Advanced search
2 files | 4.47 MB Add to list

A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications

Author
Organization
Keywords
DECOMPOSITION, FORMULATIONS, 3D SCATTERING, FINITE-ELEMENTS, FE-BI-MLFMA, FIELD INTEGRAL-EQUATION, ALGORITHM, EFIE, MFIE, SIMULATIONS, Poincare-Steklov operator, Heterogeneous domain, Calderon preconditioner, Schur complement discretization, Preconditioned hybrid formulation, Electromagnetic scattering

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.94 MB
  • EM 1156a.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.52 MB

Citation

Please use this url to cite or link to this publication:

MLA
Dobbelaere, Dieter, et al. “A Calderón Multiplicative Preconditioner for the Electromagnetic Poincaré-Steklov Operator of a Heterogeneous Domain with Scattering Applications.” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 303, ACADEMIC PRESS INC ELSEVIER SCIENCE, 2015, pp. 355–71, doi:10.1016/j.jcp.2015.09.052.
APA
Dobbelaere, D., De Zutter, D., Van Hese, J., Sercu, J., Boonen, T., & Rogier, H. (2015). A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications. JOURNAL OF COMPUTATIONAL PHYSICS, 303, 355–371. https://doi.org/10.1016/j.jcp.2015.09.052
Chicago author-date
Dobbelaere, Dieter, Daniël De Zutter, Jan Van Hese, Jeannick Sercu, Tim Boonen, and Hendrik Rogier. 2015. “A Calderón Multiplicative Preconditioner for the Electromagnetic Poincaré-Steklov Operator of a Heterogeneous Domain with Scattering Applications.” JOURNAL OF COMPUTATIONAL PHYSICS 303: 355–71. https://doi.org/10.1016/j.jcp.2015.09.052.
Chicago author-date (all authors)
Dobbelaere, Dieter, Daniël De Zutter, Jan Van Hese, Jeannick Sercu, Tim Boonen, and Hendrik Rogier. 2015. “A Calderón Multiplicative Preconditioner for the Electromagnetic Poincaré-Steklov Operator of a Heterogeneous Domain with Scattering Applications.” JOURNAL OF COMPUTATIONAL PHYSICS 303: 355–371. doi:10.1016/j.jcp.2015.09.052.
Vancouver
1.
Dobbelaere D, De Zutter D, Van Hese J, Sercu J, Boonen T, Rogier H. A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications. JOURNAL OF COMPUTATIONAL PHYSICS. 2015;303:355–71.
IEEE
[1]
D. Dobbelaere, D. De Zutter, J. Van Hese, J. Sercu, T. Boonen, and H. Rogier, “A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 303, pp. 355–371, 2015.
@article{7045888,
  author       = {{Dobbelaere, Dieter and De Zutter, Daniël and Van Hese, Jan and Sercu, Jeannick and Boonen, Tim and Rogier, Hendrik}},
  issn         = {{0021-9991}},
  journal      = {{JOURNAL OF COMPUTATIONAL PHYSICS}},
  keywords     = {{DECOMPOSITION,FORMULATIONS,3D SCATTERING,FINITE-ELEMENTS,FE-BI-MLFMA,FIELD INTEGRAL-EQUATION,ALGORITHM,EFIE,MFIE,SIMULATIONS,Poincare-Steklov operator,Heterogeneous domain,Calderon preconditioner,Schur complement discretization,Preconditioned hybrid formulation,Electromagnetic scattering}},
  language     = {{eng}},
  pages        = {{355--371}},
  publisher    = {{ACADEMIC PRESS INC ELSEVIER SCIENCE}},
  title        = {{A Calderón multiplicative preconditioner for the electromagnetic Poincaré-Steklov operator of a heterogeneous domain with scattering applications}},
  url          = {{http://doi.org/10.1016/j.jcp.2015.09.052}},
  volume       = {{303}},
  year         = {{2015}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: