Advanced search
1 file | 1.48 MB

Continuum tensor network field states, path integral representations and spatial symmetries

Author
Organization
Abstract
A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.
Keywords
quantum fields, many-body physics, quantum information theory, MATRIX RENORMALIZATION-GROUP, PRODUCT STATES, FEYNMAN

Downloads

  • njp 17 6 063039.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.48 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Jennings, David, Christoph Brockt, Jutho Haegeman, Tobias J Osborne, and Frank Verstraete. 2015. “Continuum Tensor Network Field States, Path Integral Representations and Spatial Symmetries.” New Journal of Physics 17.
APA
Jennings, D., Brockt, C., Haegeman, J., Osborne, T. J., & Verstraete, F. (2015). Continuum tensor network field states, path integral representations and spatial symmetries. NEW JOURNAL OF PHYSICS, 17.
Vancouver
1.
Jennings D, Brockt C, Haegeman J, Osborne TJ, Verstraete F. Continuum tensor network field states, path integral representations and spatial symmetries. NEW JOURNAL OF PHYSICS. 2015;17.
MLA
Jennings, David, Christoph Brockt, Jutho Haegeman, et al. “Continuum Tensor Network Field States, Path Integral Representations and Spatial Symmetries.” NEW JOURNAL OF PHYSICS 17 (2015): n. pag. Print.
@article{7171870,
  abstract     = {A natural way to generalize tensor network variational classes to quantum field systems is via a continuous tensor contraction. This approach is first illustrated for the class of quantum field states known as continuous matrix-product states (cMPS). As a simple example of the path-integral representation we show that the state of a dynamically evolving quantum field admits a natural representation as a cMPS. A completeness argument is also provided that shows that all states in Fock space admit a cMPS representation when the number of variational parameters tends to infinity. Beyond this, we obtain a well-behaved field limit of projected entangled-pair states (PEPS) in two dimensions that provide an abstract class of quantum field states with natural symmetries. We demonstrate how symmetries of the physical field state are encoded within the dynamics of an auxiliary field system of one dimension less. In particular, the imposition of Euclidean symmetries on the physical system requires that the auxiliary system involved in the class' definition must be Lorentz-invariant. The physical field states automatically inherit entropy area laws from the PEPS class, and are fully described by the dissipative dynamics of a lower dimensional virtual field system. Our results lie at the intersection many-body physics, quantum field theory and quantum information theory, and facilitate future exchanges of ideas and insights between these disciplines.},
  articleno    = {063039},
  author       = {Jennings, David and Brockt, Christoph and Haegeman, Jutho and Osborne, Tobias J and Verstraete, Frank},
  issn         = {1367-2630},
  journal      = {NEW JOURNAL OF PHYSICS},
  keyword      = {quantum fields,many-body physics,quantum information theory,MATRIX RENORMALIZATION-GROUP,PRODUCT STATES,FEYNMAN},
  language     = {eng},
  pages        = {22},
  title        = {Continuum tensor network field states, path integral representations and spatial symmetries},
  url          = {http://dx.doi.org/10.1088/1367-2630/17/6/063039},
  volume       = {17},
  year         = {2015},
}

Altmetric
View in Altmetric
Web of Science
Times cited: