Study the effectiveness of V-incorporation in the Al-metal-organic framework MIL-53 with electron-nuclear double resonance spectroscopy

Irena Neveštić(1), Hannes Depauw(2), Karen Leus(2), Freddy Callens(1), Pascal Van Der Voo(2), Henk Vrielinck(1)
(1) Ghent University, Dept. of Solid State Sciences, Krijgslaan 281-S1, B-9000 Gent, Belgium
(2) Ghent University, Dept. of Inorganic and Physical Chemistry, COMOC, Krijgslaan 281-S3, B-9000 Gent, Belgium

Introduction
- Metal Organic Frameworks (MOFs) → ‘superzeolites’ or ‘the next generation of porous materials’
- 3D structures are self-assembled by coordination of suitable metal ions/clusters with organic ligands
- Combining different ‘metal nodes’ and organic linkers → tuning the structure, functionality
- Wide range of applications in catalysis, hydrogen storage, optics, ...
- MIL-47 [VO(BDC)] and MIL-53 [Al(OH)(BDC)]
- BDC = terephthalate or 1,4-benzendicarboxylate
- MIL = Matériaux de l’Institut Lavoisier

MIL-47 vs. doped MIL-53
- Recently, we have demonstrated that MIL-47 is an efficient catalyst in the liquid phase oxidation of cyclohexene(1)
- Problem: MIL-47 exhibits limited stability in aqueous environments
- Solution: Doping the highly stable MIL-53 with catalytically active VIV ions
- Question: Is vanadium really incorporated in the framework?
- VIV (3d1) → a paramagnetic ion
- Electron paramagnetic resonance (EPR) and ENDOR spectroscopy may provide the answer

EPR spectra
- In two figures (left) the powder EPR spectrum in X and Q-band for as-synthesized V-doped MIL-53 at RT is shown
- The spectra are dominated by just one VIV center with rhombic g and 51V hyperfine (HF) tensors whose principal axes do not coincide

MIL-53 1H, 27Al and 51V range
- The ENDOR spectra of VIV in MIL-53 reveal HF interactions with the central 51V, 1H and 27Al nuclei

MIL-53 ENDOR spectrum in 27Al range
- Interaction with two nearest 27Al nuclei → $A_1 = 0.75$ MHz and $A_2 = 2.3$ MHz → $d_{\text{exp}} = 3.4$ Å, $d_{\text{c}} = 3.31$ Å
- Suggesting that the VIV ions are incorporated in the framework

MIL-53 field dependence ENDOR spectra in 1H range

References:

Acknowledgments:

Contact: Henk Vrielinck
Ghent University, Dept. of Solid State Sciences
Krijgslaan 281-S1, B-9000 Gent, Belgium
E-mail: Henk.Vrielinck@UGent.be