Towards DNA based esterases: uncovering Hoogsteen face regulation of the pK_A of a tethered imidazole functionality by NMR and molecular dynamics

Dieter Buyss^{1,2}, Vicky Gheerardij², Bjorn Van Gasse¹, Jos Van den Begin², Annemieke Madder² & José C. Martins¹

1 OBCR, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000, Ghent, Belgium
2 OBCR, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000, Ghent, Belgium

1. General concept & design

In the development of esterase like DNAzymes, recent advances in OBCR made the introduction of amino acid-like side chain functionalities on the thymine base possible. The hydrophobic and chiral environment of a B-DNA helix is used as a new scaffold for the development of synthetic enzymes. Both first generation, single histidine modified systems and second generation, double modified systems are subjected to a systematic study.

2. First glimpse of the pK_A regulating motif

Thermal stability

<table>
<thead>
<tr>
<th>System</th>
<th>A+T base pair</th>
<th>T<sub>m</sub> (°C)</th>
<th>∆T<sub>m</sub> at 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>T<sub>m</sub><sup>CTGGTAAR</sup></td>
<td>48.4±0.6</td>
<td>4.6±0.4</td>
</tr>
<tr>
<td>+mod</td>
<td>T<sub>m</sub><sup>CTGGTAAR</sup></td>
<td>53.0±0.3</td>
<td>6.5±0.1</td>
</tr>
</tbody>
</table>

From melting temperatures:
- No loss of stability due to modification
- Increase in stability is dependent on position of modification: T_m^{CTGGTAAR}=5°-6°C

Specific noe contacts

- Solely for T_m^{CTGGTAAR} there’s a clear set of noe contacts to position n+3 (A₁-T₁₅ base pair)
- T_m^{CTGGTAAR} and T_m^{CTGGTAAR} prove that an AT base pair is tolerated as well as that the motif is robust and sequence-independent

NMR pH titration: follow ε₁ and δ₂

- 6°±
- 7°±
- 8°±

3. Molecular Dynamics

Starting structure

50ns of MD trajectory shows persistent H-bridging in T_m^{CTGGTAAR} and close interproton contacts validated in noe’s

Thermal stability

<table>
<thead>
<tr>
<th>System</th>
<th>pHunit</th>
<th>∆pK<sub>A</sub></th>
</tr>
</thead>
</table>
| T_m^{CTGGTAAR} | 7.2±0.07 | -0.10
| T_m^{CTGGTAAR} | 8.3±0.05 | -

4. Application of the motif in double modified systems

- Increase in melting temperature is consistent with presence of the pK_A regulating motif for T_m^{CTGGTAAR} in both systems
- Increase in melting temperature is less pronounced with increasing vicinity of the imidazole functionalities

References

Acknowledgements

The 700MHz is part of the INMRF jointly operated by UGent, UA and VUB.