
Unstructured hexahedral mesh generation of complex

vascular trees using a multi-block grid-based approach

1. Introduction1

Computational grids comprising of hexahedral instead of tetrahedral vol-2

ume elements have been reported to require less cells to obtain a mesh in-3

dependent result, especially when simulating the flow in segments of the4

cardiovascular or the respiratory system using computational fluid dynamics5

(CFD) (Longest and Vinchurkar, 2007; De Santis et al., 2010). This has6

been ascribed to the fact that adequate hexahedral grids consist of well or-7

ganized cells along the predominant direction of the flow, aligning the cell8

face normals with the physical flux (Antiga et al., 2002; Liu et al., 2004)9

and allowing an efficient distribution of the cells as they can be stretched10

or subdivided anisotropically without deteriorating the cell quality (Biswas11

and Strawn, 1998; De Santis et al., 2010). However, the construction of hex-12

ahedral meshes for a vascular tree is a complex and time-consuming task for13

the operator (Antiga et al., 2003; Vinchurkar and Longest, 2008; De Santis14

et al., 2011a). This problem is amplified when the geometry presents com-15

plex features such as multiple bifurcations, high-curvature regions, stenoses16

and aneurysms.17

18

Mesh generation methods based on sweeping a quadrilateral decomposi-19
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tion of the cross section for creating (block) structured hexahedral grids of20

tubular structures (Berthier et al., 2002; Gao et al., 2006; Shimogonya et al.,21

2009) and bifurcations (Long et al., 1998; Younis et al., 2007) have been22

proposed in the last decade. This led to the development of robust and au-23

tomated strategies where the sweeping is based on a skeleton (Antiga et al.,24

2002), on the solution of a thermal conduction problem (Verma et al., 2005)25

or on geometrical features and operator choices using a graphical user inter-26

face (De Santis et al., 2011a). Decomposition templates for various branching27

configurations have been proposed (Zhang et al., 2007). However, a configu-28

ration with a single bifurcation may already lead to skewed elements at this29

bifurcation region, limiting the use of these sweeping techniques to ‘simple’30

bifurcations only.31

32

When geometries comprise multiple branching points or n-furcations, hex-33

ahedral meshing strategies based on mapping can be used. These strategies34

combine a preliminary generated multi-block structure with a volumetric35

block refinement to create the grid points. A body-fitted grid is then gener-36

ated by mapping the volume mesh to the volume of interest and by mapping37

the border mesh onto the surface of the image-based geometry (Grosland38

et al., 2009). A boundary layer grid can be included by introducing build-39

ing blocks with a so-called ‘butterfly’ pattern, in which four blocks surround40

a fifth block at the core (Zhang et al., 2000). This approach can be semi-41

automated by building multi-block structures inside and outside the vessel42

geometry as demonstrated by De Santis et al. (2011b). However, current43

procedures for generating adequate multi-block structures are still not fully44
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automated or lack robustness, and manual interventions are required to cor-45

rect self-intersecting or low quality blocks (De Santis et al., 2011b; Ramme46

et al., 2011, 2012) leading to intensive and extensive operator tasks. More-47

over, block corrections to assure a proper mapping in high-curvature regions48

of complex geometries – by pursuing small variations in the local geodesic49

distance between the geometry and the multi-block structure – typically de-50

teriorate the quality of the blocks and the cells of the final mesh.51

52

The rationale of this work is to address these shortcomings by providing53

a robust and high-quality hexahedral meshing procedure that allows auto-54

mated mesh generation of complex vascular trees and is able to handle any55

combination of vessel segments, side branches, stenoses and aneurysms. This56

paper presents a novel procedure for auto-generating an interconnection of57

hexahedral blocks (Section 2.1). The resulting multi-block structure is fur-58

ther processed and used as input for a grid-based method to generate an59

unstructured hexahedral grid of the fluid domain (Section 2.2). Finally, the60

performance of the generated grids is analyzed in two numerical examples61

(Section 3).62

2. Materials and methods63

The methods proposed in this paper were implemented in a pyFormex64

framework combined with output from a geometrical analysis using the vmtk65

software.66
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2.1. Multi-block structure generation67

In this section a strategy is proposed to generate a hexahedral multi-block68

structure of a treelike network by expressing the branching topology in terms69

of ‘parent vessels’ (Section 2.1.1), followed by the construction and alignment70

of vessel-enclosing squares (Section 2.1.2) and their interconnection into a set71

of hexahedral blocks (Section 2.1.3).72

2.1.1. Branching topology73

Given the in- and outlets of the geometry, a centerline with a constant74

prescribed distance d0 between the centerline nodes is computed, together75

with the radii of the maximum inscribed spheres, and the distances between76

the surface geometry and the centerline (Antiga et al., 2008). Each set of77

centerline nodes, corresponding to a vessel segment between two consecutive78

branching points or between a branching point and an inlet or outlet, is fur-79

ther referred to as a ‘branch’.80

The connectivity between the branches is extracted from the centerline data81

and used to define the complete branching topology in terms of ‘parent ves-82

sels’, Figure 1(a). Starting with the branch at the inlet, consecutive branches83

are gathered into one (non-bifurcating) parent vessel, the so-called zeroth or-84

der parent vessel. This is done such that for every branching point the angle85

between the direction vector of the incoming and outgoing parent branch is86

minimal. The remaining child branches are listed per branching point using87

a FIFO-buffer, and set as start branches to retrieve the first order parent88

vessels. This procedure is repeated as long as the FIFO-buffer is filled with89

start branch labels of next order parent vessels.90
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2.1.2. Square alignment91

For each branch, squares are constructed of which the centroids are lo-92

cated at the centerline nodes, of which the normals are tangent to centerline93

and of which one side is oriented parallel to the local transversal direction94

vector, which gets calculated such that a smooth transition of the squares is95

realized in every branch and across the branching points, Figure 1(b). There-96

fore, a bifurcation normal is constructed at every branching point, normal97

to the plane defined by the direction vectors of the outgoing parent branch98

and a child branch. Then, each bifurcation normal is rotated in steps of Π
2

99

radians around the direction vector of the outgoing parent branch until the100

deflection angle with the upstream bifurcation normal (of the same parent101

vessel) is minimal. The resulting bifurcation normals are projected onto the102

planes perpendicular to the direction vectors of the surrounding branches,103

Figure 1(a). The projected normals are interpolated along the centerline,104

~nm
p , to compute the local transversal direction vector, ~em

t , at every center-105

line node m, Equation (1), with ~em
a the local axial direction vector and N b

c106

the number of centerline nodes at branch b.107

~nm
p = ~n 0

p +
m

N b
c − 1

(
~nNb

c−1
p − ~n 0

p

)
, m ∈

[
0, N b

c − 1
]

(1a)

~em
t =


~nm

p ×~em
a

‖~nm
p ×~em

a ‖
, ~nm

p × ~em
a 6= ~0

~em−1
t −(~em−1

t . ~em
a ). ~em

a

‖~em−1
t −(~em−1

t . ~em
a ). ~em

a ‖
, ~nm

p × ~em
a = ~0

(1b)

108

Each square gets an edge length relative to the local diameter of the109

maximum inscribed sphere with a scaling factor fs > 1 to radially enclose110
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the surface geometry (De Santis et al., 2011b).111

2.1.3. Block generation and interconnection112

The squares are auto-connected into a multi-block structure, based on113

the branching topology as defined in Section 2.1.1 (Figure 1(c)). Note that114

there exists only one parent vessel of the zeroth order (i = 0). A block115

structure for this parent vessel is built by interconnecting the consecutive116

squares of its branches. First, a curved block structure is generated for its117

first branch. As long as this branch is not the last branch of the parent118

vessel, this step is followed by the generation of a curved block structure for119

this next (downstream) branch and a branch connection block, connecting120

the curved block structures of both branches. Similar procedures are used121

to build the parent vessel block structures of order i > 0 with the difference122

that additional connection blocks, towards the corresponding parent vessels123

of order i− 1, are built too. These vessel connection blocks are constructed124

by extracting branch connection blocks from a FIFO-buffer, which got filled125

when building the parent vessel block structures of order i− 1.126

The generated multi-block structure is axially smoothed – keeping the faces127

at the inlet, the outlets and the branch connection blocks in place – to avoid128

self-intersection and to improve the vessel connection blocks.129

2.2. Unstructured hexahedral mesh generation130

In this section, a refined multi-block structure (Section 2.2.1) and a ra-131

dially compressed surface mesh of the vascular tree are provided as input to132

the well-known grid-based method (Ho-Le, 1988). The result is an unstruc-133

tured set of (centerline aligned) hexahedral volume elements for the core of134
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the fluid domain (Section 2.2.2). This unstructured hex-core resembles the135

volume of the original geometry well and allows the creation of a high-quality136

boundary layer grid between the interface of the hex-core and the original137

surface mesh (Section 2.2.3).138

2.2.1. Multi-block structure refinement139

The multi-block structure from Section 2.1 is refined by introducing a140

grid in every block, Figure 2(a). The resulting grids are the outcome of141

a refinement procedure which is based on two parameters: the axial edge142

refinement factor, fedge,a (∈ N), and the transversal edge refinement factor,143

fedge,t (∈ N). The first subdivides the edges in the direction of the centerline,144

where the latter defines the refinement of the edges in a plane perpendicular145

to the centerline and at all the edges of the branch connection blocks (where146

axial and transversal directions are not unambiguously defined). fedge,a may147

vary throughout the model, where fedge,t is kept constant to avoid a non-148

conformal mesh at the interface regions between two refined, consecutive149

blocks.150

2.2.2. The multi-block grid-based method151

In the grid-based method, an initial Cartesian grid is overlaid on the152

input surface geometry and the grid cells falling outside the computational153

domain are removed. To obtain a body-fitted grid, the stair-step surface154

mesh is projected onto the bounding surface of the input geometry (Schnei-155

ders, 1996). A mesh resulting from the grid-based method is unstructured156

and consists of hexahedral volume elements with an excellent cell quality157

in the object interior and near the boundaries that are parallel to one of158
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the coordinate planes of the initial grid. A drawback of this method is the159

generation of highly skewed cells near the boundaries which are not parallel160

to one of the coordinate planes. The quality of these cells largely depends161

on the orientation of the initial grid. Therefore, the authors apply the grid-162

based method onto a refined multi-block structure and not onto a Cartesian163

grid. This new approach is further denoted by the multi-block grid-based164

method. The multi-block structure comprises curved block structures which165

are aligned with the centerline and take into account the local vessel radius.166

During the projection phase this results in stretching the cells towards the167

boundary rather than skewing them. To allow a proper projection, the vol-168

ume of the remaining cells – further denoted as the hex-core (Figure 2(b)) –169

is corrected by removing all cells with non-manifold edges. Then, the stair-170

step surface mesh of the hex-core is smoothed and projected onto the input171

surface geometry to obtain a body-fitted hex-core, Figure 2(c).172

2.2.3. Boundary layer grid generation173

The cell quality at the boundary can be further improved by inserting174

buffer layers (Tchon et al., 1997; Kovalev, 2005; Shepherd et al., 2006). In175

this work a similar effect is obtained by performing the grid-based method176

onto an input surface geometry of which the interface mesh (i.e. the sur-177

face mesh excluding the faces at the in- and outlets) is a radially compressed178

isomorphism of the original (lumen-wall) interface mesh. This allows the cre-179

ation of a boundary layer grid with a controllable thickness, e.g. by setting180

the distance between the original and the compressed interface as a function181

of the local distance to centerline, Figure 3(a), combined with a threshold182

to limit the maximum thickness of the boundary layer grid (for instance in183
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aneurysm regions).184

The body-fitting process of the grid-based method projects the interface185

nodes of the hex-core onto the compressed interface mesh. Isoparametric186

coordinates for each of these nodes are computed with respect to the face187

where they are projected onto. As the compressed interface mesh holds the188

same mesh topology as the original interface mesh, isoparametric coordinate189

transformations map the hex-core interface onto this original interface mesh.190

The mapped nodes are then connected to the corresponding nodes of the191

isomorphic hex-core interface, generating one layer of hexahedral cells which192

can be further refined radially to obtain multiple layers at the boundary193

layer. While keeping the border mesh in place, a final Laplacian smoothing194

is performed to improve the cell quality at the transition region between the195

hex-core and the boundary layer grid, Figure 3(b).196

3. Numerical examples197

In this section, numerical analyses of two applications illustrate the effi-198

cacy of the unstructured hexahedral grids.199

3.1. CFD model of an abdominal mouse aorta200

3.1.1. Grid sensitivity analysis201

A grid sensitivity analysis is performed for a steady state CFD simulation202

at peak systole of an abdominal mouse aorta, using the flow solver Fluent203

(Ansys). The geometry (Figure 4(b)) and the boundary conditions (the peak204

systolic inflow of case AA7 combined with the mean outflow fractions) were205

taken from Trachet et al. (2011).206
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Pressure drops and velocities were analyzed along the centerline for mul-207

tiple hexahedral grids with increasing mesh densities. Their mean error and208

maximum error with respect to the reference grid are presented in Table 1,209

relative to the total pressure drop ∆p = 6.822mmHg and the maximum210

change in velocity along the centerline ∆v = 32.310 cm
s

. To allow an ad-211

equate comparison of the wall shear stress (WSS) for different grids, it is212

evaluated on a global level by considering the surface area enclosed by a213

WSS iso-contour in function of WSS, Aiso(wss), normalized by the total sur-214

face area, Atot. The mean and maximum errors with respect to the reference215

grid are presented in Table 1. As the errors are small, the derivative of this216

function is visualized in Figure 4(a) for values larger than 5 % of the maxi-217

mum surface area change. To evaluate WSS on a local level the iso-contour218

of 10.8Pa, which corresponds to both a high WSS value and a high change219

in WSS surface area, is visualized in Figure 4(b) for different mesh densities220

in the region distal to the coeliac artery and proximal to the trifurcation.221

Table 1 shows small errors for all three flow variables and a converging222

trend. 53k, 98k and 798k cells are required in the fluid domain to obtain223

a maximum error of about 1 % for respectively the pressure along the cen-224

terline, the global change in WSS surface area and the velocity along the225

centerline. Moreover, Figure 4(b) shows only a small error and a converging226

trend for the WSS surface area on a local level.227

The efficacy of hexahedral grids becomes clear when comparing the velocity228

along the centerline to results obtained for a grid sensitivity analysis involv-229

ing tetrahedral grids (with a prismatic boundary layer grid near the wall),230

Figure 5, where 201k hexahedral cells provide the same accuracy as 11870k231
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tetrahedral cells.232

3.1.2. Multi-block structure extension233

In more complex geometries, high-curvature regions may lead to low-234

quality cells. The presented meshing strategy can be extended by additional235

block-structures. For example, consider the aneurismatic mouse aorta of236

Figure 6(a). The multi-block structure is constructed after adapting the,237

in Section 2.1.1 defined, branching topology as suggested in Figure 6(b).238

Then, based on the bounding box of the aneurysm and trifurcation region,239

an additional connection block structure is generated to replace the branch240

with label 1 and the corresponding branch connection blocks, Figure 6(c).241

Detailed views of the fluid mesh and an equiangle skewness histogram are242

provided in Figure 6(d).243

3.2. Local grid refinement in an FSI model of aortic coarctation244

This example analyses the pressure drop along an aorta with aortic coarc-245

tation, which is a congenital disease characterized by a narrowing of the up-246

per descending aorta. The pressure difference between the ascending and247

descending aorta is the most important indication of aortic coarctation. Be-248

cause this pressure drop is difficult to assess in a non-invasive way, its simula-249

tion is of high clinical relevance. As simulations with rigid walls fail to capture250

some physiological patterns, the fluid-structure interaction (FSI) between the251

blood flow and the deformation of the arterial wall was taken into account.252

To obtain an accurate calculation of the stress on the fluid-structure interface,253

the flow equations were solved in the Arbitrary Lagrangian-Eulerian formu-254

lation on a deforming mesh, using Fluent (Ansys). The structural equations255
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were solved in a Lagrangian frame, using Abaqus/Standard (Simulia). The256

solvers were strongly coupled with the IQN-ILS technique (Degroote et al.,257

2009).258

The geometrical model was obtained from MRI images of a healthy 39y259

old male volunteer. The functional impact of aortic coarctation was modeled260

by including a stenosed region with a length of 1 cm (L) and a coarctation261

index (CI= Dcoa/Ddesc) of 0.5, Figure 8(a). Flow rates were measured with262

phase-contrast MRI and imposed as physiological boundary conditions at263

the ascending aorta and the three side branches. At the descending aorta,264

a three-element Windkessel model was implemented (Z = 0.08 mmHg
ml/s

, R =265

1.024 mmHg
ml/s

, C = 2.0 ml
mmHg

), in which the parameters of the model were266

defined such that physiological pressure variations were retrieved. Blood was267

modeled as a Newtonian fluid (viscosity 3mPas, density 1050 kg
m3 ). As a non-268

conformal mesh is allowed at the fluid-structure interface, the quadrilateral269

interface can be simplified, Figure 7(a). This improves the quality of the mesh270

for the arterial wall which is generated by radially expanding the quadrilateral271

interface into a hexahedral mesh with multiple layers (diameter to thickness272

ratio: 10 %). Only radial displacement was allowed at the in- and outlet273

boundaries of the solid domain and the material behavior of the aortic tissue274

was described using a polynomial hyperelastic model (hyperelastic constants:275

C10 = 18.9 kPa, C01 = 2.75 kPa, C20 = 400 kPa, C11 = 847.2 kPa).276

For a constant square scaling factor, Figure 7(b), four different meshes277

were constructed with an increasing cell density (R1, R2, R3, R4). The278

number of cells are depicted in Table 2, together with the calculation time279

required to compute one cardiac cycle (on two 10-core Intel Xeon E5-2680v2280
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processors). As FSI simulations are computationally expensive and time281

consuming, it is important to use a computational grid for which accurate282

results are obtained with a limited number of cells. To illustrate how the283

proposed meshing strategy is able to provide an adaptively refined grid, a284

fifth mesh is constructed (R5) by locally adapting fedge,a and fs, Figure 7(c).285

The resulting fluid mesh has, compared to the finest mesh (R4), a higher286

mesh density in the coarctation zone, but a coarser grid proximal to the287

stenosis and in the lower part of the descending aorta.288

The results of the grid refinement study are shown in Figure 8(b), depict-289

ing the pressure evolution along the centerline of the aorta at peak systole,290

and in Table 2, showing the mean error of the pressure evolution in different291

cross sections. These errors are defined with respect to the reference grid292

R4 and relative to the pressure amplitude in the corresponding cross section.293

From the results in Table 2, it can be seen that even for meshes with a low294

cell density, the mean errors proximal, halfway and distal to the coarctation295

zone remain low (< 2 %). When comparing the locally refined grid R5 with296

the uniformly refined grids R3 and R4, an important reduction in computa-297

tion time is gained (23 h 38 min per cardiac cycle versus 30 h 33 min and 40 h298

38 min) without a loss in accuracy. The mean error obtained with the mesh299

R5 stays below 1.15 % and comparable errors are found as for the mesh R3.300

4. Conclusion301

This work proposes a novel strategy to generate unstructured hexahedral302

grids for the fluid domain of complex treelike structures. By only providing303

the grid refinement parameters, a multi-block structure is generated, refined,304
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and used – together with a radially compressed surface mesh of the geometry305

of interest – as input for the grid-based method. The resulting hex-core is306

extended with a boundary layer grid to generate a mesh for the fluid domain307

with high-quality cells, even in regions of high curvature. The methodology308

allows local refinements in both the axial direction and the cross sections, and309

is able to handle aneurysms by extending the multi-block structure with ad-310

ditional blocks. A grid dependency study, for a steady state CFD simulation311

of an abdominal mouse aorta, shows a fast converging trend for the pressure312

gradient, the velocity and the wall shear stress. The accuracy is superior313

compared to tetrahedral grids with a prismatic boundary layer grid, and314

for the same accuracy a hexahedral mesh appears to reduce the number of315

cells by a factor 0.1 - 0.01. Finally, a numerical example of aortic coarctation316

shows the applicability of the meshing strategy to complex geometries in FSI317

models and the efficacy of local grid refinements in reducing the computation318

time without accuracy loss.319
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(a) (b) (c)

Figure 1: (a) Branches of a vascular tree (coloured by increasing parent vessel order: black,
red, green, blue), (Section 2.1.1). Bifurcation normals (white) and projected bifurcation
normals (coloured by parent vessel order), (Section 2.1.2). (b) Squares positioned along
the branches (Section 2.1.2). (c) Multi-block structure of the vascular tree with the curved
block structures in white, the branch connection blocks in red and the vessel connection
blocks in cyan (Section 2.1.3).

(a) (b) (c)

Figure 2: (a) Refined multi-block structure, of the vascular tree (Section 2.2.1). (b) and
(c) Unstructured hex-core before and after the body-fitting procedure of the grid-based
method (Section 2.2.2). A two-dimensional view of the inlet is presented in the lower left
corner of every subfigure.
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(a) (b)

Figure 3: (a) Radially compressed interface and boundary layer region (coloured by thick-
ness). (b) Final fluid mesh with a two-dimensional view of the inlet before (left) and after
(right) smoothing. (Section 2.2.3)

(a) (b)

Figure 4: (a) Change in enclosed surface area in function of the wall shear stress for
hexahedral grids with different mesh densities. (b) Contour plot of the wall shear stress
(right) and iso-contours (left) at the trifurcation region (for the peak in wall shear stress
change at 10.8Pa and for different mesh densities)
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(a) (b)

Figure 5: (a) The velocity along the centerline of the abdominal mouse aorta for hexahedral
grids with different mesh densities and (b) compared to tetrahedral grids with different
mesh densities. (0.1mm between the data points)
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(a) (b) (c) (d)

Figure 6: (a) Geometry of an abdominal mouse aorta (with aneurysm), including the
branch labels (coloured by parent vessel order: i). (b) Schematic representation of the
branching topology as defined in Section 2.1.1 (top) and after adaptation (bottom). (c)
Multi-block structure with an adapted branch connection block comprising the aneurysm
and trifurcation region (blue). (d) Detailed views of the generated fluid mesh (top, middle)
and the corresponding equiangle skewness distribution (bottom).
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(a) (b)

(c)

Figure 7: (a) Mesh for the fluid domain (blue) and the arterial wall (red) of an aortic
arch with aortic coarctation. The lower left box demonstrates the quality improvement
of the solid mesh. Note the axial coarsening towards the descending aorta (R5). (b) and
(c) The cross sectional grids of the fluid mesh at the coarcation (coa) and the descending
aorta (desc), which result from multi-block structures R4 (uniform grid refinement) and
R5 (local grid refinement).
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(a) (b)

Figure 8: (a) Geometrical model of the aortic arch with aortic coarctation (red), including
the boundary conditions for the fluid domain and the cross sectional regions (p1, p2, coa,
d1, d2, d3, desc) in which the convergence was analyzed numerically (see Table 2). (b)
Pressure along the centerline at peak systole for increasing mesh densities (R1 to R4) and
a grid with a local refinement at the coarctation region and a gradual coarsening towards
the descending aorta (R5).
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Table 1: Mean and maximum values of the pressure, velocity and the wall shear stress
error variables for different grid densities

#
Fluid
cells

Pressure drop along centerline Velocity along centerline Wall shear stress area

∆p
[mmHg]

e∆p

[%]
emean,p

[%]
emax,p

[%]
∆v[
cm
s

] e∆v

[%]
emean,v

[%]
emax,v

[%]
emean,wss

[%]
emax,wss

[%]

53k 6.877 0.795 0.151 0.795 30.528 0.0552 2.028 6.101 0.268 1.728
98k 6.853 0.443 0.171 0.443 31.106 0.0373 1.460 5.096 0.193 1.088

201k 6.844 0.319 0.0536 0.319 31.696 0.0190 0.825 3.174 0.138 0.827
413k 6.836 0.204 0.0318 0.204 31.960 0.0108 0.476 2.269 0.100 0.693
798k 6.827 0.0638 0.0359 0.107 32.206 0.00324 0.186 1.090 0.0629 0.437

1602k 6.826 0.0449 0.00875 0.0449 32.267 0.00134 0.0977 0.428 0.0323 0.265
3216k 6.822 32.310

Table 2: Grid refinement study of the pressure in an FSI model of aortic coarctation

Grid
# Fluid

cells
# Solid
elem.

Calc. time
per cycle

Mean error [%]

asc p1 p2 coa d1 d2 d3 desc

R1 42k 21k 12 h 29 min 1.44 1.42 1.42 1.72 1.61 1.56 1.33 0.77
R2 105k 37k 17 h 29 min 1.01 0.98 0.98 1.26 1.54 1.88 1.26 0.71
R3 281k 74k 30 h 55 min 0.38 0.34 0.34 0.75 1.22 1.07 0.94 0.64
R4 408k 102k 40 h 38 min Reference grid
R5 216k 51k 23 h 38 min 0.5 0.47 0.47 0.86 1 1.15 0.98 0.6
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