Measuring and Predicting Composite Impact Damage

Siebe Spronka,b, Francisco Gilaberta,b, Wim Van Paepegem, Joris Degriecka

Department of Materials Science and Engineering, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium, siebe.spronk@ugent.be

Goal: efficient and accurate predictive model for impact damage in laminated composites

Method
Large-scale test programme for: 1. material characterisation 2. model validation
Efficient phenomenological 3-stage multi-scale model
Virtual testing to complement experiments to obtain material parameters

Experimental

Dynamic tension: hydraulic actuation to 20 m/s

Dynamic delamination with drop-weight tower

Drop-weight impact and measuring damage

Numerical

Operational sequence and analysis scales

1. **Micro**
 - 1: Matrix dynamic tensile behaviour

2. **Meso**
 - 2: UD dynamic tensile behaviour

3. **Macro**
 - 3: Laminate dynamic in-plane behaviour

4. **4: Dynamic delamination behaviour**

5. **5: Impact behaviour**

First results: response subject to rate effects

1. **1. Pure matrix:**
 - **Design:** physical model
 - **Method:** explicit FE analysis, with 3D user material
 - **Two materials studied:**
 - Thermoset: epoxy
 - Thermoplastic: PA-6 (nylon)

2. **2. Fiber assembly in a strain-rate dependent matrix:**
 - **Components:** matrix + fibers + interface
 - **Periodic boundary conditions:**
 - **Loads:** longitudinal, transversal, shear
 - **Method:** explicit FE analysis with solid 3D elements
 - **Two fibre types studied:**
 - Carbon fibres
 - Glass fibres

Conclusions
Tracking lower delaminating arm delivers useful force and displacement values
Explicit periodic 3D analysis with debonding conceivable but CPU intensive

Future tasks
Removing inertia effects from dynamic results
Minimising test programme needed as model input

Acknowledgement
The work leading to this poster has been funded by the SBO project "M3Strength", which fits in the MacroModelMat (M3) research program funded by SIM (Strategic Initiative Materials in Flanders) and IWT (Flemish government agency for innovation by Science and Technology).