
Data-driven recipe completion using machine learning methods
- Author
- Marlies De Clercq (UGent) , Michiel Stock (UGent) , Bernard De Baets (UGent) and Willem Waegeman (UGent)
- Organization
- Keywords
- COLOR, NONNEGATIVE MATRIX FACTORIZATION, TEMPERATURE, Recommender systems, ALGORITHMS, PREFERENCE, Two-step regularized least squares, Non-negative matrix factorization, Recipe completion, Ingredient combinations, FLAVOR, PERCEPTION
Downloads
-
(...).pdf
- full text
- |
- UGent only
- |
- |
- 1.12 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-7167140
- MLA
- De Clercq, Marlies, et al. “Data-Driven Recipe Completion Using Machine Learning Methods.” TRENDS IN FOOD SCIENCE & TECHNOLOGY, vol. 49, 2016, pp. 1–13, doi:10.1016/j.tifs.2015.11.010.
- APA
- De Clercq, M., Stock, M., De Baets, B., & Waegeman, W. (2016). Data-driven recipe completion using machine learning methods. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 49, 1–13. https://doi.org/10.1016/j.tifs.2015.11.010
- Chicago author-date
- De Clercq, Marlies, Michiel Stock, Bernard De Baets, and Willem Waegeman. 2016. “Data-Driven Recipe Completion Using Machine Learning Methods.” TRENDS IN FOOD SCIENCE & TECHNOLOGY 49: 1–13. https://doi.org/10.1016/j.tifs.2015.11.010.
- Chicago author-date (all authors)
- De Clercq, Marlies, Michiel Stock, Bernard De Baets, and Willem Waegeman. 2016. “Data-Driven Recipe Completion Using Machine Learning Methods.” TRENDS IN FOOD SCIENCE & TECHNOLOGY 49: 1–13. doi:10.1016/j.tifs.2015.11.010.
- Vancouver
- 1.De Clercq M, Stock M, De Baets B, Waegeman W. Data-driven recipe completion using machine learning methods. TRENDS IN FOOD SCIENCE & TECHNOLOGY. 2016;49:1–13.
- IEEE
- [1]M. De Clercq, M. Stock, B. De Baets, and W. Waegeman, “Data-driven recipe completion using machine learning methods,” TRENDS IN FOOD SCIENCE & TECHNOLOGY, vol. 49, pp. 1–13, 2016.
@article{7167140, author = {{De Clercq, Marlies and Stock, Michiel and De Baets, Bernard and Waegeman, Willem}}, issn = {{0924-2244}}, journal = {{TRENDS IN FOOD SCIENCE & TECHNOLOGY}}, keywords = {{COLOR,NONNEGATIVE MATRIX FACTORIZATION,TEMPERATURE,Recommender systems,ALGORITHMS,PREFERENCE,Two-step regularized least squares,Non-negative matrix factorization,Recipe completion,Ingredient combinations,FLAVOR,PERCEPTION}}, language = {{eng}}, pages = {{1--13}}, title = {{Data-driven recipe completion using machine learning methods}}, url = {{http://doi.org/10.1016/j.tifs.2015.11.010}}, volume = {{49}}, year = {{2016}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: