Ghent University Academic Bibliography

Advanced

The influence of operator-controlled variables on spray drift from field crop sprayers

David Nuyttens, Mieke De Schampheleire UGent, K Baetens and B Sonck (2007) TRANSACTIONS OF THE ASABE. 50(4). p.1129-1140
abstract
Spray drift can be defined as the quantity of plant protection product that is carried out of the sprayed area by the action of air currents during the application process. This continues to be a major problem in applying agricultural pesticides. The purpose of this research is to measure the amount of sedimenting drift from a horizontal boom sprayer for different (drift reducing) spray application techniques under field conditions and to compare the results with the results from a reference spray, taking into account variations in meteorological conditions during the field drift experiments. Field drift measurements were performed for several combinations of nozzle type (standard flat-fan, low-drift, air inclusion) and size (ISO 02, 03, 04, and 06), spray pressure (2.0, 3. 0, and 4. 0 bar), driving speed (4, 6, 8, and 10 km h(-1)), and spray boom height (0.3, 0.5, and 0. 75 m) according to ISO 22866 by sampling in a defined downwind area at 24 different positions using horizontal drift collectors. The reference spray was defined as a standard horizontal spray boom without air support, a spray boom height of 0.50 m, a nozzle distance of 0.50 m, ISO 110 03 standard flat-fan nozzles at 3.0 bar (1.2 L min(-1)), and a driving speed of 8 km h(-1), resulting in an application rate of approximately 180 L ha(-1). Nozzle type as well as spray pressure, driving speed, and spray boom height, have an important effect on the amount of spray drift. Larger nozzle sizes, lower spray pressures and driving speeds, and lower spray boom heights generally reduce spray drift. Concerning nozzle types, air inclusion nozzles have the highest drift reduction potential, followed by the low-drift nozzles and the standard flat-fan nozzles. Drift results are closely linked with droplet size characteristics of the sprays.
Please use this url to cite or link to this publication:
author
organization
year
type
journalArticle (original)
publication status
published
subject
keyword
FLAT-FAN NOZZLES, driving speed, spray pressure, spray drift, spray application technique, reference spray, nozzle type and size, meteorological conditions, field experiments, PESTICIDE DRIFT, BOOM SPRAYERS, SIZE, DROPLET DRIFT, boom height, SIMULATION, DEPOSITION, STABILITY, PRESSURE, SHIELDS
journal title
TRANSACTIONS OF THE ASABE
Trans. ASABE
volume
50
issue
4
pages
1129 - 1140
Web of Science type
Article
Web of Science id
000249466000004
JCR category
AGRICULTURAL ENGINEERING
JCR impact factor
1.042 (2007)
JCR rank
6/9 (2007)
JCR quartile
3 (2007)
ISSN
0001-2351
language
English
UGent publication?
yes
classification
A1
copyright statement
I have transferred the copyright for this publication to the publisher
id
699773
handle
http://hdl.handle.net/1854/LU-699773
date created
2009-06-15 14:39:21
date last changed
2011-10-20 13:49:26
@article{699773,
  abstract     = {Spray drift can be defined as the quantity of plant protection product that is carried out of the sprayed area by the action of air currents during the application process. This continues to be a major problem in applying agricultural pesticides. The purpose of this research is to measure the amount of sedimenting drift from a horizontal boom sprayer for different (drift reducing) spray application techniques under field conditions and to compare the results with the results from a reference spray, taking into account variations in meteorological conditions during the field drift experiments. Field drift measurements were performed for several combinations of nozzle type (standard flat-fan, low-drift, air inclusion) and size (ISO 02, 03, 04, and 06), spray pressure (2.0, 3. 0, and 4. 0 bar), driving speed (4, 6, 8, and 10 km h(-1)), and spray boom height (0.3, 0.5, and 0. 75 m) according to ISO 22866 by sampling in a defined downwind area at 24 different positions using horizontal drift collectors. The reference spray was defined as a standard horizontal spray boom without air support, a spray boom height of 0.50 m, a nozzle distance of 0.50 m, ISO 110 03 standard flat-fan nozzles at 3.0 bar (1.2 L min(-1)), and a driving speed of 8 km h(-1), resulting in an application rate of approximately 180 L ha(-1). Nozzle type as well as spray pressure, driving speed, and spray boom height, have an important effect on the amount of spray drift. Larger nozzle sizes, lower spray pressures and driving speeds, and lower spray boom heights generally reduce spray drift. Concerning nozzle types, air inclusion nozzles have the highest drift reduction potential, followed by the low-drift nozzles and the standard flat-fan nozzles. Drift results are closely linked with droplet size characteristics of the sprays.},
  author       = {Nuyttens, David and De Schampheleire, Mieke and Baetens, K and Sonck, B},
  issn         = {0001-2351},
  journal      = {TRANSACTIONS OF THE ASABE},
  keyword      = {FLAT-FAN NOZZLES,driving speed,spray pressure,spray drift,spray application technique,reference spray,nozzle type and size,meteorological conditions,field experiments,PESTICIDE DRIFT,BOOM SPRAYERS,SIZE,DROPLET DRIFT,boom height,SIMULATION,DEPOSITION,STABILITY,PRESSURE,SHIELDS},
  language     = {eng},
  number       = {4},
  pages        = {1129--1140},
  title        = {The influence of operator-controlled variables on spray drift from field crop sprayers},
  volume       = {50},
  year         = {2007},
}

Chicago
Nuyttens, David, Mieke De Schampheleire, K Baetens, and B Sonck. 2007. “The Influence of Operator-controlled Variables on Spray Drift from Field Crop Sprayers.” Transactions of the Asabe 50 (4): 1129–1140.
APA
Nuyttens, David, De Schampheleire, M., Baetens, K., & Sonck, B. (2007). The influence of operator-controlled variables on spray drift from field crop sprayers. TRANSACTIONS OF THE ASABE, 50(4), 1129–1140.
Vancouver
1.
Nuyttens D, De Schampheleire M, Baetens K, Sonck B. The influence of operator-controlled variables on spray drift from field crop sprayers. TRANSACTIONS OF THE ASABE. 2007;50(4):1129–40.
MLA
Nuyttens, David, Mieke De Schampheleire, K Baetens, et al. “The Influence of Operator-controlled Variables on Spray Drift from Field Crop Sprayers.” TRANSACTIONS OF THE ASABE 50.4 (2007): 1129–1140. Print.