EPR and ENDOR study of V-doped Al-MOF

Irena Nevjestić*1, Hannes Depauw2, Karen Leus2, Vidmantas Kalendra3,4, Ignacio Caretti5, Gunnar Jeschke3, Sabine Van Doorslaer5, Freddy Callens1, Pascal Van Der Voort2 and Henk Vrielinck1

1Ghent University, Dept. of Solid State Sciences, Krijgslaan 281-S1, B-9000 Gent, Belgium,
*Irena.Nevjestic@UGent.be
2Ghent University, Dept. of Inorganic and Physical Chemistry, COMOC, Krijgslaan 281-S3, B-9000 Gent, Belgium
3ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
4Faculty of Physics, Vilnius University, Sauletekio av. 9, LT-10222 Vilnius, Lithuania
5University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium

Metal-Organic Frameworks (MOFs) are ordered porous materials constructed of metal ions connected by organic linkers. These materials possess many interesting features, like well-defined pore size, pore shape and ultra-high porosity. A characteristic example of MOFs with one dimensional pores is MIL-53 ([Al(OH)(BDC), BDC = terephthalate or 1,4-benzenedicarboxylate]. The 3D framework of as-synthesized MIL-53 is built up of infinite chains of corner-sharing AlO$_4$(OH)$_2$ octahedra with BDC connecting these chains. The 1D channels are filled with disordered uncoordinated terephthalic acid molecules and other impurities, which can be removed by calcination or solvent extraction methods, which are referred to as activation procedures. After activation MIL-53 exhibits breathing: the framework can reversibly change from a large pore (lp) to narrow pore (np) structure by changing temperature or pressure.

EPR and ENDOR spectroscopy are excellent tools for characterizing VIV centers (with a 3d1 electron configuration) in MIL-53. The EPR spectra of as-synthesized V-doped MIL-53 show nicely resolved 51V (I=7/2) hyperfine (HF) structure. The spectra at RT are dominated by a center with rhombic g and 51V HF tensors whose principal axes do not coincide. ENDOR spectra reveal interaction with the central 51V, 27Al (I=5/2) and 1H (I=1/2) nuclei, suggesting that vanadyl ions substitute Al-OH in the MIL-53 framework.

The EPR spectra of activated V-doped MIL-53 differ from those of as-synthesized MIL-53. Furthermore, the EPR spectra of VIV in the large and narrow pore forms of MIL-53 can easily be distinguished (Figure 1). ENDOR spectra (10 K, narrow pore) reveal interactions with the same types of nuclei as in as-synthesized V-doped MIL-53 in a slightly different coordination environment.

![Figure 1 - EPR spectra of V-doped MIL-53 at RT in X-band (9.5 GHz). Black spectrum – narrow pore form, red spectrum – large pore form. Inset shows enlarged part of the spectrum where differences between np and lp form spectra are evident.](image-url)