial distribution [197]1. Inadequate knowledge of the distribution of the

nanoparticles results in suboptimal applications and even a decrease in patient safety and

comfort. The development of an adequate technique for nanoparticle imaging is challenging,

in part, due to an insufficient understanding of the collective magnetic behaviour of the particles.

Next to these biomedical applications, magnetic nanoparticles are currently also investigated

for data storage[200]. Over the last 50 years, hard drives essentially stayed the same: data

is written on platters of a magnetic material. During these 50 years, the size of the regions

which represented a bit became smaller and smaller. We recently approached the point, called

the superparamagnetic limit , where the integrity of the data is no longer safe against thermal

fluctuations. Introducing PMA materials in the platter allowed to make the surface of the

bits smaller, but also these will eventually (and quite soon) hit the superparmagnetic limit.

As an alternative, research is conducted on extremely small (<4 nm) single-domain particles

made from materials (e.g. FePt, CoPt) with an extremely high anisotropy of up to 10 MJ/m3

or more exotic rare-earth transition metals like SmCo with anisotropies of up to 20 MJ/m3,

corresponding to a bit size of 2.2 nm [201]. There still remain some challenges, mostly of

chemical nature, which need to be addressed, but it is clear that these nanoparticles are also

regarded as a promising system to solve problems outside of biomedicine.

4.1.4 Magnetorelaxometry

Now we will have a closer look at magnetorelaxometry, as this application will return in later

sections. Magnetorelaxometry is an established measurement technique which can be used

for the quantitative imaging of magnetic nanoparticles [178, 193, 195, 202, 203]. It assists the

aforementioned biomedical applications of disease detection, drug targeting and hyperthermia.

Furthermore, binding processes of magnetic nanoparticle-based biochemical reactions can be

analysed [204–206] and it is actively utilised to investigate the physical properties of magnetic

nanoparticle suspensions[207–210].

1In simulations this was recently extended towards 2D and 3D [177].
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Figure 4.4: Magnetorelaxometry principle: The upper part portrays a nanoparticle ensemble’s

behaviour: initially in a random state without magnetisation, then partly rotated towards the

field direction during magnetizing, and then turning back into a randomly oriented distribution of

magnetic moments leading to the detected magnetisation relaxation. Typically a field of about

1 mT is applied for 1 s. After removal of the magnetic field and after a short dead time for SQUID

recovery, the relaxation signals are acquired for 0.5 s. Reproduced from [20].

A magnetorelaxometry measurement starts with the application of a magnetising field of

typically 1 mT to a superparamagnetic nanoparticle sample. After a certain time (typically 1

second) this field is switched off and the sample relaxes back towards its demagnetised state

[20]. The magnetisation 〈mz〉 of a sample of magnetic nanoparticles with size distribution

P(V) relaxes from 〈mz〉0 towards 0 with a characteristic time constant τN, called the Néel

relaxation time constant[184] according to

〈mz〉 =

∫
V
〈mz〉0 exp

(
− t

τN(V )

)
P (V )dV. (4.15)

Note that the magnetisation decays exponentially when all particles have the same volume.

Otherwise the decaying signal is characterised by the size distribution of the particles, i.e. a

sum of exponentials. During the relaxation time of typically 0.5 s, the magnetic field can be

measured with sensitive magnetometers such as SQUIDs or Fluxgates[189, 211–214].

To obtain quantitative information from these measurements, a comparison with a reference

sample of known magnetic nanoparticle concentration measured under equal conditions is

needed [20]. This reference sample must have the same physical properties because these have

a large impact on the magnetorelaxometry signal. When assuming that dipolar interactions

between the magnetic nanoparticles are negligible, the concentration of the sample can be

obtained by the ratio of the two magnetorelaxometry measurement amplitudes (reference and

investigation), as this scales linearly with the concentration.
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4.2 Vinamax

To optimise biomedical applications based on magnetic nanoparticles, a complete understanding

of the magnetisation dynamics is necessary. Especially understanding the collective behaviour

of ensembles of particles remains challenging to this day. Numerically investigating these

particles from first principles (i.e. micromagnetically [2]) can lead to an understanding of this

collective behaviour and consequently an improved performance of aforementioned applications.

There was no simulation software available that is both accurate on the smallest timescales at

which the micromagnetic dynamics take place, and still is able to simulate the long timescales

involved in experiments. Therefore, we have developed Vinamax : a simulation tool in which

individual nanoparticles are represented by single macrospins. Vinamax numerically simulates

the magnetic dynamics by solving the Landau-Lifshitz equation [10]. It considers demagnetis-

ing and anisotropy fields, and takes into account externally applied fields that can be space and

time-dependent. To be able to simulate large ensembles of nanoparticles the demagnetising

interaction is calculated efficiently using a dipole approximation method [215]. This contrasts

with approaches in which the demagnetising interaction is not taken into account [216] or cut

off after a short distance, e.g. when considering aggregates of nanoparticles [217]. Additionally,

thermal effects [13, 39] can be taken into account by two different approaches: a stochastic

field term can be added to the effective field or the magnetic nanoparticles are switched

at stochastic time intervals, equivalent to the first approach. Vinamax is a useful tool to

validate higher-level models and/or investigate their limitations and has been published in [157].

This section focuses on the implementation and validation of Vinamax and is organised as

follows. First the Landau-Lifshitz equation with the additional stochastic term is described in

detail together with the algorithm used to calculate the dipole-dipole interaction. Section 4.2.2

demonstrates the validity of the software by comparing simulation results to MuMax3 [66].

The largest differences between both softwares are that MuMax3 calculates the magnetostatic

field using a fast Fourier transform method on a grid of cubic cells. This approach has the

drawback in nanoparticle simulations that also the empty space between the nanoparticles

(which can be more than 99% of the simulated volume) is taken into this calculation. This

limits the number of nanoparticles that can be simulated. We were able to validate the

Vinamax implementation on simple problems, with only a few nanoparticles, by comparing the

results with MuMax3. Also in Section 4.2.2 the equivalency of the two different approaches to

include thermal effects is demonstrated and a magnetorelaxometry simulation is considered and

compared to the moment superposition model [208, 218], which is typically used to describe a

magnetorelaxometry experiment[189]. Hereby we illustrate the usefulness of Vinamax in this

field. Finally, some concluding remarks about Vinamax are given at the end of this section.

4.2.1 Methods

In Chapter 1 we introduced the theory of micromagnetism, and in this section we focus on its

implementation in Vinamax. However, it is not possible to fully separate both, which is why

this section contains some repetitions of concepts already introduced earlier.
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Micromagnetic theory

We repeat that in the micromagnetic framework the reduced magnetisation is described as

a continuum vector field m(r, t). In the following the space and time dependence of the

magnetisation vector field is no longer explicitly shown in the equations. The nanoparticles

under consideration are assumed to be uniformly magnetised[219] (i.e. their size is sufficiently

small to be single-domain particles). The exchange interactions do not have to be evaluated

because all spins within each particle lie parallel to each other. Therefore, Vinamax can

further simplify the continuum approximation by describing every nanoparticle as one single

macrospin. Vinamax provides the user with a wide range of different methods, discussed

in appendix A, to numerically integrate the Landau-Lifshitz equation, which describes the

magnetic dynamics of the nanoparticles.

The different terms contributing to the effective field are described in more detail below.

External field

Hext is an externally applied field which can be both space and time-dependent.

Anisotropy field

In Vinamax the nanoparticles are assumed to have uniaxial anisotropy which is the case for the

iron-oxide nanoparticles used in biomedical applications [19]. The field, Eq. (4.16), affecting a

particle due to this anisotropy is the derivative to m of the micromagnetic anisotropy energy

term[1], Eq. (4.17).

Hanisotropy =
2K

Msµ0
(m · u) u (4.16)

Eanisotropy = KV
[
1− (m · u)2

]
(4.17)

The anisotropy constant K and the anisotropy axis u can be chosen freely. u can be set to a

predefined direction or to uniformly distributed random directions for all nanoparticles. To this

end, two random spherical coordinates φ and θ are generated with the following distributions:

φ = 2πυ1 (4.18)

θ = 2 arcsin(
√
υ2) (4.19)

where υ1,2 denote two uncorrelated, uniformly distributed random numbers in the interval

[0.0, 1.0). These spherical coordinates are then mapped to their Cartesian counterparts using

the well-known relations below:

x = sin(θ) cos(φ) (4.20)

y = sin(θ) sin(φ) (4.21)

z = cos(θ) (4.22)
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Magnetostatic field and dipole approximation method

The magnetostatic or demagnetising field originates in the dipole-dipole interaction between

the different particles. Its contribution to the effective field is given by[1]

Hdemag =
∑
i

ViMs,i

[
3

(mi · ri) ri
r5
i

− mi

r3
i

]
, (4.23)

where i loops over all particles. ri denotes the distance from each particle to the point at

which the magnetostatic field is evaluated, and Vi is the volume of each particle. Although it

is uncommon to use the term “demagnetising field” in the context of nanoparticles, we will

use the notation Hdemag for the magnetostatic field in order to keep the notation consistent

throughout the whole thesis.

To evaluate Eq. (4.23) by a direct pairwise calculation of the demagnetising field between all

particles (called the brute force method) would take a lot of time. To speed up the evaluation

of the demagnetising field, we have implemented a dipole approximation method . This method

is based on a multipole approximation described by Tan[215]. We will briefly describe our

adapted implementation, but for a detailed explanation we refer to Ref. [215].

In Vinamax, the user has to define a world, which is a cube that encloses all the particles in

the simulation. This cube is then subdivided into 8 subnodes, which are further subdivided

until every node contains at most one particle. Within this tree, we then calculate the centre

of magnetisation once for every node. The centre of magnetisation (RCM) is the position of

the particles in the node weighted with the magnetic moment of each particle. This is shown

in Eq. (4.24), where
∑

i denotes a sum over all particles in the node, and ri is the position of

particle i.

RCM =
1∑

i ViMs,i

∑
i

riViMs,i (4.24)

If ρ, a length which takes the distance between two nodes and their size into account, is smaller

than a threshold2 r∗, then we take the contribution of this node to the total demagnetising

field into account as if all the particles in that node were compressed into one dipole in the

centre of magnetisation of that node. In that case we evaluate

Hdemag =
3(M · r)r

r5
− M

r3
, (4.25)

where r denotes the distance between the centre of magnetisation of the node and the point

at which the field is evaluated. Before every time step, the magnetisation M =
∑

i ViMs,imi

of each node is updated based on the magnetisation of every particle within the nodes.

2The size of this threshold is a trade-off between accuracy and speed, where r∗ = 0 implies an infinite

accuracy and corresponds to the brute force method mentioned above.
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For every particle, the demagnetising field is evaluated with the algorithm described in Fig.

4.5, copied from Tan [215] with minor adaptations to our implementation.

Put the world on the stack

Is the stack
empty?

End

Is field
evaluation for
every particle
completed?

Yes

No

Yes

Take the last node on the stack. Denote the
distance between the CM of the node and the point
at which the demagnetizing field is evaluated as d
and the size of the node as a. Let ρ=sqrt(2)/2 a/d

No

Does the node
contain more than 1

particle?

Compute the contribution
of the particle directly

No

put the eight
subnodes on

the stack

Yes

Is ρ smaller
than a threshold r*,

which implies that the
node is far

enough away?

No

Compute the contributions from
all particles contained in that

node using only the dipole of the
node

Yes

Remove the
node from the

stack

Figure 4.5: The algorithm used to evaluate the demagnetising field, adapted from Tan [215].

This algorithm only requires computational time of O(Nlog(N)), while the direct pairwise

evaluation of the demagnetising field (brute force method) between N particles [Eq. (4.23)]

scales as O(N2). These statements are validated in Section 4.2.2.
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Thermal fluctuations

In this subsection we describe the two implementations of thermal fluctuations, and afterwards

compare their properties

� Stochastic thermal field

The effective field Heff includes a stochastic term Hth to take thermal fluctuations

[14] into account. Brown [13] has worked out the detailed properties of this stochastic

field for a single-domain particle with the use of the fluctuation-dissipation theorem,

which led to Eq. (4.26). Because in Vinamax each particle is approximated by one

single macrospin, it is particularly suitable to use Brown’s theory. The equation we

implemented reads

Hth(t) = η(t)

√
2kBTα

µ0γ0MsV∆t
(4.26)

where η(t) denotes a random vector whose components η(t) are normal distributed

random numbers with mean 0and standard deviation 1 which are uncorrelated in space

and time and ∆t is the time step.

� Stochastic switching

The approach described above (stochastic thermal field) has a large computational cost.

Therefore, also a faster implementation based on the stochastic switching of the nanopar-

ticle magnetisation (a jump noise process) is presented. This approach, however has the

drawback that it is only valid in the absence of an external field3, as the implemented

equation was derived only for this case.

For a single-domain particle with uniaxial anisotropy, Eq. (4.26) leads to switching

between two states with minimal energy, separated by an energy barrier of height

∆E = KV with a switching rate f :

f = f0 exp

(
−∆E

kBT

)
(4.27)

In the high barrier limit (∆E� kBT ) f0 is equal to [13, 220, 221]

f0 =
αγ0

1 + α2

√
µ0H3

KMsV

2πkBT
(4.28)

with HK = 2K/µ0Ms equal to the coercive field.

The probability that a particle does not switch during a certain time ∆t is given by[220]

dPnot

dt
= −fPnot. (4.29)

3Here, by “external field”, we mean all fields which do not originate in the nanoparticle itself, like externally

applied magnetic fields or the demagnetising field from other nanoparticles
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This leads to

lnPnot =

∫ ∆t

0
fdt (4.30)

or

Pswitch = 1− exp(−f∆t). (4.31)

The next switching time for a particle can thus be generated with

t = − 1

f
ln (1− Pswitch) (4.32)

by substituting Pswitch with a random number, uniformly distributed in the interval

(0,1)[36]. When the simulation reaches this time, the magnetisation of the particle is

switched to its opposite direction and a new switching time is generated.

The different properties of the two implementations for thermal effects are given in Table 4.1.

Table 4.1: The different properties of the methods implemented to simulate thermal effects.

Stochastic field Stochastic switching

External field yes no

Simulation speed slow faster

Adaptive time step no yes

Validity always approximation for

high barrier particles

Particle size distribution

As the distribution of nanoparticle diametersD is often described by a lognormal distribution[20,

222], the diameter of the particles in Vinamax can also be drawn from such a distribution.

Equation (4.33) shows the probability density function P (D) for a lognormal distribution, and

implies that the logarithm of D is normally distributed with mean lnµ and standard deviation

σ.

P (D) =
1√

2πσD
exp

(
− ln2(D/µ)

2σ2

)
(4.33)

4.2.2 Validation

The use of the macrospin approximation in Vinamax has the advantage that exchange interac-

tions do not have to be evaluated. However, this has the drawback that the micromagnetic

standard problems[223], which do incorporate exchange interactions, cannot be solved by

Vinamax. In this section we therefore simulate some simple, yet general, problems and compare

their solution to solutions of the same problems, generated with the micromagnetic simulation

software MuMax3 [66]. In MuMax3, a nanoparticle is simulated as a single finite difference cell

with the same size and material parameters as the corresponding nanoparticle in Vinamax.
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Lognormal size distribution

Before validating the implementation of the magnetic dynamics in Vinamax, we first verify if

the lognormal distribution is implemented correctly. Figure 4.6 shows the agreement between

the theoretical lognormal size distribution, given by Eq. (4.33), and the one generated with

Vinamax of 20 000 magnetic nanoparticles with µ = 20 nm and σ = 1.
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Figure 4.6: The particle sizes of 20 000 particles with their diameter drawn from a lognormal

distribution with µ = 20 nm and σ = 1, simulated with Vinamax. The theoretical distribution

function for these values [Eq. (4.33)] is shown in red to show the agreement.

Problem one: Precession and damping

In this first problem a single isotropic particle4 is considered at 0 K. It is initialised with the

magnetisation along the x-axis and a constant external field of 10 mT is applied along the

z-axis. The magnetisation gyrates around this axis with a frequency of 28 GHz/T and slowly

damps towards the z-axis.

In Fig. 4.7 the result of this simulation is shown. The oscillations in the x- and y-components

of the magnetisation have a frequency of 0.28 GHz, which is in agreement with both the

theoretically expected value and the result obtained with MuMax3. The steady increase

of the z-component of the magnetisation corresponds with the damping towards the z-axis

(α = 0.02).

4The nanoparticle has a radius of 10 nm and Ms = 860 kA/m.
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Figure 4.7: The average magnetisation components as a function of time for simulation problem

one. The magnetisation precesses around the z-axis with a frequency of 0.28 GHz and slowly

damps towards this axis. The different colours denote the different magnetisation components.

The full lines denote the results obtained with Vinamax, while the dots correspond to the results

obtained with MuMax3.

Problem two: Demagnetising field

The aim of the second problem is to show that the brute force method to calculate the

demagnetising field is implemented correctly. To this end, at 0 K, two isotropic nanoparticles5,

initialised with their magnetisation along the y-axis, 129 nm apart, relax in the presence of an

external field of 1 mT along the x-axis. The same simulation is repeated without calculating

the demagnetising field to see whether this problem is suited to validate the implementation;

i.e. to see if the demagnetising field has an influence.

Again, the results are validated by comparing the results from Vinamax with those from

MuMax3. In Fig. 4.8 it can be seen that the demagnetising field is of significant importance

in this problem and that the simulation results agree well with each other.

5The nanoparticles have a diameter of 32 nm and a saturation magnetisation of 860 kA/m. The Gilbert

damping parameter α was set to 0.1.
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Figure 4.8: The average magnetisation components (different colours) as a function of time

for simulation problem two. The dashed lines show the dynamics for the case in which the

demagnetising field is not included in the simulation. The full lines and big dots show the

simulation results (with the demagnetising field) obtained with Vinamax and MuMax3 respectively.

Both results are in agreement with each other.

Problem three: Dipole approximation method

This example shows the agreement between the dipole approximation implementation and

the brute force implementation. The same problem is also solved without calculating the

demagnetising field to illustrate that it is of importance in this system.

In this problem 256 isotropic nanoparticles with a diameter of 32 nm and saturation magnetisa-

tion 860 kA/m are created with a spatially uniform distribution in a cube with a side of 2µm

with their magnetisation along the z-axis. They relax at 0 K in the presence of an external field

of 1 mT along the x-axis (α = 0.1). In Fig. 4.9 the results of these simulations are visualised,

and we can conclude that there is a good agreement between the results obtained with the

dipole approximation method and the brute force method.

We have also investigated the performance of the different methods for evaluating the de-

magnetising field in Vinamax. Fig. 4.10 shows the scaling behaviour of the time it takes to

calculate one time step with the brute force evaluation of the demagnetising field versus the

dipole approximation method. All simulations were performed on an Intel Core i7-3770 CPU

@ 3.40GHz. The brute force method scales as O(N2). The dipole approximation method used

an r∗ of 0.7 as this was determined to be a sufficiently low value[224]. This method is slower

for smaller numbers of particles, but scales as O(N log(N)). From 512 particles on, the dipole

approximation method is faster than the brute force calculation and for large numbers of

particles this results in a large speedup of the simulation. Note that we adapted the volume of

the simulation to the number of particles to keep the concentration of the particles constant.
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Figure 4.9: The average magnetisation components (different colours) as a function of time

for simulation problem three. The dashed lines illustrate that the demagnetising field has an

influence in this problem. The full lines and the dots correspond with the results obtained using

the brute force or dipole approximation method (with r∗ = 0.7) respectively in Vinamax, and are

in agreement with each other.
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Figure 4.10: The time necessary to calculate one time step, with Heun’s method, as function

of N , the number of particles in the system. The green triangles correspond with the brute

force evaluation of the dipole-dipole interactions, while the red dots correspond with the dipole

approximation method with r∗ = 0.7. To visualise the scaling behaviour of both algorithms, a fit

to a function ∼ N2(blue dots) and ∼ N log(N) (blue line) is shown.

Problem four: Equilibrium magnetisation

In the introduction of this chapter we discussed two models for the equilibrium magnetisa-

tion of isotropic particles and anisotropic particles in the two-state approximation with their
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anisotropy axis along the z-axis. Here we will simulate ensembles of nanoparticles with different

anisotropy strengths and compare the resulting magnetisation curves with the theoretical

expectations.
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Figure 4.11: The average magnetisation along the z-axis as function of applied field for ensembles

of particles with different anisotropy strengths. For all coloured lines (except the purple line) the

anisotropy axis lies along the z-axis. The black lines correspond to theoretically expected results

in the limit of low and high anisotropies. The purple line corresponds to the magnetisation of an

ensemble of anisotropic particles with random anisotropy axes.

The magnetisation as function of field is shown in Fig. 4.11. As expected, the blue curve,

corresponding with isotropic particles coincides with the Langevin function [Eq. (4.7)]. For

increasing anisotropy strengths (green, yellow, orange and red lines) the curves lie closer

and closer to the hyperbolic tangent [Eq. (4.11)] deduced in the two-state approximation

corresponding to an infinite anisotropy.

As shown earlier in Fig. 4.3, at low fields, the susceptibility of the Langevin function equals ξ
3

with

ξ =
µ0MsV Hext

kBT
, (4.34)

as defined earlier in Eq. (4.6). The susceptibility increases for higher anisotropies towards ξ.

Interestingly, in the limit of large anisotropy but with randomly oriented anisotropy axes, this

is again equal to ξ
3 , as illustrated by the purple curve.
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Problem five: Thermal switching time distribution and magnetisation relaxation

In an ensemble of single-domain particles with large uniaxial anisotropy, there exist two

ground states, along the anisotropy axis, for every particle. Due to thermal fluctuations, the

magnetisation of each particle will switch between these two directions at random intervals. To

illustrate this switching behaviour, the magnetisation as function of time for a single particle,

simulated with a stochastic field, is shown in Fig. 4.12.
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Figure 4.12: The magnetisation switching of a single nanoparticle with radius 9 nm at 300 K. The

anisotropy constant is 10 kJ/m3 and the anisotropy axis lies along the z-axis. Ms was 400 kA/m,

and α = 0.01.

We test our implementation of the stochastic thermal field by looking at the switching rate of

uniaxially anisotropic particles at different temperatures. In the high barrier limit, this rate

can be calculated analytically with Eqs. (4.27) and (4.28). Figure 4.13 shows that there is an

excellent agreement between the theoretically expected and the simulated result.
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Figure 4.13: Arrhenius plot of the thermal switching rate of a particle with radius 5 nm, with

Ms = 400 kA/m, α = 0.1, K = 10 or 20 kJ/m3. The blue lines show the theoretically expected

switching rate from Eqs. (4.27) and (4.28).

The averaged switching of the individual nanoparticles slowly relaxes the magnetisation of an

ensemble towards 0. The rate of this relaxation is given by the Néel relaxation time[184] τN,
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Eq. (4.35).

τN = τ0 exp

(
KV

kBT

)
(4.35)

In this equation, τ0 is related to f0 [Eq. (4.28)] by τ0 = 1
2f0

, as explained with Fig. 4.14.

u d

f

f

0

0

Figure 4.14: The double well potential energy landscape. The two energy minima u and d

correspond to the two equilibrium spin directions and f0 is the transition rate between both .

In this figure u and d correspond to the up and downwards direction along the z-axis,

respectively. The time-derivative of u, u̇ is given by

u̇ = f0d− f0u (4.36)

and similarly, ḋ is given by

ḋ = −f0d+ f0u. (4.37)

The average magnetisation along the z-axis is 〈mz〉 = u− d, and its derivative is

〈ṁz〉 = 2f0(d− u) = −2f0〈mz〉. (4.38)

If we solve this differential equation with the initial condition 〈mz〉 = 1, we find

〈mz〉 = exp (−2f0t), (4.39)

explaining why τ0 = 1
2f0

.

We now look at the distribution of switching times of particles with uniaxial anisotropy. As

can be seen in Fig. 4.15, both approaches to include thermal effects (a stochastic field or

stochastic switching) show good agreement in the distribution of switching times. Therefore

we use the stochastic switching implementation to look at the result of many of these switches

on the magnetisation.
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Figure 4.15: The switching time distribution for a particle with a diameter of 18 nm for two

approaches to take thermal effects into account. The particle was simulated with the stochastic field

until it switched 10 000 times (blue bars) and with the stochastic switching (red line) until 100 000

switching events were recorded (rescaled to 10 000, to be able to compare both distributions).

The simulated nanoparticle had a saturation magnetisation of 400 kA/m and uniaxial anisotropy

of 10 kJ/m3, along the z-axis. It was simulated at a temperature of 300 K and α = 0.05. Both

approaches show good agreement on the switching time distribution.

The magnetisation of an ensemble of nanoparticles with a size distribution P (V ) is described

by the moment superposition model [208, 218] [repeated from Eq. (4.15)].

〈mz〉 =

∫
V
〈mz〉0 exp

(
− t

τN(V )

)
P (V )dV (4.40)

which equals 〈mz〉 = 〈mz〉0 exp
(
− t
τN

)
for particles of equal size. In this model, the magnetisa-

tion at the start of the relaxation is determined by Eq. (4.41) which describes a magnetisation

process of time tmag in a constant external magnetic field with size Hext, with L(ξ) the

Langevin function [Eq. (4.7)].

〈mz〉0 = L(ξ)

[
1− exp

(
− tmag

τN (Hext)

)]
(4.41)

Furthermore, during the magnetisation of the ensemble, τN(H) differs from τN in the absence

of an external field, and is approximated by Eq. (4.42), where the factor 0.82 results from the

random orientation of the anisotropy axes[218].

τN (Hext) = τ0 exp

(
KV

kBT

(
1− 0.82µ0HextMs

K

))
(4.42)

We have simulated 3 ensembles of nanoparticles with different size distributions, as shown in

Fig. 4.16 (a). Each ensemble was magnetised for 1 second in a magnetic field of 1600 A/m as

described by the moment superposition model [Eq. (4.41)]. The magnetic relaxation of the
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sample was then calculated by the moment superposition model [Eq. (4.41)] [black lines in

Fig. 4.16 (b)] and was compared to a Vinamax simulation. The particles had a saturation

magnetisation of 400 kA/m, a uniaxial anisotropy of 10 kJ/m3 and were simulated at 300 K

with α = 0.05. The results are shown in Fig. 4.16 (b) and show that there is in general a

good agreement between Vinamax and the moment superposition model. The two curves

coincide exactly for the ensembles with an infinitely sharp diameter distribution. There is

a small deviation between both models for wider diameter distributions. This results from

the fact that in Vinamax τ0 has a particle volume dependency [Eq. (4.28)] while this is not

accounted for in the moment superposition model.
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Figure 4.16: Fig. (a) shows the diameter distribution of 3 ensembles of 10 000 nanoparticles. The

red line shows an ensemble with particles with a fixed diameter of 25 nm, the green line a lognormal

distribution with µ = 25 nm and σ = 0.05 and the blue line a lognormal distribution with µ = 25 nm

and σ = 0.2. Fig. (b) depicts the relaxation curves as calculated by the moment superposition

model (black lines), and simulated by Vinamax. The red (top) curve corresponds with the particles

of fixed diameters, the green (middle) curve corresponds to the diameter distribution with σ = 0.02

and the blue (bottom) curve corresponds to the diameter distribution with σ = 0.05

Problem six: Magnetisation response to an alternating field

In this final problem the implementation of a time-varying external magnetic field is vali-

dated. To this end we simulate an ensemble of 65536 magnetic nanoparticles (r = 6.66 nm,

Ms = 300 kA/m, α = 0.001, K = 10 kJ/m3 and u is the z-axis) at 300 K in a sinusoidal

magnetic field with an amplitude of 2.387 kA/m and a frequency of 200 kHz. Again, this

problem is simulated both with MuMax3 and Vinamax and an excellent agreement is seen.

In Fig. 4.17 the magnetisation as function of time is shown (left axis) together with the

external magnetic field (right axis). The parameters in this problem were chosen such that

the magnetisation could not overcome all energy barriers sufficiently fast to instantaneously

follow the field. As a result we see that the magnetisation lags behind the field. This gives
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rise to a hysteresis loop, as shown in Fig. 4.18.
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Figure 4.17: The magnetisation along the z-axis (left axis) of the ensemble of nanoparticles,

simulated with MuMax3 (red line) and Vinamax (green) line as function of time. The externally

applied magnetic field (blue line, right axis) leads the magnetisation.
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Figure 4.18: The magnetisation along the z-axis as function of external field strength, simulated

with MuMax3 and Vinamax. Because the thermal fluctuations are not large enough to overcome

the energy barriers, the magnetisation is not in its equilibrium position and lags behind the

magnetic field, giving rise to a hysteresis loop.



Chapter 4. Magnetic nanoparticles 116

4.2.3 Conclusion

The aim of this section was to present Vinamax: a numerical software package which performs

micromagnetic simulations of magnetic nanoparticles, approximated by macrospins. We

validated Vinamax in various problems against other micromagnetic software (MuMax3) and

analytical results. Each problem shows that a different part of Vinamax is implemented

correctly and the results agree with the expected ones. Vinamax was also used to simulate

a magnetorelaxometry experiment and the resulting magnetisation curve corresponds with

the one obtained with the moment superposition model, which is typically used to describe

these experiments[208, 218]. A small deviation was seen in the case of a broad distribution

of nanoparticles which is due to the fact that in Vinamax the attempt frequency is volume

dependent while this is considered constant in the moment superposition model.

Thanks to the dipole approximation method which scales as O(N log(N)) with N the number

of particles, it is possible to simulate systems with large amounts of particles, and on large

timescales, which we will use in the next section. We emphasise that Vinamax can be used as

a research tool in biomedical applications, where we especially aim at nanoparticle imaging

techniques, such as magnetorelaxometry, where the collective effect of nanoparticles still is not

completely understood. For instance, in the next section, Vinamax will be used to investigate

the effect of dipolar interactions on the relaxation curve.
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4.3 The Néel relaxation time constant

In the previous section we presented Vinamax [157]. Here, we will use this software package to

investigate different aspects of the Néel relaxation time constant τN in magnetorelaxometry.

There exist different theoretical models which describe the relation between the physical

properties of the magnetic nanoparticles and the magnetorelaxometry signal. Examples of such

models are the moment superposition model [208, 225] and the cluster moment superposition

model [20, 208]. However, compared to full micromagnetic simulations, they have a less

detailed level of modeling and do not take into account possible dipolar interactions between

the magnetic nanoparticles.

4.3.1 Dipolar interaction in magnetorelaxometry

In the first part of this section, our aim is to investigate the influence of the dipole-dipole

interactions between magnetic nanoparticles in magnetorelaxometry experiments. As reference

samples in some cases [203, 208, 211, 226] contain magnetic nanoparticle amounts which differ

to a great extent with respect to the sample, it might be possible that the comparison between

the reference and sample magnetorelaxometry curves is not valid.

We start by performing a simulation in which these interactions are not taken into account,

corresponding with an infinitely diluted sample. Figure 4.19 shows the simulated magnetore-

laxometry signal of an ensemble of 30 000 nanoparticles having identical diameters of 11 nm, a

random, but constant, uniaxial anisotropy axis and typical material parameters for magnetite:

a saturation magnetisation of 400 kA/m and an anisotropy constant of 14.4 kJ/m3.

Insets (a) to (d) in Fig. 4.19 show a reduced magnetic nanoparticle ensemble of 3 particles to

explain their magnetic states at the different stages in the magnetorelaxometry simulation. The

magnetisation of the magnetic nanoparticles is represented by a red arrow and the anisotropy

axis by a black line.

As dipole-dipole interactions equally affect the magnetising and demagnetising phase of a

magnetorelaxometry experiment, we only simulate the demagnetising phase for practical pur-

poses. To be able to accurately determine the Néel relaxation time constant τN, we initialise

the magnetic nanoparticles in a fully magnetised state along the z-axis. The normalised net

magnetic moment along the z-axis of the particles is represented by 〈mz〉 and equals 1 in this

stage [Fig. 4.19 (a)].

In the next stage [Fig. 4.19 (b)] the magnetic nanoparticles relax (with the thermal field

still switched off) towards one of the energetic ground states, i.e. the magnetisation parallel

with the uniaxial anisotropy axis in the positive z direction (due to the initialisation along

the z-axis). The theoretical prediction of 〈mz〉 for randomly orientated anisotropy axes is



Chapter 4. Magnetic nanoparticles 118

∫ π/2
0 sin(θ) cos(θ)dθ = 0.5.
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Figure 4.19: Simulation of an magnetorelaxometry experiment (red line) resulting from an

ensemble of 30 000 particles with an initial magnetisation along the z-axis. Insets (a) to (d)

show an ensemble of 3 magnetic nanoparticles in the different stages of the magnetorelaxometry

signal. The uniaxial anisotropy axis is represented by a black line and the magnetic nanoparticle

magnetisation by a red arrow. (a) The magnetisations lie along the z-axis. (b) The magnetisations

relax towards their respective anisotropy axis in the positive z-direction. (c) The stochastic thermal

field is switched on and the magnetisation fluctuates around the anisotropy axes. (d) The thermal

field randomly switches the magnetisation towards the opposite anisotropy direction, and the total

magnetisation relaxes exponentially towards 0.

In the subsequent stage [Fig. 4.19 (c)], the thermal field is switched on corresponding to a

temperature of 300 K and the magnetisation fluctuates around the anisotropy axis. Due to

these thermal fluctuations the magnetisation can switch between the two anisotropy directions

at random intervals. Consequently, 〈mz〉 decays towards zero at a rate given by the Néel

relaxation time constant τN [Eqs. (4.15) and (4.35)] as shown in Fig. 4.19 (d). By fitting an

exponential curve to the simulated magnetorelaxometry curve, τN can be determined. In this

simulation this was equal to 60 ns, and the fitted curve is shown in Fig. 4.19.

We investigate the effect of dipole-dipole interactions on the Néel relaxation time constant.

Due to the large computational cost of evaluating the dipolar interactions, the simulations

are limited to relaxation constants of the order of microseconds. We used the magnetic

nanoparticle ensemble of the previous simulation as this ensemble had a relaxation constant

of 60 ns (without dipolar interactions). The Gilbert damping parameter α equals 0.01 in

this simulation (note that the dipolar interactions are independent of the value of α, which

we verified numerically). We repeated the magnetorelaxometry simulation for increasing

magnetic nanoparticle concentrations, taking into account the dipolar interactions on each
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particle. Because the dipolar field only significantly changes after a switching event, and

thus much more slowly than the other effective field terms, it was only updated every 10 ps.

This approximation drastically speeds up the computations and it was verified that this does

not affect the results. The magnetic nanoparticles in the simulations are fixed in space at

uniformly distributed positions. As magnetic nanoparticles in biomedical applications are

typically iron oxides, the magnetic nanoparticle amount is represented by an iron concentration.

Fig. 4.20 shows the relaxation constant for increasing iron concentrations relative to the one

obtained from the simulation without dipolar interactions (Fig. 4.19). Starting from an iron

concentration of approximately 100 mmol/l (corresponding with a particle volume fraction of

0.0007 or 5.5 mg/cm3 iron) we observe a steady decrease in the relaxation constant.
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Figure 4.20: The relative relaxation time constant (τN/τN0, with τN0 the relaxation time constant

without interactions) for increasing iron concentrations. When the iron concentration of 100 mmol/l

is exceeded a decrease of the relaxation constant is observed. Inset: For magnetic nanoparticles of

larger volumes the dipolar interactions start to influence the relaxation time constant from the

same concentration (100 mmol/l iron).

A simple theoretical argument that only takes into account the interaction due to the nearest

neighbours shows that the concentration from which on the dipolar interaction starts to affect
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the relaxation time is independent of the size of the particles: the size of the demagnetising

field of a nearest neighbour on a particle scales as V/r3 with V the volume of the particle

and r the distance to its nearest neighbour. When considering a sample with the same iron

concentration, but with larger particles, the net effect on the dipolar field is independent of the

volume of the particles. Nonetheless, we have performed additional simulations of magnetic

nanoparticles with a volume of 1.5, 2 and 2.5 times the volume of the magnetic nanoparticles

with D = 11 nm. The results imply that dipolar interactions start to affect particles of different

sizes at a concentration of around 100 mmol/l iron. At higher concentrations, the particles

are too close together to only take their nearest neighbours into account and the data points

do not coincide anymore. We therefore emphasize that during experiments caution should

be taken when using samples with high iron concentrations. This is especially important in

experiments where particles are bound to cells or tissues, because these can induce local areas

of high magnetic nanoparticle concentrations. One way of reducing particle aggregation is to

employ particles with a sufficiently thick non-magnetic coating, such as dextran.

4.3.2 The Gilbert damping parameter in magnetic nanoparticles

A second topic of interest when discussing τN is the inverse of the attempt frequency: τ0

[Eq. (4.35)]. The size of this parameter is determined by the value of the Gilbert damping

parameter, α, which is not accurately known for magnetic nanoparticles. We repeat that

Brown [13] determined that in the high barrier limit (KV � kBT ), and in the absence of an

external field, τ0 is given analytically by Eq. (4.14) with HK = 2K/µ0Ms:

τ0 =
1 + α2

2αγ0

√
2πkBT

µ0H3
KMsV

. (4.43)

Except for the Gilbert damping parameter α, every quantity in this equation is known for

magnetic nanoparticles. There are indications[227–229] that this value can be significantly

lower in nanoscale magnets than in bulk materials. Therefore we compare our numerical

model to an actual magnetorelaxometry experiment to determine α. Typically, τ0 takes values

between 10−8 and 10−12 s [20]. A good estimate of α together with Eq. (4.43) could lead to a

more accurate value of τ0. For iron oxide magnetic nanoparticles there is no data available

for α. There is however a value of 0.07 determined for the bulk material [230]. For thin

films there is a clear trend visible for α to increase with size[227–229], with an upper limit

for α of 0.0365[228]. We argue that in magnetic nanoparticles this value is expected to be

even significantly smaller because of the nanoscale dimensions in every direction. Similar to

the results on CoZr nanoparticles[229], we expect a size dependency of α. However, as the

magnetic nanoparticles used in practical applications have a limited range this dependency

may safely be neglected.

We compare our numerical model to an magnetorelaxometry experiment performed at the

Physikalisch-Technische Bundesanstalt in Berlin [210] to determine the Gilbert damping

parameter α. The magnetic nanoparticles are large single magnetite core SHP-20 particles
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(Ocean Nanotech, USA) coated by oleic acid combined with an amphiphilic polymer. The size

distribution was obtained by TEM[210] and showed a lognormal distribution, which is identified

by 2 parameters: a mean and the standard deviation of the logarithm of the distribution.

These were determined to be 19 nm and 0.11 respectively. The saturation magnetisation was

determined to be 250 kA/m and K = 14.5 kJ/m3. The magnetic nanoparticles are freeze dried

in a sugar matrix so only Néel relaxation occurs allowing to simulate the magnetorelaxometry

signal using our numerical model. The iron concentration is 4.85 mmol/l, which is sufficiently

low to neglect dipole-dipole interactions (see Fig. 4.20). The experiment was performed at

295 K. The magnetising field was applied for 1 second and had an amplitude of 1600 A/m. In

contrast to the numerical method described earlier in this section (Fig. 4.19), we now consider

an experiment in which the particles are not fully magnetised. Consequently, the magnetising

stage of the experiment also has to be simulated. After this stage, the magnetorelaxometry

signal is recorded as the sample is allowed to relax for 0.4 seconds.
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Figure 4.21: Comparison of magnetorelaxometry simulations for a range of different α with

a magnetorelaxometry measurement (smooth full blue line). The gray region, with α between

0.0005 and 0.002 agrees well with the measurement. The simulation for the bulk α = 0.07 (green

line) differs significantly from this measurement. The signature shape of the magnetorelaxometry

curve, which closely matches the experimental one, proves that the size distribution of the particles

is simulated correctly. For reference purposes a purely exponential function is fit to the data,

corresponding to a sample of magnetic nanoparticles with equal diameters.

Figure 4.21 shows the result of magnetorelaxometry simulations of 10 000 000 particles with

stochastic switching for a range of different α values. The full blue line shows the measurement

data from the magnetorelaxometry experiment. The green line shows a simulation with

α = 0.07, for which we observe a large discrepancy between the simulated and measured mag-

netorelaxometry curve. The gray region shows the simulation results for α ranging from 0.0005

to 0.002, in close agreement to the magnetorelaxometry measurement data. Therefore we
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suggest α = 0.001 for these type of particles, which is indeed significantly lower compared to the

bulk value of 0.07. The signature shape of the magnetorelaxometry measurement curve agrees

well with our simulations. As a reference, a purely exponential fit to the measurement data is

also shown (red dashed line), which could only result from a sample consisting of particles

with equal diameters, as was the case in Figs. 4.19 and 4.20. We report τ0 = 4.64×10−20
√
V

s
√

m3

which leads to a value of 8.65 ns for the average diameter of 19 nm in this experiment, well

within the previously reported range of 10−8 to 10−12. Note that we assumed an anisotropy

constant of 14.5 kJ/m3, as determined earlier [210]. However, this value has some uncertainty,

and the exact value used influences our calculation of α. We emphasise that our determined

value for α is not exact, but rather an estimate of the order of magnitude.
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Figure 4.22: Simulation of a magnetorelaxometry experiment (blue curve) containing an ensemble

of 10 000 non-interacting chains of 6 particles with an initial magnetisation along the z-axis. The

red curve serves as a reference and shows the relaxation of non-interacting individual particles. The

relaxation is slowed down in the case of particle chains. The inset shows the initial configuration

of the particles in the chains: the non-magnetic shells are touching and their anisotropy-axes are

aligned.

In this section we have investigated the effect of dipolar interactions between magnetic nanopar-

ticles which are fixed in space on uniformly distributed positions. This is realistic in e.g.

freeze-dried samples or samples containing nanoparticles with a thick non-magnetic coating

which prevents aggregation. However, when the particles are able to move freely, the minimisa-

tion of the free energy might lead to chain formation[231]. This chain formation starts already

at very low concentrations but is more distinct in samples with high concentrations[222]. In

contrast to the previously discussed samples with uniform particle distributions, the presence

of these structures decreases the relaxation time[232–234]. There is a plethora of possible

configurations of particle chains, where possible parameters are the length of the chains,

possible ring formation, the proximity of different chains,. . . A full study of such samples
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is beyond the scope of this thesis, but we performed one simulation where we consider a

sample consisting of 10 000 chains of 6 particles. The particles have the same properties as the

ones described in the previous section, except we now consider particles with a non-magnetic

coating of 10 nm on top of their 11 nm diameter. The particle chains are initialised as depicted

in the inset of Fig. 4.22, i.e. with their anisotropy axes and magnetisation aligned with

the magnetising field, leading to a magnetisation of 1 along the z-axis. The results of these

simulations are shown in Fig. 4.22, and confirm that dipolar interactions between the particles

help to stabilise the magnetisation of the particles, and hence slow down the thermal relaxation.

In conclusion, in this section we employed a numerical model starting from first principles to

simulate magnetorelaxometry experiments taking into account anisotropy, thermal effects and

dipolar interactions. We determined that for iron concentrations higher than 100 mmol/l the

dipolar interactions affect the magnetorelaxometry curve and decrease the relaxation time

constant. Furthermore, an estimate of the Gilbert damping parameter α was obtained by

comparison to an magnetorelaxometry measurement of iron oxide magnetic nanoparticles. We

determined α ≈ 0.001 for SHP-20 magnetite nanoparticles, a value considerably lower than

the bulk value of 0.07. This leads to an inverse attempt frequency τ0 of 8.65 ns for 19 nm

diameter magnetic nanoparticles and scales as 1/
√
V for magnetic nanoparticles of other sizes.
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4.4 Thermal magnetic noise spectra of nanoparticle ensembles6

Many techniques are able to investigate the magnetic moment of an ensemble of nanoparticles

but most of these measurements require the use of an external magnetic field. Examples thereof

are static magnetisation measurements such as magnetisation versus magnetic field (M(H))

curves or dynamic magnetisation measurements such as AC susceptometry, magnetic particle

spectroscopy and magnetic particle rotation [235–237]. Alternatively, one can investigate

the relaxation of the magnetic moment of the nanoparticle sample after the magnetic field

is switched off (magnetorelaxometry) [20, 189, 238]. Using aforementioned measurement

techniques, particle characteristics such as the size distribution or aggregation can be deter-

mined by fitting a theoretical model to the measurement data [208, 239]. Recently, also the

impact of particle interactions was taken into account [158, 240, 241]. A third approach, in

the absence of an external field, is to measure the noise signal resulting from the thermal

switching of the nanoparticles. This switching has already been the topic of many theoretical

studies[13, 14, 184]. Experimentally, it is possible to investigate the switching rate of individual

superparamagnetic structures by scanning electron or magnetic force microscopy[242, 243].

Although this resulted in a better understanding of the switching rate of individual particles,

the averaged spectrum of an ensemble of particles, as is used in biomedical applications,

remains elusive. With the help of SQUIDs, an increased noise spectrum as a result of magnetic

nanoparticle has been observed [244], but the shape of the spectrum and its relation to the

properties of the nanoparticle ensemble remains unexplored.

In this section we present the measured noise spectrum of several magnetic nanoparticle

samples. We present a model to estimate the size distribution of the particles from the noise

spectrum and compare it to those from magnetorelaxometry data of the same samples.

The fluctuations in the magnetic moment of nanoparticles can be the result of two distinct

processes: one is the spatial rotation of the nanoparticle as a whole, and another in which

only the magnetic moment of the nanoparticle changes direction. Both processes give rise to a

characteristic fluctuation rate, νN and νB respectively [Eq. (4.44)], which depend on the size,

the material parameters and the environment of the particle:

νN = ν0 exp

(
−KVc

kBT

)
and νB =

kBT

6pVh
. (4.44)

In these equations, Vc and Vh are the core and hydrodynamic volumes, respectively and ν0 is

an attempt frequency of 0.1 GHz.

Each nanoparticle is characterised by an effective rate

νeff = νN + νB. (4.45)

6The research presented in this section was performed during a 3-month stay as a guest scientist at the

Physikalisch-Technische Bundesanstalt in Berlin.
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However, due to the exponential dependence of νN on the core volume [Eq. (4.44)], the range

of particle sizes for which both mechanisms are relevant is very small as νN is either much

smaller or much larger than νB. Consequently, νeff is approximately equal to either νN or νB.

Both the noise spectrum and the magnetorelaxometry data of the samples are determined by

these size dependent rates, so the particle sizes can be estimated by fitting the experimental

data. Typically, the lognormal distribution [20], as defined in Eq. (4.33), is used to describe

the diameter distribution of magnetic nanoparticles.

In the following, a subscript c or h will be added to µ and σ to indicate the parameters of

the core or hydrodynamic diameter distribution. We will assume the nanoparticles have size

distributions P (Vc) and P (Vh), with Vc,h =
πD3

c,h

6 , the core or hydrodynamic volume of a

particle with diameter Dc,h. Because the relation between the core and shell sizes is unknown,

we assume the core and hydrodynamic diameter distributions to be independent and use the

fraction of each ensemble that fluctuates by the Néel mechanism as a fitting parameter φN.

This is inspired on the cluster moment superposition model [208] and takes the possibility

for particles to cluster into account. With this approach, the relaxing magnetic moment

VcM = Vc‖M‖ of an ensemble of nanoparticles can be described by

VcM(t) = φN

∫
Vc

M0Vc exp (−νN(Vc)t)P (Vc)dVc

+ (1− φN)

∫
Vh

M0VhR exp (−νB(Vh)t)P (Vh)dVh,

(4.46)

where M0 denotes the magnetisation of the nanoparticle at time 0 and R is the ratio between

the total core and hydrodynamic volumes in the distributions. Note that 2νN and 2νB are the

inverse of the Néel relaxation time and the Brownian relaxation time, τN and τB, normally

used in the description of magnetorelaxometry [20].

It is well-known that the noise power spectrum from the random switching of a magnetic

moment has a Lorentzian shape[245],

S(f) =
ν/2

ν2 + (πf)2
. (4.47)

The noise spectrum of an ensemble of magnetic nanoparticles with all the same sizes will also

have this shape. The bottom curve in Fig. 4.23 is characterised by a flat white noise part up

to the cutoff frequency ν, after which the noise power rapidly decreases as 1/f2. In reality

however, the nanoparticles have a size distribution, which also affects the noise spectrum.

The middle and upper curve of Fig. 4.23 show the noise spectra for lognormal diameter

distributions [Eq. (4.33)] with µ = 18 nm and σ = 0.05 and 0.2, respectively. This spectrum

can then be described as

S(f) =

∫ ∞
0

g(ν)ν/2

ν2 + (πf)2
dν (4.48)

where g(ν) depends on the size distribution of the particle sizes as

g(ν) = φNP (νN(Vc)) + (1− φN)P (νB(Vh)). (4.49)
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The superposition of these noise processes, each with a different cutoff frequency, changes the

shape of the power spectrum and is responsible for the 1/f noise shape[246] [cf. Fig. 4.25 (d)]

as can also be seen in the data presented in Ref. [244].
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Figure 4.23: Simulated noise spectra for 1000 particles with 3 different size distributions,

switching only via the Néel mechanism, with K = 11.5 kJ/m3. These results prove that the noise

spectra can indeed be described by Eq. (4.48) and illustrate the transition from 1/f2 noise to 1/f

noise for broader distributions. The light-coloured data points are generated with Vinamax, while

the full darker lines show the theoretically expected spectra [Eqs. (4.48) and (4.49)]. The bottom

(red) curve depicts the spectrum of a mono disperse ensemble with all particle diameters equal to

18 nm, while the middle (green) and top (blue) curves correspond to lognormal distributions [Eq.

(4.33)] with µ = 18 nm and σ = 0.05 and 0.2, respectively.

Noise and magnetorelaxometry data of 5 different samples were taken in the 8-layered mag-

netically shielded room at Physikalisch-Technische Bundesanstalt (PTB) in Berlin [247]. A

single channel magnetorelaxometry system [20] was used for both the noise measurements and

magnetorelaxometry measurements. It contains a low Tc SQUID in a dewar. The sample is

placed outside the dewar in a 150 µl cuvette, 12 mm below the SQUID. Magnetorelaxometry

measurements at T = 295 K are taken by applying a magnetic field of 1 mT to the sample for 1 s.

After a dead time of 200µs the magnetorelaxometry signal is recorded for 0.5 s. The coil system

generating the magnetic field for the magnetorelaxometry measurements is removed during

noise measurements to avoid the related background noise. The noise spectra of the samples

is recorded by a spectrum analyzer (HP 35670A Dynamic Signal Analyzer) in units7 of fT/
√

Hz.

7Noise is always proportional to the square of the detection bandwidth. If we average over longer periods (i.e.

lower bandwidth) the noise will average out. Therefore noise is always specified as the noise spectral density,
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The measurements were taken in 4 frequency windows (10 Hz to 110 Hz, 100 Hz to 1.7 kHz,

1.6 kHz to 14.4 kHz and 12.8 kHz to 50 kHz), which were logarithmically divided into 800

points. Due to time limitations only 50 averages were taken in the first window, while 500

averages were taken in the other windows. Using the same setting, the background noise

spectrum was recorded using an empty sample holder.

The samples used in this study are iron oxide particles dispersed in water from Berlin Heart

GmbH with an iron concentration of 55.7 mg/ml which were 1:1 diluted with water [BH11],

1:1 diluted with glycerol [BHGL] and immobilised in gypsum [BHIM]. We also used a cobalt

ferrite sample (SiMAG/CF-Carboxyl) acquired from Chemicell GmbH [COFE] and cobalt

ferrite nanoparticles with a silica shell [CODS]. For the latter one the magnetic core was

prepared via a co-precipitation method [249] and afterwards covered via a silica shell by a

modified Stoeber processs [250].
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Figure 4.24: (a) Normalised magnetorelaxometry data (black crosses) for the different samples,

together with the fitted relaxation curves generated with the size distributions shown in Table 4.2

(full lines). (b) The measured noise spectra together with the background noise.

e.g. fT/
√

Hz, which removes this dependency on bandwidth.[248]
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The measured relaxation curves and noise spectra from the samples described above are shown

in Fig. 4.24. The relaxation curves (black crosses), shown in Fig. 4.24 (a) were normalised to

allow an easy comparison. To estimate the size distributions, we fitted8 Eq. (4.46) to this

data. As can be seen in Fig. 4.24 (a) (full lines) there is an excellent correspondence and the

fit parameters are shown in Table 4.2.

Fig. 4.24 (b) shows the raw noise spectra. For all samples, the noise amplitude is signifi-

cantly larger than the background noise. The shape clearly depends on the size distributions

and environment of the particles. The noise amplitude of the immobilised particles [BHIM]

goes down faster than those of the liquid samples. This is attributed to the predominance

of slow Néel relaxation processes, in good agreement with the slow relaxation observed in

magnetorelaxometry. The noise spectra of the liquid samples remain higher up to larger

frequencies by the additional contribution of the faster Brownian relaxation. In line with

the difference in viscosity, the spectrum of the BH particles remains higher up to larger

frequencies for the suspension in water [BH11] than in Glycerol [BHGL]. The higher vis-

cosity in glycerol gives rise to a smaller contribution of rates at higher frequencies [cf. Eq.

(4.44)], thus explaining the steeper slope observed for the [BHGL] sample. In line with the fast

relaxation, the noise amplitude in the [COFE] sample remains large up to very high frequencies.

Table 4.2: The parameters for the size distributions of the different samples estimated from

their magnetorelaxometry signal and their noise signal. µ has units of nm, the others are unitless.

We used a saturation magnetisation of 400 kA/m for all samples. The BH– samples were fitted

with K = 11.5 kJ/m3 while the CO– samples were fitted with K = 100 kJ/m3, as determined

from magnetorelaxometry data. All liquid samples had a viscosity of 1 mPas, except for the

water/glycerol sample where we used a viscosity of 5.6 mPas, in agreement with tabulated values.

MRX Noise spectrum

Sample µc σc µh σh φN µc σc µh σh φN

BHIM 18 0.15 – – 1.00 21 0.13 – – 1.00

BHGL – – 29 0.49 0.00 – – 27 0.59 0.00

BH11 – – 35 0.50 0.00 – – 27 0.64 0.00

CODS 7.5 0.09 25 0.33 0.45 9.2 0.04 16 0.27 0.39

COFE 9.6 0.01 28 0.43 0.09 6.6 0.01 20 0.47 0.02

8As M0 and the offset on the final magnetisation were not experimentally determined, we took these into

account by linearly rescaling our fitted curve to match the first and last data point. The fit itself was performed

by simulated annealing.
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Figure 4.25: The measured noise spectra with the background noise quadratically subtracted

(red lines). Below 1 fT/
√

Hz, the signal to noise ratio was too low to see a clean spectrum. The

full blue lines correspond to the spectrum fitted with Eq. (4.48) with the size distributions shown

in Table 4.2. In contrast to the rest of the panels, panel (a) displays the noise spectrum with a

linear y-axis. In panel (d) the spectrum of the BHIM sample is shown together with the spectrum

generated with Vinamax (in green) and with a guide to the eye to illustrate the 1/f frequency

dependence.

In Fig. 4.25, the noise spectra (red lines) are shown for each sample, but this time with the

background noise subtracted. The full blue lines depict the fitted shape of the spectrum using

Eqs. (4.48) and (4.49) and the size distribution estimates shown in Table 4.2. The noise

spectra of the immobilised samples can also be simulated with the Vinamax [157] code, as only

the νN mechanism is relevant. We averaged over 50 ensembles consisting of 1000 nanoparticles

with a lognormal distribution. The thermal switching of the nanoparticles, implemented as a

jump noise process [36], was simulated for 1 s for each ensemble. In Fig. 4.25 (d) the result of

this simulation is shown in green.

When looking at Table 4.2, a rough agreement between the parameter estimations from both

datasets can be seen. However, a trend in the differences can be observed: typically the

hydrodynamic diameter distribution is estimated a little smaller from the noise spectrum

than from the magnetorelaxometry data. This might originate in the fact that the equilib-

rium configuration of the particles, and thus also their relaxation, is influenced by external

fields[222, 240]. The noise spectrum is measured in the absence of an external field while the

magnetorelaxometry data are recorded after the samples were magnetised for 1 s by a magnetic

field of 1 mT. During this time, clustering by chain formation may occur. The resulting

interactions can decrease the relaxation rate[240]. This process is not taken into account in the

model and will result in overestimation of the particle sizes. This clustering will also depend on

the particle concentration. For instance, the relaxation measured in an 1:6 diluted BH sample
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was faster than in the 1:1 diluted [BH11] sample. However, these data are not shown in Fig.

4.24 because the corresponding noise spectrum was too small compared to the background noise.
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Figure 4.26: The relative field strength as function of dilution factor, normalised to the field

strength for the undiluted sample. The red line corresponds to the theoretical expectation. The

inset shows the noise spectra for the dilution series.

Finally, also a dilution series of Berlin Heart particles in water was investigated. The used

dilution factors (DF ) were 1 (undiluted), 1.5, 2, 3, 4 and 5 (corresponding to a 1 in 5 dilution).

For these samples we were only interested in the scaling of the noise amplitude. To this end,

5000 spectra between 100 and 12.9 kHz, logarithmically divided into 200 points, were averaged.

To obtain the scaling factor, we performed a pointwise division between the spectrum of the

undiluted sample and all other spectra between 400 Hz and 2 kHz. This range was chosen as

it had the best signal to noise ratio. For each dilution factor, the resulting ratios were then

averaged and their standard deviations determined.

The averaged noise spectra are shown in the inset of Fig. 4.26. The relative strengths of these

spectra were extracted and normalised to the strength of the undiluted sample and confirm

that the strength decays as 1/
√
DF , as expected from the model. Indeed, the measured spectra

can be seen as the square root of the sum of the power spectra of the individual particles (in

fT2/Hz), and the number of particles (proportional to the power spectrum) decreases linearly

with DF .

To conclude, in this section we demonstrated that the magnetic noise spectral density of

nanoparticles ensembles, of only a few fT/
√

Hz, can be measured with SQUIDs in a magnetically

shielded environment. A model was constructed to interpret these noise spectra in terms of

the relaxation rates of the particles and their size distribution could be estimated. These

results were consistent with the size distributions obtained from magnetorelaxometry data of

the same samples. In the future such noise measurements might be used at different offset

fields to investigate cluster formation and its influence on the relaxation rates.



CHAPTER 5

Conclusions and Outlook

[. . . ]Now, endings normally happen at the end.

But as we all know, endings are just beginnings.

You know, once these things really get started,

it’s jolly hard to stop them again.

However, as we have all come this far,

I think, under the circumstances

the best solution is that we all just keep going [. . . ]

— Mike Oldfield, Amarok

5.1 Conclusions

Throughout this thesis, we have investigated several realisations of disorder like single defects,

polycrystalline materials, thermal fluctuations and randomly positioned magnetic nanoparti-

cles. To investigate these very different disorder realisations, we focused on two systems. In

Chapters 2 and 3, we investigated domain wall motion through magnetic nanowires, and in

Chapter 4 we shifted our focus to the magnetisation dynamics of magnetic nanoparticles.

Within these systems, we studied different aspects of disorder. In magnetic nanowires, we first

investigated how individual defects could be included in micromagnetic simulations in a way

that their effect on the magnetisation was comparable to experimental observations. Next, we

extended this study to the implementation of polycrystalline materials. After developing these

techniques we used them to investigate their influence on current-driven domain wall motion.

As expected, at low current densities, domain walls get pinned to the minima in the energy

profile due to the defects. Above the depinning current threshold we noticed that vortex cores

131
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can switch polarity at defects. This qualitatively alters their motion as the vortex cores do

not reach the edges of the nanowire anymore and behave as if the degree of non-adiabaticity,

equals the Gilbert damping parameter, irrespective of its real value. The size of the former was

still a topic of debate at the time this research was conducted and our observation explained

some contradictory experimental data.

Next, we included the effects of nonzero temperatures in our investigation of domain wall

motion. In a first step we performed micromagnetic simulations in ideal nanowires without

defects and showed that the thermal fluctuations give rise to diffusion on top of the drift

velocity due to the driving force. We also included the stochastic thermal field in the 1D-model,

solved the resulting stochastic equation of motion analytically and saw a good agreement

between both results.

We then performed large-scale micromagnetic simulations (over 5 GPU-years in total) of the

creep domain wall motion through disordered nanowires and used these results to validate

the solution of the equation of motion. We found that the nonlinear creep scaling law is not

valid in small nanowires. Instead, we find a linear relation between the velocity of the wall

and the driving force. The agreement between the results of the equation of motion and the

micromagnetic simulations proves that the motion of the domain wall can be described as a

zero dimensional object moving through a one dimensional energy profile. We also investigated

domain wall motion through a nanowire with periodic defects and found a good agreement be-

tween theory and simulation, except at some current densities where the domain wall displayed

internal resonances as it moved through the periodic energy profile. This illustrates one of the

limitations of the 1D-model: it is only valid when the domain wall under study is a rigid object.

In Chapter 4 we investigated an entirely different system, i.e. ensembles of superparam-

agnetic magnetic nanoparticles. In these systems, material defects do not influence the

magnetisation. Contrary, the strongest disorder is due to the thermal fluctuations. In these

superparamagnetic particles, the magnetisation switches randomly between a few equilibrium

directions, and only in the presence of an external field, one direction is favoured and a net

magnetic moment is present. As the interactions between the different particles influence

their magnetisation, a second source of disorder can be identified in the location of the particles.

To model magnetic nanoparticles, we developed a specific micromagnetic software package

Vinamax, which we then used to look at different aspects of the Néel relaxation. We also used

Vinamax to compare simulated magnetorelaxometry measurements to experimental data and

be the first to report an estimate of the Gilbert damping parameter in magnetic nanoparticles.

We found a value of approximately 1/1000, which is an order of magnitude smaller than in

thin films or bulk materials.

Finally, we performed measurements of the thermal magnetic noise spectra of an ensemble of

nanoparticles. This new technique to investigate magnetic nanoparticles allowed us to measure
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the characteristic timescales of the thermal switching of the magnetisation in its thermody-

namic equilibrium. This contrasts the usual magnetic nanoparticle measurement techniques

which measure the response to an external excitation. We interpreted these measurements

in the same framework used to characterise magnetic nanoparticles in magnetorelaxometry

measurements and found that both resulting particles characteristics agree with each other.

However, a trend in the small differences between both was visible, indicating that the particles

are less clustered in their thermal equilibrium than after an exposure to a magnetic field.

Although we studied very different magnetic systems, the effects of disorder actually are

very similar. Generally, disorder gives rise to local minima in the energy landscape. This

can range from a single potential well due to a single defect, over an entire energy profile

in a polycrystalline nanowire to preferential directions in the magnetisation due to dipolar

interactions between magnetic nanoparticles. Additionally, thermal fluctuations play a similar

role in all these different systems, and allow the system to overcome the energy barriers due

to the disorder. This effect is stronger in smaller systems like magnetic nanoparticles, and in

domain walls, which have a comparable size. In equilibrium, the net magnetisation does not

change apart from the thermal magnetic noise, or the diffusion of a magnetic domain wall

through an ideal nanowire which both are different manifestations of the same phenomenon.

Out of equilibrium, the thermally assisted motion of the domain wall results in a creep velocity,

just like the thermally assisted relaxation of a the magnetic moment in a magnetorelaxometry

experiment can be interpreted as a motion towards the equilibrium magnetisation.

5.2 Outlook

5.2.1 Domain wall motion

In this thesis we focused on the current-driven motion of transverse and vortex domain walls

through permalloy nanowires. However, domain wall motion through nanowires is a very rich

topic and a very similar thesis could for example have been written on field driven domain

wall motion[251] or domain wall motion through PMA nanowires[119], or other domain wall

configurations stabilised by the Dzyaloshinskii-Moriya interaction [252] or even skyrmion

motion[23].

Each of these systems has a lot of potential for future research. In PMA nanowires, for instance,

a very large damping is measured (αeff = 0.15 in Ref. [253]). It would be interesting to see if

this can be explained as an extrinsic damping originating in the polycrystalline structure of

the samples. Another interesting topic is skyrmion motion. There, typically a much lower

depinning current threshold is measured[23]. This indicates that the interaction with material

defects is different than in domain wall motion.

When we look back at results presented in this thesis, we see that the most interesting results

were obtained in systems where the dynamic behaviour is determined by the interplay between

the disorder and the thermal fluctuations.
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An interesting extension of our creep simulations would be to investigate wider nanowires where

the creep scaling law is still valid. Recently, it has been shown in experiments that field-driven

and current-driven creep motion gives rise to different creep exponents[134]. With an in-depth

numerical study we might gain more insight in this surprising result. Unfortunately, these

simulations are not yet possible due to the current computational limits.

5.2.2 Magnetic nanoparticle ensembles

The latest efforts in magnetic nanoparticle imaging are aimed at imaging different kinds of

particles at the same time[254]. In these multi-colour approaches the different particles are

identified based on subtle differences in their response to an external field. However, this

response also depends on the possible interactions between the particles, making it challenging

to correctly distinguish the different particles.

Figure 5.1: Transmission electron microscope images of iron-oxide nanoparticles showing cluster-

ing and chain formation. Reproduced from [255]

To learn more about these interactions, it would be interesting to extend the interpretation

of magnetorelaxometry results to also include their effect on the magnetorelaxometry signal.

The particles interact with each other via their dipole-dipole interaction, causing clustering or

chain formation, see Fig. 5.1. As we already showed in Section 4.3, these configurations are

more stable against thermal fluctuations than free particles, which reflects in the relaxometry

signal. When this signal is interpreted in a model which does not take this into account, the

size of the particles is overestimated. Our modelling approach offers a controlled environment

which allows us to isolate the influence of interactions and to develop a practical model which

accurately relates the relaxation signal to the real properties of the particles.
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5.2.3 Thermal magnetic noise

Next, further research should be performed on the thermal magnetic noise spectrum of the

magnetic nanoparticles, presented in Chapter 4. This method allows for the first time to make

sure that any clustering induced by the magnetisation phase of the particles can be excluded

when investigating the magnetisation dynamics. We would like to perform extra measurements

at offset fields and also include inter-particle interactions in the analysis. We suspect that, in

the presence of an externally applied field, the nanoparticle magnetisation will align and the

particles will cluster, which will influence their energy and thus the characteristic timescale of

the thermal switching.

Finally, this technique could also be extended to artificial spin ices. These are ordered arrays

of nano magnets, e.g. a square lattice of rectangular magnets, each having only two equi-

librium magnetisation directions. In this system, the ground state is a configuration where

2 spins point in and 2 out of each vertex. However, even in this ground state the energy

of only 4 of the 6 spin pairs in each vertex is minimised, and not all local interactions are

satisfied at the same time, a property called frustration. Because of its similarity to water

ice, where each oxygen atom is bonded to four hydrogen atoms with two strong and two

much weaker bonds, the frustrated magnetic system described above is called artificial spin

ice. In such systems, the distances between the nano magnets, and thus the strength of their

interaction dictates the average time between the thermal switching of the magnets. Due

to the ordered geometries, only a few different energy barriers will be present in the system

and we expect to find a very clear spectrum. In simulations it is possible to simply take the

Fourier transform of a sufficiently long simulation of the magnetisation, which we already

accomplished with magnetic nanoparticles in Section 4.3. These simulation results could

then be used to interpret the spectrum, by relating it to the local switching of the magnets.

Experimentally, the thermal noise spectrum of an artificial spin ice sample might even be

recorded with the unique magneto-optical spectrum analyser setup[256], developed in our group.
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APPENDIX A

Solvers

Physicists like to think that all you have to do is say,

these are the conditions, now what happens next?

— Richard Feynman

Parts of this appendix have been published in [45] and [157]

A.1 Introduction

As both MuMax3 and Vinamax numerically solve Ordinary Differential Equations (ODE’s), a

lot of time was spent on the implementation and testing of solvers. In this appendix a short

introduction to solvers is given together with a list of all solvers implemented in MuMax3 and

Vinamax (with their Butcher tableaus). Subsequently, the derivation of our own third order

solver is given and finally the implementation of all solvers is validated and their performance

is compared. For further information about solvers we refer to Ref. [257].

Given the differential equation,
dy

dt
= f(t, y), (A.1)

we are looking for a method to approximate its value yn+1 on time t+ h, given its value yn on

time t, where h is the time step. To approximate yn+1(t+ h) we use a solver. In the following

we will no longer explicitly write the time dependency of y.

We start by describing the easiest of solvers, which was already invented by Euler as early as

1770 [258] and is appropriately named Euler’s method . Using this solver we approximate yn+1

as

yn+1 = yn + hf(t, yn). (A.2)
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This solver is a solver of order 1 (O(1)). This means that our solution only approximates the

real solution of the ODE up to first order. Practically, this means that when the time step

is made twice as large, the size of the error also doubles. This is a very useful property to

test one’s implementation of a solver, as this property is very sensitive to even the smallest of

programming errors.

All solvers can be subdivided into two classes based on whether they are implicit or explicit.

Euler’s method is an explicit solver because it approximates the solution of the ODE on a

later time only by using information about the ODE at the current time. Therefore this

method is also called Euler forward . There also exists a class of solvers, called implicit solvers ,

which approximate the solution of the ODE on a later time, also using information about the

solution at times later than the current time. The easiest example of such a solver is called

Euler backward and looks like this:

yn+1 = yn + hf(t+ h, yn+1). (A.3)

A second property we would like to discuss is whether the solver needs a fixed time step or

can use an adaptive time step. When a solver contains not only a solution of order N but also

a solution of O(N − 1), we can use the difference between both solutions as an approximation

of the error size ε on the solution. This error, as discussed earlier, depends on the size of the

time step h, and given a certain error tolerance τ , it is possible, using Eq. (A.4), to suggest

a h for the next time step which is a large as possible, while still maintaining the level of

accuracy required[224]. In systems governed by dynamics whose speed changes in time, this

can boost the performance of a solver tremendously.

hoptimal = hcurrent

(
ε

hcurrentτ

)(1/N)

(A.4)

An example of such a solver is Heun’s method . The first order accurate solution is found using

Euler’s method:

ỹn+1 = yn + hf(t, yn). (A.5)

Afterwards, the second order solution is found:

yn+1 = yn +
h

2

(
f(t, yn) + f(t+ h, ỹn+1)

)
. (A.6)

The difference between both solutions is an estimate of the error.

A third property our code greatly benefits from is the first-same-as-last (FSAL) property.

When we have a closer look at Heun’s method [Eqs. (A.5) and (A.6)] we see that we need

two evaluations per time step. Similarly, for the Bogacki-Shampine method , which is a third

order method with embedded second order solution, we need 4 evaluations per step.1 However,

1A full description of this method will not be given here, but its Butcher tableau (see Section A.2) can be

found in Table A.6.



Appendix A. Solvers 139

contrary to Heun’s method, in the Bogacki-Shampine method the last evaluation of step n

corresponds with the first evaluation of step n+ 1, thus reducing the number of evaluations

per step to 3. This property makes this solver 4/3 times faster as compared to the case when

it didn’t have the FSAL property.

Our introduction is continued with a side note on stochastic differential equations. As discussed

in Section 1.3.2, we apply a stochastic thermal field to simulate nonzero temperatures. The

size of this thermal field was determined by Brown [13], using the fluctuation-dissipation

theorem as:

Hth = η

√
2αkBT

µ0Msγ0V h
(A.7)

For this discussion, the most important variables in Eq. (A.7) are η, a vector containing 3

Gaussian random variables with average 0 and standard deviation 1 and h, which denotes the

time step.

It is not possible to perform simulations at nonzero temperatures with an adaptive time step.

A naive reason for this would be that the size of the thermal field is determined by 1/
√
h. This

implies that, when a large thermal field is generated, the adaptive time step algorithm would

decrease the time step, thus further increasing the size of the field, until the solver crashes. How-

ever, on closer inspection, we learn that the 1/
√
h dependency makes the time step smaller at a

slower rate than that the error is reduced (hN with N ≥ 1) at smaller time steps [cf. Eq. (A.4)].

The real reason why it is not possible to solve stochastic differential equations with an adaptive

time step is more subtle. To give the correct solution, the time average of the random

numbers η should be 0, and their standard deviation 1. However, if we would adapt our

time step in such a way that small thermal fields (small η) are applied during longer time

steps and large thermal fields (large η) during shorter time steps, we virtually change the

distribution of the random numbers and thus no longer correctly solve the differential equations.

There do exist solvers which take this effect into account[259] and are able to use an adaptive

time step algorithm to solve stochastic differential equations. Unfortunately, these solvers are

very difficult to implement and the performance gains are not spectacular. The reason for this

is twofold. First, these solvers require a lot of overhead in comparison with their fixed-time

step counterparts. Second, in simulations where the random field is calculated for a lot of

different cells, there will always be one cell, somewhere, where the thermal field is quite large.

Consequently, the time step will only vary a little, and will, for practical purposes, be quite

constant anyway.

In MuMax3, it used to be impossible to use the solvers with the FSAL property to simulate

nonzero temperatures, because the stochastic field changes in between time steps and the first

evaluation of the next time step is no longer equal to the last evaluation of the current time step.

This was fixed by separately performing the first and last evaluations steps in these schemes and
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not using the FSAL property for these solvers when nonzero temperatures are required.[66, 260]

We finish our introduction by listing all solvers implemented in MuMax3 and Vinamax.

� All solvers implemented in MuMax3

– Euler forward (RK1)

The easiest first order solver, provided for academic purposes.

– Euler backward

The easiest implicit solver, useful for the relaxation of magnetisation towards its

ground state.

– Heun’s method (RK12)

Offers 2nd order convergence and a 1st order error estimate.

– Bogacki-Shampine method (RK23)

Offers 3th order convergence and a 2nd order error estimate used for adaptive time

step control. This method is used when relaxing the magnetisation to its ground

state in which case it performs better than the Dormand-Prince method.

– Fourth order Runge-Kutta method (RK4)

The classic fourth order Runge-Kutta scheme, does not allow for adaptive time

steps, but can be used as a fourth order solver. It became rather obsolete when

it became possible to use the Bogacki-Shampine and Dormand-Prince solvers at

nonzero temperatures.

– Dormand-Prince method (RK45)

Offers 5th order convergence and a 4th order error estimate used for adaptive time

step control. This is the default for dynamical simulations.

� All solvers implemented in Vinamax

– Euler forward (RK1)

See above

– Heun’s method (RK12)

See above

– Third order Runge-Kutta method (RK3)

The classic third order Runge-Kutta scheme, offers no adaptive time step.

– Our own third order method

Our very own third order method, which we derive in Section A.3

– Fourth order Runge-Kutta method (RK4)

See above

– Dormand-Prince method (RK45)

See above

– Sixth order Fehlberg method

A 6th order method with embedded 5th order error estimate for adaptive time step

control.
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– Seventh order Fehlberg method

A 7th order method with embedded 6th order error estimate for adaptive time step

control.

A.2 Butcher Tableaus

As is clear from Eqs. (A.5) and (A.6), the notation to describe these solvers quickly becomes

quite dense and difficult to read. Butcher [257] invented a method to write down all neces-

sary information to understand and implement a solver in a very elegant way: Butcher tableaus .

In general, the approximate solution of the ODE

dy

dt
= f(t, y) (A.8)

at time t+ h, given its value y on time t, is obtained by taking s intermediate evaluations of

f at times ci,

ki = f

t+ cih, yn + h
s∑
j=1

aijkj

 , (A.9)

and then adding them to yn with the correct weights bi:

yn+1 = yn + h
s∑
i=1

biki. (A.10)

These formulas can compactly be represented by a Butcher tableau as follows:

Table A.1: General Butcher tableau

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Below, the Butcher tableaus of all solvers mentioned in the list above are given. For the

methods which have a lower order solution embedded, the lower order solution is shown as an

extra row below the higher order solution, and for the highest-order methods, another extra

row is added which is the difference between both solutions and approximates the error.

Table A.2: Euler forward (RK1)

0

1
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Table A.3: Euler backward

1 1

1

Table A.4: Heun’s method (RK12)

0

1 1
1
2

1
2

1 0

Table A.5: Third order Runge-Kutta method (RK3)

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

Table A.6: Bogacki-Shampine method (RK23)

0
1
2

1
2

3
4 0 3

4

1 2
9

1
3

4
9

2
9

1
3

4
9 0

7
24

1
4

1
3

1
3

Table A.7: Fourth order Runge-Kutta method (RK4)

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6
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Table A.8: Dormand-Prince method (RK45)

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 9209

339200
187
2100

1
40

Table A.9: Sixth order Fehlberg method (Fehlberg56)

0
1
6

1
6

4
15

4
75

16
75

2
3

5
6 −8

3
5
2

4
5 −8

5
144
25 −4 16

25

1 361
320

−18
5

407
128 −11

80
55
128

0 − 11
640 0 11

256 − 11
160

11
256 0

1 93
640 −18

5
803
256 − 11

160
99
256 0 1

31
384 0 1125

2816
9
32

125
768

5
66 0 0

7
1408 0 1125

2816
9
32

125
768 0 5

66
5
66

− 5
66 0 0 0 0 − 5

66
5
66

5
66
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A.3 Derivation and example

To illustrate how the seemingly random numbers found in the Butcher tableaus are generated,

we will derive our very own explicit third order solver.

We are trying to solve a first order differential equation

dy

dt
= f(t, y) (A.11)

with third order accuracy.

The Butcher tableau we are trying to fill in looks like this:

Table A.11: General three stage Runge-Kutta type method

0

a c

b d e

F G H

As already mentioned previously, the notation quickly becomes very dense. Therefore we will

introduce some notational shortcuts:

� Whenever we evaluate f at (t, y), we no longer write its argument: f(t, y) = f

� Partial derivatives are written as a subscript:
∂f
∂t = ft
∂f
∂y = fy

Using Eq. (A.9) and taking the second order Taylor expansion we can find k1,k2 and k3 up to

order h2 (after substituting k1 and k2 in k2 and k3 where necessary):

k1 =f(t, yn) = f (A.12)

k2 =f(t+ ah, yn + hck1)

=f + ahft + chffy + a2h
2

2
ftt + ach2ffty + c2h

2

2
f2fyy

(A.13)

k3 =f(t+ bh, yn + hdk1 + hek2)

=f + bhft + dhffy + ehffy + aeh2fyft + ceh2ff2
y

+ b2
h2

2
ftt + bdh2ffty + beh2ffty + d2h

2

2
f2fyy

+ e2h
2

2
f2fyy + deh2f2fyy

(A.14)

(A.15)

inserting this in Eq. (A.10) gives
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yn+1 =yn + Fhf +Ghf +Gah2ft +Gch2ffy +Ga2h
3

2
ftt

+Gach3fty +Gc2h
3

2
f2fyy +Hhf +Hbh2ft +Hdh2ffy

+Heh2ffy +Haeh3fyft +Hceh3ff2
y +Hb2

h3

2
ftt

+Hbdh3ffty +Hbeh3ffty +Hd2h
3

2
f2fyy

+He2h
3

2
f2fyy +Hdeh3f2fyy,

(A.16)

which we can compare with the Taylor expansion up to order 3:

yn+1 = yn + hf +
h2

2
(ft + fyf) +

h3

6
(ftt + 2ftyf + ftfy + f2fyy + f2

y f), (A.17)

to find the following set of equations to determine the unknowns a up to G:

F +G+H = 1 (A.18)

aG+ bH = 1/2 (A.19)

cG+H(d+ e) = 1/2 (A.20)

Ga2 +Hb2 = 1/3 (A.21)

Gac+Hb(d+ e) = 1/3 (A.22)

Hea = 1/6 (A.23)

Ga2 +H(d+ e)2 = 1/3 (A.24)

Hec = 1/6 (A.25)

(A.26)

When defining a and b ourselves, this can be written as:

a = a (A.27)

b = b (A.28)

c = a (A.29)

d =
b(3a2 − 3a+ b)

a(3a− 2)
(A.30)

e = b− d (A.31)

F =
6ab− 3a− 3b+ 2

6ab
(A.32)

G =
3b− 2

6a(a− b)
(A.33)

H =
3a− 2

6b(a− b)
(A.34)

(A.35)
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When a = 1/2 and b = 1, we obtain the third order Runge-Kutta method (see Table A.5).

We would like to find our own solver and choose a = 1/10 and b = 11/26 2. This gives us the

following Butcher tableau:

Table A.12: Our own third order method

0
1
10

1
10

11
26 −2189

5746
2310
2873

89
33 -475

126
2873
1386

A.4 Performance comparison

In this section we will validate the implementation of the different solvers by investigating the

error on the solution as function of the time step. If the solvers are implemented correctly,

this error should go down to the level of numerical noise at low time steps and increase as hN

for increasing h.

We first consider the different solvers implemented in MuMax3. We have chosen a simple

problem for which we know the analytical solution: The magnetisation of a single spin after

one precession in an external field of 0.1 T. In Fig. A.1 the error after one precession is shown

as function of time step together with a fitted function with the same order as the solver. As

the magnetisation is a unitless vector quantity, the absolute error is defined as the norm of

the difference between the analytically and numerically calculated magnetisation. From this

figure we conclude that all solvers are correctly implemented.

2two dates (in month/day notation) of special importance.
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Figure A.1: Absolute error on a single spin after precessing without damping for one period

in a 0.1 T field, as function of different solvers’ time steps, implemented in MuMax3. The errors

follow 1st, 2nd, 3rd, 4th or 5th order convergence (solid lines) for the respective solvers down to a

limit set by the single precision arithmetic.

For the solvers which are able to use an adaptive time step, we also checked if the actual

error indeed scales linearly with the tolerated maximum error (see Fig. A.2). This error

tolerance is only for one time step, so depending on the problem and the simulated time,

the actual error will build up to a higher level, but should scale linearly with the error tolerance.
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Figure A.2: Absolute error on a single spin after precessing without damping for one period in a

0.1 T field, as a function of different solvers’ MaxErr settings. Solid lines represent linear fits. The

same lower bound as in Fig. A.1 is visible.

For Vinamax, we performed a similar test, but instead of evaluating the error after one

precession, we evaluated the error after 100 precessions. To be able to compare these results

with the results of Fig. A.1, one should divide the errors by 100.
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Figure A.3: Absolute error on a single spin after precessing without damping for 100 periods

in a 0.1 T field, as function of different solvers’ time steps. The errors follow 1st, 2nd, 3rd, 4th,

5th, 6th or 7th order convergence (solid lines) for the respective solvers down to a limit set by the

single precision arithmetic.

Figure (A.3) shows the error as function of time step and proves that all solvers indeed converge

with the correct order (even up to O(7) for the Fehlberg method).

From Fig. A.3 it seems that it pays off to implement increasingly complex and higher-order

solvers. However, for each additional order, a number of extra evaluations per step are

necessary. Table A.13 gives an overview of how many evaluations per step are necessary for

each solver. There also exists a theoretical limit which order can be achieved by a certain

number of evaluations per step[257]. This limit is given in Table A.14. Note that the Fehlberg

methods appear to be suboptimal, but this stems from the fact that they also have a lower

order solution embedded, which further increases the number of conditions their numbers in

the Butcher tableau have to fulfill, and consequently require more variables and thus more

evaluations per step.

Table A.13: Number of evaluations per step for each solver implemented in Vinamax

solver Euler Heun RK3 RK4 Dormand- Fehl- Fehl-

Prince berg56 berg67
#evaluations

step 1 2 3 4 6 8 13

Table A.14: The theoretical lower limit of the number of evaluations/step required to obtain a

solver of a certain order[257].

O(solver) 1 2 3 4 5 6 7 8
#evaluations

step 1 2 3 4 6 7 9 11
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To compare the performance of these solvers in a fair way, we divide the time step by the

number of evaluations per step. The results are shown in Fig. A.4, from which we conclude

that -for this specific problem- the highest order methods are also the most performant ones.
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Figure A.4: Absolute error on a single spin after precessing without damping for 100 periods in

a 0.1 T field, as function of different solvers’, implemented in Vinamax, time steps divided by the

number of evaluations necessary to calculate one time step. The resulting curves give a -for this

specific problem- fair way to compare the performance of the different solvers.

For an error (after 100) precessions of 0.01, the performance gain per extra order used in the

solvers is shown in Fig. A.5. We see that the biggest gains are realised by implementing solvers

up to fifth order. Especially changing from Euler forward to Heun’s method is extremely

useful and gained almost a factor 100 in speed in this specific problem.
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Figure A.5: Performance gain with respect to a solver one order lower as function of the order

of the solvers, as implemented in Vinamax, for an error of 0.01 after 100 precessions of a single

spin in an external field of 0.1 T.



Appendix A. Solvers 151

A second point to take into account is the memory usage of these solvers. The Seventh order

Fehlberg method is only slightly faster than the Sixth order Fehlberg method, but uses 13

evaluations per step, as compared to 8. It thus requires almost twice the amount of memory.

Especially in MuMax3, where the amount of memory is limited to be able to perform very

large simulations, this is not acceptable.

We conclude this appendix by stressing that the biggest performance gain can be found by

substituting a first order method for a second order one and that in general we believe the

Dormand-Prince method with adaptive time step to be the most efficient one in terms of

speed and memory usage.
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A collective coordinate approach to describe magnetic domain wall dynamics applied to

nanowires with high perpendicular anisotropy. J. Phys. D: Appl. Phys., 48(3):035001,

2015.

[67] G. S. D. Beach, C. Knutson, M. Tsoi, and J. L. Erskine. Field- and current-driven domain

wall dynamics: An experimental picture. J. Magn. Magn. Mat., 310(2):2038–2040, 2007.

[68] A. Mougin, M. Cormier, J. P. Adam, P. J. Metaxas, and J. Ferré. Domain wall mobility,
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a macrospin simulation tool for magnetic nanoparticles. Med. Biol. Eng. Comput., 53

(4):309–317, 2015.

[158] J. Leliaert, A. Coene, G. Crevecoeur, A. Vansteenkiste, D. Eberbeck, F. Wiekhorst,
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Swagten, B. Koopmans, C. Ulysse, and G. Faini. Nonadiabatic spin transfer torque in

high anisotropy magnetic nanowires with narrow domain walls. Phys. Rev. Lett., 101:

216601, 2008.

[254] J. Rahmer, A. Halkola, B. Gleich, I. Schmale, and J. Borgert. First experimental evidence

of the feasibility of multi-color magnetic particle imaging. Phys. Med. Biol., 60(5):1775,

2015.

[255] K. Nakata, Y. Hu, O. Uzun, O. Bakr, and F. Stellacci. Chains of superparamagnetic

nanoparticles. Adv. Mater., 20(22):4294–4299, 2008.

[256] M. Helsen, A. Gangwar, A. Vansteenkiste, and B. Van Waeyenberge. Magneto-optical

spectrum analyzer. Rev. Sci. Instrum., 85(8):083902, 2014.

[257] J. C. Butcher. Numerical methods for ordinary differential equations. John Wiley &

Sons, 2008.

[258] L. Euler. Institutiones calculi integralis, volume 3. 1768-1770.

[259] H. Lamba. An adaptive timestepping algorithm for stochastic differential equations. J.

Comp. Appl. Math., 161(2):417 – 430, 2003.

[260] K.-D. Lee, Y. M. Kim, H.-S. Song, C.-Y. You, J.-I. Hong, and B.-G. Park. Speed and

stability of magnetic chiral motion in a chain of asymmetric thin nanodots. Appl. Phys.

Expr., 8(10):103003, 2015.



List of constants and symbols

List of constants

e electron charge 1.6022× 10−19 C

γ gyromagnetic ratio 1.76086× 1011 rad/Ts

γ0 µ0γ 2.21× 105 m/As

~ reduced Planck constant 1.0546× 10−34 Js

kB Boltzmann constant 1.3087× 10−23 J/K

me electron mass 9.109× 10−31 kg

µ0 vacuum permeability 4π × 10−7 Tm/A

µB Bohr magneton 9.274× 10−24 Am2

List of symbols

Mathematical operators

∇a gradient

〈a〉 time average or ensemble average

〈ab〉 correlation

〈〈a〉〉 spatial average over computational domain

ȧ time derivative

‖a‖ norm

Roman symbols

Aex exchange stiffness constant

b PµB
eMs(1+β2)

B magnetic flux
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c1,2,3 cubic anisotropy axes

D diameter

Dc core diameter

Dh hydrodynamic diameter

D geometrical factor used in the derivation of the 1D-model

DF dilution factor

e electron charge

eN unit vector normal to a surface

ex,y,z unit vectors in a Cartesian coordinate system

E energy

Eanisotropy anisotropy energy

Eexchange exchange energy

Emagnetostatic magnetostatic energy

Etotal total energy

EZeeman Zeeman energy

E energy density

Eanisotropy anisotropy energy density

Eexchange exchange energy density

Emagnetostatic magnetostatic energy density

EZeeman Zeeman energy density

f frequency or rate

f0 attempt frequency

fdep depinning force

g Landé factor

g(ν) a rate dependent function

h notation for timestep used in appendix A

~ reduced Planck constant

Ĥexchange Heisenberg exchange Hamiltonian

Hext external magnetic field

Hext,x,y,z x, y and z component of the external magnetic field

Hanisotropy anisotropy field

Hdemag demagnetising field

Heff effective field

HK 2K/Ms

Hth thermal field

HU magnetic field due to the potential energy profile

Hx total x-component of all magnetic fields
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J current density

Jx,y,z x, y and z components of the current density J

J quantum mechanical exchange interaction strength

kB Boltzmann constant

K anisotropy constant

Ks surface anisotropy constant

l angular momentum

lex exchange length

Lx,y,z the x, y and z component of the size of the computational domain

L Langevin function

m domain wall mass

m reduced magnetisation vector field

mD Döring mass

me electron mass

mx,y,z the x,y and z component of m, respectively

M = ‖M‖, magnetisation

M magnetisation vector field

M0 initial magnetisation

Ms saturation magnetisation

Mx,y,z the x,y and z component of M, respectively

M magnetic moment

N demagnetising tensor

Neff,x,y,z effective demagnetising factors

Nx,y,z demagnetising factors

O order

p viscosity

P spin polarisation

P (V ) volume distribution

Pswitch,not the probability (not) to switch

Ppin pinning probability

Pu,d probability to find a moment in the up (u) or down (d) direction

q 2kBTα
Msγµ20V

r nanoparticle radius
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r∗ a threshold length used in the calculation of the magnetostatic interaction

in Vinamax

r vector distance

R the fraction between two volumes used in Chapter 4

R(s) autocorrelation at distance s

RCM centre of magnetisation

S surface

S(f) noise power spectrum

t time

T temperature

Tc critical temperature for superconductivity

Tdep depinning temperature

u uniaxial anisotropy axis

U potential energy profile

v average velocity

V volume

Vc core volume

Vh hydrodynamic volume

x domain wall position

ẋ instantaneous velocity

ẍ instantaneous acceleration

Z partition function

Greek symbols

α Gilbert damping parameter

β degree of non-adiabaticity

γ gyromagnetic ratio

γ0 µ0γ

γc exponent used to describe the autocorrelation of the energy profile

Γ measure for friction in domain wall motion

δD Dirac delta function

〈〈δ〉〉 〈〈m2
y +m2

z〉〉, a measure for the domain wall width
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〈〈δeff〉〉 effective domain wall width

∆ difference/deviation

∆1D domain wall width in the 1D-model

∆E energy barrier

∆t time step

ε error size

εc standard deviation of potential energy profile

η a random number with average 0 and standard deviation 1

η vector containing 3 random numbers η

θ spherical coordinate angle

Θ prefactor related to thermal fluctuations

λ Landau-Lifshitz damping parameter

µ mean of the lognormal distribution

µ0 vacuum permeability

µB Bohr magneton

µcreep creep exponent

νB Brownian relaxation rate

νeff effective relaxation rate

νN Néel relaxation rate

ξ µ0MsV Hext

kBT

Ξ prefactor related to current density

ρ a length used in the calculation of the magnetostatic interaction in Vinamax

σ logarithm of the standard deviation in the lognormal distribution

σ̂ quantum mechanical electron spin

Σ disorder density

τ error tolerance

τ0
1

2f0

τB Brownian relaxation time constant

τN Néel relaxation time constant

τN0 relaxation time constant without interactions

υ A random number, uniformly distributed in [0.0, 1.0)
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φ spherical coordinate angle or local out-of-plane angle of the magnetisation

φN the fraction of particles relaxing by the Néel mechanism

Φ1D out-of-plane tilting angle of the domain wall in the 1D-model

χa susceptibility



Index

1D-model, 35

adaptive time step, 138

adiabatic, 22

anisotropy, 15

anisotropy energy, 18

antivortex core, 32

antivortex domain wall, 32

asymmetric transverse domain walls, 31

Barkhausen, 11

Barkhausen noise, 11

Bean, 96

biomedical applications, 97

bistable regime, 87

Bitter, 11

Bloch, 11

Bloch wall, 30

blocked, 97

blocking temperature, 97

Bogacki-Shampine method, 138

Bohr magneton, 9

Brillouin, 95

Brown, R., 96

Brown, W. F., 11

Brownian motion, 96

Brownian relaxation, 96

Brownian relaxation time, 96

brute force method, 102

bubble memory, 48

Butcher, 141

Butcher tableaus, 141

chirality, 33

circulation, 32

cluster moment superposition model, 117

computers, 12

conservation of energy, 20

creep, 78

cubic anisotropy, 16

Curie temperature, 24

current-driven domain wall motion, 42

Döring, 12

damping, 12

degree of non-adiabaticity, 22

demagnetising factors, 19

demagnetising field, 18

depinning current threshold, 43

diffusion, 74

dipole approximation method, 102

dipole-dipole interaction, 18

disease detection, 97

domain wall mass, 69

domain walls, 30

domain-wall logic, 47

domains, 11

Dormand-Prince method, 140

Dzyaloshinskii-Moriya interaction, 19

edge charges, 32

179
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edge roughness, 57

effective field, 19

effective wall width, 73

Einstein, 96

electron, 9

Electron Paramagnetic Resonance, 98

electronics, 46

energy densities, 14

energy profile, 68

equation of motion, 69

Euler, 137

Euler backward, 138

Euler forward, 138

Euler’s method, 137

exchange energy, 14

exchange interaction, 14

exchange length, 15

exchange stiffness constant, 15

explicit solver, 138

extrinsic pinning, 58

fast Fourier transform, 25

fast multipole method, 25

fermions, 10

ferromagnetic resonance, 98

field-driven domain wall motion, 39

field-like torque, 22

finite difference cells, 24

first-same-as-last, 138

fluctuation-dissipation theorem, 22

flux loops, 18

flux-closed magnetisation, 28

fourth order Runge-Kutta method, 140

Frenkel and Dorfman, 92

frustration, 135

giant magnetoresistive effect, 21

Gilbert, 12

Gilbert damping parameter, 20

grain boundaries, 53

graphics cards, 12

Guillaud, 92

gyromagnetic ratio, 9

handedness, 33

hard materials, 17

head-to-head, 31

Heisenberg, 11

Heun’s method, 138

high-friction limit, 69

hotspin, 24

hyperthermia, 98

hysteresis loop, 115

implicit solvers, 138

intrinsic pinning, 43

Joule heating, 48

jump noise process, 24

Kittel, 92

Landau and Lifshitz, 11

Landau state, 28

Landau-Lifshitz equation, 20

Landau-Lifshitz-Baryakhtar equation, 24

Landau-Lifshitz-Bloch equation, 24

Landau-Lifshitz-Gilbert equation, 20

Langevin, 95

Langevin function, 95

Larmor frequency, 20

locked state, 86

lognormal distribution, 105

long-range interaction, 18

Lorentzian, 125

Lyberatos, 22

magnetic nanoparticles, 91

Magnetic Particle Imaging, 98

magneto-optical spectrum analyser, 135

magnetocrystalline anisotropy, 17

magnetoelastic energy, 19

magnetorelaxometry, 98

magnetostatic energy, 18

magnetostatic field, 18

magnetostatic interaction, 18

magnetostriction, 19

material grains, 53
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Maxwell’s equations, 18

micromagnetic simulations, 24

micromagnetics, 11

micromagnetism, 11

moment superposition model, 113

monodomain, 29

multi-colour, 134

multicore particles, 91

MuMax3, 25

Néel, 92

Néel relaxation, 97

Néel relaxation time, 97

Néel wall, 30

nanostrips, 30

nanowires, 30

noise spectrum, 124

non-adiabatic, 22

nonzero temperatures, 22

orbital angular momentum, 9

Ordinary Differential Equations, 137

paramagnetism, 10

Parkin, 47

Pauli’s exclusion principle, 10

permalloy, 17

perpendicular magnetic anisotropy, 17

pinning potential, 50

PMA, 17

polarity, 32

polycrystalline, 53

potential wells, 50

quenched, 10

racetrack memory, 47

Rashba effect, 63

real-world applications, 46

running state, 86

saturation magnetisation, 14

Schryer and Walker, 35

seeds, 53

seventh order Fehlberg method, 141

shape anisotropy, 19

single core particles, 91

single-domain, 29

single-domain particles, 91

sixth order Fehlberg method, 140

Sixtus and Tonks, 11

skyrmion, 34

soft material, 17

solvers, 137

spin, 10

spin angular momentum, 10

spin ices, 135

spin polarisation, 21

spin-Hall effect, 63

spin-polarised current, 21

spin-transfer torque, 21

spintronics, 46

stochastic field, 104

stochastic switching, 104

Stoner and Wolfarth, 92

superparamagnetic limit, 98

superparamagnetism, 96

surface anisotropy, 17

surface roughness, 57

symmetric transverse walls, 31

tail-to-tail, 31

targeted drug delivery, 97

thermal fluctuations, 22

Thiaville, 35

third order Runge-Kutta method, 140

topological charge, 31

transverse domain wall, 31

two-state approximation, 95

uniaxial anisotropy, 15

unpaired electrons, 10

vacuum permeability, 15

Vinamax, 100

Voronoi cell, 54

Voronoi centres, 54

Voronoi tessellation, 54

vortex core, 32
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vortex domain wall, 32

vortex state, 28

Walker breakdown, 40

Weiss, 11

Weiss molecular field, 11

winding number, 31

Zeeman energy, 15

Zhang and Li, 22
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magnetorelaxometry models 15th German ferrofluid workshop, Rostock (Germany),

June 16th, 2015 .

� J. Leliaert The underlying physics of magnetic nanoparticles Kolloquium der Abteilung

8, Physikalisch-Technische Bundesanstalt, Berlin (Germany), August 13th, 2015.

� J. Leliaert Creep turns linear in narrow ferromagnetic nanostrips PhD Symposium

Faculty of Sciences, Gent (Belgium), March 17th, 2016.

Other

� J. Leliaert Understanding the influence of material defects: The key to future tech-

nologies 14th FEA PhD Symposium, Gent (Belgium), December 6th, 2013 (Poster).

� J. Leliaert, A. Coene, G. Crevecoeur, L. Dupré and B. Van Waeyenberge Dipolar
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