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Abstract. This work introduces a case study on usage of semantic con-
text modelling and creation of Linked Data from logs in educational
systems like a Personal Learning Environment (PLE) with focus on
improvements and monitoring such systems, in generally, with respect to
social, functional, user and activity centric level [7,15]. The case study
demonstrates the application of semantic modelling of the activity con-
text, from data collected over two years from the PLE at Graz University
of Technology, using adequate domain ontologies, semantic technolo-
gies and visualization as reflection for potential technical and functional
improvements. As it will be shown, this approach offers easy interfacing
and extensibility on technological level and fast insight on statistical and
preference trends for analytic tasks.

Keywords: Data mining - Linked data - Micro content - Education -
Research

1 Introduction

Modern learning environments, beside learning resources provided by the educa-
tional institution, aim at integration of popular internet services that might be
of interest of learners like: Google Hangout, Facebook, YouTube, Newsgroups,
Twitter, Slideshare just to name some of them. Maintaining such platforms is
intensively changing process demanding from maintainers to actively adapt their
systems to the learner needs. Nowadays, learners are expecting focused and sim-
ple platforms helping them to organise their learning process. Learners don’t
want to waste their time on informations and actions which could disturb or
prolong their learning. Therefore user adaptivity is a strong impact on accep-
tance of such platforms and should be matter of continuous improvement.
Cumulated system monitoring data (e.g. logs) of such environments offers new
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opportunities for optimization [13]. Such data can contribute the better person-
alization and adaptation of the learning process but also improve the design of
learning interfaces. Main contribution of the paper is a case study done with
the logs from PLE at Graz University of Technology presenting approach using
Linked Data to mine the usage trends from PLE. The idea behind this effort is
aiming at gaining insights [9] useful for optimization of PLE and adapting them
to the learners by using more personalization e.g. through recommendation of
interesting learning widgets.

2 Related Work

This section report shortly about most relevant related work regarding PLE (at
Graz University of Technology) and semantic technologies used in this work.

2.1 Learning Analytics and Importance of Tracking and Reflection
of User Logs

The current learning analytics research community defines [16] learning analytics
as the analysis of communication logs [1,15], learning resources [11], learning
management system logs as well existing learning designs [8,14] and the activity
outside of the learning management systems [2,12]. The result of this analysis
improves the creation of predictive models [6,18], recommendations [3,25] and
refection [26]. Learning Analytics resides on algorithms, formulas, methods, and
concepts that translate data into meaningful information. Modelling, structuring
and processing the collected data derived from e.g. user behaviour tracking plays
a decisive role for the evaluation. Different works outlined the importance of
tracking activity data in Learning Management Systems [9,15,16,25,26]. None
of them addressed the issue of intelligently structuring learner data in context
and processing it to provide a flexible interface that ensures maximum benefit
from collected information.

2.2 PLE at Graz University of Technology

The main idea of PLE at Graz University of Technology' is to integrate exist-
ing university services and resources with services and resources from the World
Wide Web in one platform and in a personalized way [5,23]. The TU Graz PLE
con- tains widgets [5,22,23] that represent the resources and services integrated
from the World Wide Web. Web today provides lots of different services; each can
be used as supplement for teaching and learning. The PLE has been redesigned
in 2011, using metaphors such as apps and spaces for a better learner-centered
application and higher attractiveness [4,21]. In order to enhance PLE in gen-
eral and improve the usability as well as usefulness of each individual widget a
tracking module was implemented by prior work [24] (Fig.1).

! http://ple.tugraz.at.
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Fig. 1. PLE at Graz University of Technology

2.3 Semantic Modeling of Activities in PLE

The Semantic Web standards like RDF? and SPARQL? enable data to be and
for interchange and queried as graphs. Data schema is usually projected on
specific knowledge domain using adequate ontologies. This approach has been
fairly successful used to generate correct interpretation of web tables [10] to
advance the learning process [7,13] as well to support the controlled knowledge
generation in E-learning environments [20]. This potential was also recognised by
resent research in IntelLEO Project®. IntelLEO delivered an ontology framework
where Activities Ontology® is used to model learning activities and events related
to them. Due to the relatedness to the problem that is addressed by this work
this ontologies have been used to model the context of analytic data collected
from PLE logs.

3 Approach for Mining Usage Logs

Presented approach is based on transforming collected data from PLE logs into
instances of Activities Ontology. This process produces as output Linked Data
graphs query able by SPARQL standard query language. The SPARQL is applied
to query the Linked Data and mine the output for analytic visualizations (see
Fig.2). The overall goal of this processes is summarization, visualizations and
evaluation of statistic data that enable the PLE optimization, in interface design
and adaptation of content of PLE to the learner. This approach is inspired by the
examples from current research in the area of Self-regulated Learners (SRL) [7,19].

2 http://www.w3.org/RDF.

3 http://www.w3.org/ TR /rdf-sparql-query/.

* http://intelleo.cu.

5 http://www.intelleo.eu/ontologies/activities/spec/.
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Fig. 2. Mining pipe line for PLE usage logs

3.1 Dataset

Data used in the case study originates from Personal Learning Environment
(PLE) developed for the needs of Graz University of Technology which serves
currently more then 4000 users. The data was collected during two years period
in order to generate analytics reports with visualization support for overall usage
and process view on our environment following the research trends of previous
years [12,17].

3.2 Modeling Usage Logs

The main precondition for meaningful mining of usage trends is choice of appro-
priate data model since RDF offers only the framework how structure and link
data. This task concerns mostly the choice of the right vocabulary or ontology.
Activities Ontology offers a vocabulary to represent different activities and events
related to them inside of a learning environment with possibility to describe
and reference the environment (in this case PLE) where these activities occur.
Formulation in Listing 1.1 depicts an instance of usage A0:LOGGING instance.
This excerpt comes from the tracking module. Such data is stored in a mem-
ory RDF Store (Graph Database for Linked Data) with SPARQL Endpoint
(interface where Linked Data can be queried).This sample instance reflects that
a usage AO:LOGGING event occurred at certain time point inside the learning
widget named LatexFormulaToPngWidget as AO:ENVIROMENT. As shown in this
example vocabularies and ontologies which suits well to specific case enriches the
analytic process with a high level of expressiveness in a very compact manner.

3.3 Querying Usage Logs

Usage logs data presented as Linked Data graph are query able using SPARQL.
In this way we are able to answer the questions like “Show me the top 15 used
widgets?”. Listing 1.2 represents exactly this question stated in the manner of
SPARQL syntax.

4 Preliminary Results, Conclusion and Outlook

Advantages of Linked Data approach is usage of standardized web technologies
which are scalable and flexible regarding the changes of representation structure
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Listing 1.1. Sample model of a log for a PLE widget in N3 notation

@prefix ao: <http://intelleo.eu/ontologies/activities/ns/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#> .
@prefix rdfs: <http://www.w3.0org/2000/01/rdf—schema#> .

<http://ple.tugraz.at/ns/events/log/#7912>
rdf:type ao:Logging;
ao: occursIn <https://ple.tugraz.at/ns/widgets/#LatexFormulaToPngWidget>;
ao:timestamp ”2012—10—04T07:52:52” .

<https://ple.tugraz.at/ns/widgets/#LatexFormulaToPngWidget>
rdf:type ao:Enivironment;
rdfs:label ”"LaTeXFormulaPNG Converter” .

of data. Also very important aspect of mining PLE usage data using Linked
Data is for sure high operational tolerance regarding incomplete analytic data
instances as well as easier interfacing to other systems which could make use of
information provided by PLE.

SPARQL as query language which operates over the Linked Data graphs of
usage logs offers much flexibility regarding the generation of results, in different
state of the art output formats, that should be visualized in end instance. It also
allows on-demand statistical cumulations that can be used in the future as basic
stats for recommendation of new widgets in the PLE or similar tasks.

Listing 1.2. Querying the intensity of usage of top 15 widgets in PLE.

PREFIX ao: <http://intelleo.eu/ontologies/activities/ns/> .
PREFIX rdf: <http://www.w3.0org/1999/02/22—rdf—syntax—ns#> .
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf—schema#> .

SELECT DISTINCT ?widgetname ?date (COUNT(?widgetname) AS ?count)
WHERE
{
7x rdf:type ao:Logging;
ao:occursln ?widget;
ao:timestamp 7date.

7widget rdf:type ao:Environment;
rdfs:label ?widgetname.
}
GROUP BY ?widgetname
ORDER BY DESC(?count)
LIMIT 15
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Fig. 3. Top 15 activities for an academic year time period 2011-2012

As preliminary result presented approach allows us mining the trends of PLE
widgets usage overall time periods like presented in Fig.3. This violin graph
depicts the visual answer of the query from Listing 1.2. Also the intensity shows
that as expected that most activity on widgets happens at the beginning when
PLE is presented in introductory lectures to the newcomers and freshmen and at
the end of academic terms when most of the students prepare for examinations.
The statistics visualisation help us to gain deep insight into the behaviour of a
users in a certain period of time. Presented approach generates uniform interfaces
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Fig. 4. Comparision of two news widgets.

for information exchange, enables flexibility for visual analytics, and also includes
the flexibility regarding the enrichment of learning analytics data with Linked
Data sources from the Web. The spread of applicability covers wide range of ana-
lytics methodologies like prediction, reflection and as result of these the inter-
vention field. Figure4 reflects the advantage of such approach where e.g. two
widgets with similar purpose can be visually compared (in this case two news-
groups widgets). Future efforts regarding improvement semantic structure data
layer, besides the mentioned Linked Data could also include precisely defined
categorisation, userwise statistics of learning widgets, since PLE can also pro-
vide this information. Especially the learning widget store as part of PLE could
profit from this improvement. Mostly used and favored widgets by users will
be ranked higher and recommended by the store itself as shown in Fig.5. By
tracking the usages on user level the teachers will be able to draw conclusions
about the popularity and quality of their learning widgets.

The overview over distribution of usage logs can reflect the overall interest of
the users within PLE. Such inputs evaluated and interpreted in appropriate way
contribute implicitly the improvement of the quality of services for students and
teachers. The PLE becomes, in technical manner, extensible and well connected
by standardized and intelligent interfaces and available for other web based tools
and services.
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Fig. 5. PLE Widget store recommendations based upon usage log statistics.
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