Advanced search
1 file | 2.19 MB Add to list

Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13

(2015) JOURNAL OF PHYSICAL CHEMISTRY C. 119(43). p.24393-24403
Author
Organization
Abstract
Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu-ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu-nitrosyl complex with a Cu-N-O bond angle of similar to 150 degrees. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn-Teller distorted hexaamine complex [Cu(NH3)(6)](2+) in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process.
Keywords
MOLECULAR-DYNAMICS, ACTIVE-SITES, RAY-ABSORPTION-SPECTROSCOPY, SELECTIVE CATALYTIC-REDUCTION, GENERALIZED GRADIENT APPROXIMATION, ZEOLITE, CU-SSZ-13, CHABAZITE, AMMONIA, IONS

Downloads

  • 15-JPhysChemC-119 43 24393-Lezcano-Gonzalez.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 2.19 MB

Citation

Please use this url to cite or link to this publication:

MLA
Lezcano-Gonzalez, Ines et al. “Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH3 Within SSZ-13.” JOURNAL OF PHYSICAL CHEMISTRY C 119.43 (2015): 24393–24403. Print.
APA
Lezcano-Gonzalez, I., Wragg, D. S., Slawinski, W. A., Hemelsoet, K., Van Yperen-De Deyne, A., Waroquier, M., Van Speybroeck, V., et al. (2015). Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13. JOURNAL OF PHYSICAL CHEMISTRY C, 119(43), 24393–24403.
Chicago author-date
Lezcano-Gonzalez, Ines, David S Wragg, Wojciech A Slawinski, Karen Hemelsoet, Andy Van Yperen-De Deyne, Michel Waroquier, Veronique Van Speybroeck, and Andrew M Beale. 2015. “Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH3 Within SSZ-13.” Journal of Physical Chemistry C 119 (43): 24393–24403.
Chicago author-date (all authors)
Lezcano-Gonzalez, Ines, David S Wragg, Wojciech A Slawinski, Karen Hemelsoet, Andy Van Yperen-De Deyne, Michel Waroquier, Veronique Van Speybroeck, and Andrew M Beale. 2015. “Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH3 Within SSZ-13.” Journal of Physical Chemistry C 119 (43): 24393–24403.
Vancouver
1.
Lezcano-Gonzalez I, Wragg DS, Slawinski WA, Hemelsoet K, Van Yperen-De Deyne A, Waroquier M, et al. Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13. JOURNAL OF PHYSICAL CHEMISTRY C. 2015;119(43):24393–403.
IEEE
[1]
I. Lezcano-Gonzalez et al., “Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 43, pp. 24393–24403, 2015.
@article{7003115,
  abstract     = {Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu-ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu-nitrosyl complex with a Cu-N-O bond angle of similar to 150 degrees. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn-Teller distorted hexaamine complex [Cu(NH3)(6)](2+) in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process.},
  author       = {Lezcano-Gonzalez, Ines and Wragg, David S and Slawinski, Wojciech A and Hemelsoet, Karen and Van Yperen-De Deyne, Andy and Waroquier, Michel and Van Speybroeck, Veronique and Beale, Andrew M},
  issn         = {1932-7447},
  journal      = {JOURNAL OF PHYSICAL CHEMISTRY C},
  keywords     = {MOLECULAR-DYNAMICS,ACTIVE-SITES,RAY-ABSORPTION-SPECTROSCOPY,SELECTIVE CATALYTIC-REDUCTION,GENERALIZED GRADIENT APPROXIMATION,ZEOLITE,CU-SSZ-13,CHABAZITE,AMMONIA,IONS},
  language     = {eng},
  number       = {43},
  pages        = {24393--24403},
  title        = {Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13},
  url          = {http://dx.doi.org/10.1021/acs.jpcc.5b06875},
  volume       = {119},
  year         = {2015},
}

Altmetric
View in Altmetric
Web of Science
Times cited: