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Abstract—Large scale growth of wireless networks and the
scarcity of the electromagnetic spectrum are imposing more in-
terference to the wireless terminals which jeopardize the Quality
of Service offered to the end users. In order to address this
kind of performance degradation, this paper proposes a novel
experimentally verified cognitive decision engine which aims at
optimizing the throughput of IEEE 802.11 links in presence
of homogeneous IEEE 802.11 interference. The decision engine
is based on a surrogate model that takes the current state
of the wireless network as input and makes a prediction of
the throughput. The prediction enables the decision engine to
find the optimal configuration of the controllable parameters
of the network. The decision engine was applied in a realistic
interference scenario where utilization of the cognitive decision
engine outperformed the case where the decision engine was not
deployed by a worst case improvement of more than 100%.

I. INTRODUCTION

With the increasing demand of the scarce electromagnetic
spectrum and rising interference effects, cognitive radios (CR)
have become a promising solution to address spectrum over-
utilization. To this end, cognitive solutions are of paramount
importance in wireless networks to ensure that their perfor-
mance is not degraded by the external interference, ensur-
ing continuous connectivity and providing a good Quality
of Service (QoS). A well-established component that targets
optimal network communication is the Cognitive Decision
Engine (CDE). The CDE is an intelligent module that aims
to optimize network performance objectives (QoS) by making
informed decisions upon changes in the wireless environment.

Three important aspects of a CDE comprise: (1) obser-
vation, (2) reconfiguration or adaptability and, (3) cognition
which includes awareness, reasoning and learning [1]. In
literature, these three characteristics have been addressed using
various approaches, e.g. rule-based [2], case-based [3]–[5],
search-based [6], knowledge-based [4] reasoning systems and
many others. Such methods often require a certain set of
representative cases or domain expert knowledge [7] to derive
important analytical formulas or rules that steer the decision
making process. The reader is referred to [1] for a detailed
survey.

This paper focuses on the development of a model-based
CDE that reconfigures the transmission parameters of a wire-
less LAN system in response to measured changes in the
environment. This task is facilitated by an underlying surrogate
model that characterizes and mimics the behavior of the

wireless system. It takes the current state of the wireless en-
vironment and a given configuration of the wireless system as
input and makes a prediction of the resulting QoS. Rather than
building a static set of models upfront, a self-learning modeling
strategy is adopted that performs a limited set of experiments in
a structured way to collect data. By using this data, a predictive
surrogate model is built that can generalize this knowledge
towards environmental conditions and configurations that are
different from those that were observed during training by
means of interpolation. This model will become an essential
part of the decision engine. Once the model is sufficiently
accurate, it can be deployed in an optimization procedure that
maximizes the attainable QoS in real-time by optimizing the
transmission parameters. If the model predictions deviate from
those that are observed in practice, the model can be updated
in an on-line fashion to improve its accuracy over time. The
solution is experimentally demonstrated and verified using a
realistic use case in a wireless testbed where the proposed
algorithm is shown to optimize the throughput of a wireless
link by changing the frequency channel using surrogate model
predictions.

This paper is organized as follows: Section II gives a
schematic overview of the different components that are
present in a wireless network with a CDE architecture. In
Section III, some notational conventions and details on the
surrogate model for throughput prediction are explained. More
explanations on the experimentation and model building is
given in Section IV. The optimization algorithm that is used in
the CDE to optimize the throughput of the network is briefly
explained in Section V. Finally, in Section VI, the real-life
example is provided wherein experiments are performed in a
wireless testbed to show the applicability and performance of
the proposed CDE. Section VII concludes this article.

II. SCHEMATIC OF COGNITIVE DECISION ENGINE

A schematic overview of the decision engine is shown in
Figure 1. The System under test is the wireless system that
needs to be optimized in a dynamically changing environment.
The Radio Environment Map (REM) is a map that con-
tinuously aggregates all information that is monitored from
the environment through spectrum sensing, network sniffing,
and benchmarking tests [8]. Based on the REM map, a set of
meters or measurable parameters (MP) can be extracted that
allow the CDE to identify the current state of the environment.
The Cognitive decision engine (CDE) is a self-learning
decision engine that uses a surrogate model to optimize the
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Fig. 1. A high-level schematic of the cognitive decision strategy

QoS by defining suitable cognitive actions in response to the
MP parameters that are derived from REM. These actions are
enforced by tuning of a set of knobs or control/transmission
parameters (CP) that specify the configuration of the wireless
system. By storing the outcome of each action, the algorithm
collects data samples that quantify the QoS performance. The
surrogate model is an analytical black-box model that charac-
terizes and approximates this data. It is an input-output mathe-
matical function that models the relation between the MP and
CP parameters as inputs on one hand, and the resulting QoS
performance of the wireless system that would be observed
as an output on the other hand. The optimization algorithm
exploits the surrogate model’s predictions to optimize the QoS
performance by tuning the CP parameters of the wireless
system according to the MP parameters that are obtained from
the REM. The outcome of the actions that were executed by
the optimization process can be used in a feedback loop to
update/improve the accuracy of surrogate model online during
its operation. A more detailed explanation of these components
will be provided in the later sections.

III. SURROGATE MODELING OF QOS

A. Notational conventions

In order to model the QoS performance of the wireless
system, a set of data samples must be collected by performing
a limited set of k = 1, . . . ,K experiments on a wireless testbed
(w-iLab.t) as described in Section VI. Each experiment k is
defined by a vector of i = 1, . . . , nc knobs spanning the
control space Ck = {Ci

k}, and a vector of j = 1, . . . , nm

spanning the meter space Mk = {M j
k}. As mentioned in

the previous section, the Ck space comprises the control
parameters that must be configured by the decision engine,
whereas the Mk space comprises a set of features that are
extracted from the REM. The union of the control space C
and the meter space M is called the parameter space. The
outcome of each experiment k corresponds to a resulting QoSk

performance value. Depending on the ultimate usage of the
wireless network, the target QoS parameter may be throughput,
delay, jitter, or a combinatorial metric such as audio or video
quality. Each experiment k is referred to as a data sample and
will be represented by a tuple: {Ck,Mk, QoS(Ck,Mk)}.

B. Surrogate model type

All experiments that are performed constitute a dataset
that will be used to build a surrogate model f such that
f(Ck,Mk) = QoSk. As surrogate models must be built and
updated in real time, it is important to select an interpolation
strategy that is simple and fast. It should 1) not require a lot of
model tweaking; 2) be able to build models that are sufficiently
accurate; 3) be robust towards noise and imperfections in the
data; 4) have acceptable running times. In literature, many
modeling algorithms are described, such as e.g. kriging [9],
artificial neural networks [10], [11], radial basis function [12],
etc. Most of the time, they require a trial-and-error approach
for selecting a suitable set of hyperparameters (e.g., the number
of neurons, the number of hidden layers, the model complexity,
etc.). Also the model selection and cross-validation process can
be very time consuming. With these considerations in mind,
it is preferable to consider local interpolation schemes such
as multi-linear interpolation [13], tesselation-based simplicial
interpolation [14] and Shepard’s interpolation [15], [16]. The
Shepard interpolation algorithm was found to be the most
adequate approach because of the simplicity of the underlying
principle, and the speed in calculation. By using Shepard’s
interpolation, a model is built that exactly predicts the QoS
performance (throughput) for experiments that were performed
previously, and approximates the QoS for experiments that
have not yet been performed (i.e. different values of C and
M), based on a distance-based similarity measure and an
appropriate normalization of the parameter space.

IV. MODEL BUILDING

In order to build the surrogate model, a representative set
of data samples must be collected to build a model having
sufficient accuracy to make reliable predictions of the QoS.
As the QoS performance of the system under test depends on
multiple parameters, it would be very consuming to collect
data samples according to a grid-based structure. Instead,
data samples are collected in such a way that the model
accuracy can be maximized while minimizing the number
of experiments needed. This happens in an online training
phase that is executed prior to the deployment of the decision
engine. In sequential steps, a well-chosen set of experiments
are performed by making a balanced trade-off between two
different criteria, namely exploration and exploitation.

A. Exploration phase

In the exploration phase, different settings of the knobs C
are explored in order to cover the parameter space as evenly
as possible. The idea is that the most informative experiments
are those that are as different as possible from those that were
performed previously. Thereto, a distance-based exploration
criterion is used to let the dataset grow over time. First, a
large set of candidate settings is generated using a Monte Carlo
method for the knobs in such a way that they cover the entire
control space. For all the candidate settings of the knobs C,
the distance of each candidate point to all other data samples
in the set is calculated and the farthest point is selected.
So, if an nc-dimensional control space with d = 1, . . . , D
discrete candidate settings for the knobs is considered, then the
proposed setting of the knobs is the one that maximizes the
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minimum distance to the available data samples k = 1, . . . ,K.

dbest = argmax
d

[
min
k
hdk

]
(1)

where hdk represents the Euclidean distance between data
sample k in the dataset and candidate setting d. The values
of the meters are set to those at current time M = Mcurrent.

hdk =

√√√√ nc∑
i=1

(Ci
d − Ci

k)
2 +

nm∑
j=1

(M j
current −M

j
k)

2 (2)

Once this exploratory setting dbest of the knobs is applied
on the system under test, the resulting QoS is evaluated and
the outcome is added as an additional data sample to the
dataset. As the environment changes over time, the meters
Mcurrent will change dynamically over time and sequentially
data samples are added to the dataset. This leads to more
accurate predictions of the surrogate model built from it.

B. Exploitation phase

As the algorithm collects more data samples, it can also ex-
ploit data from previous experiments to make the model more
accurate in those regions where the optimum configurations
(i.e. those with higher QoS values) are located. To this end,
the output of the intermediate surrogate models can be used to
identify these settings. Just like in the exploration phase, the
meters are monitored and a large set of candidate settings for
the knobs are generated using Monte Carlo in such a way that
they cover the entire control space. For all discrete candidate
settings d of the knobs C, the surrogate model is evaluated
and the setting Copt is chosen for which the Shepard’s model
predicts the highest PQoS = f(Cd,Mcurrent) value.

Copt = argmax
d

f(Cd,Mcurrent) (3)

The values of meters Mcurrent in (3) are again set to those at
the current time. Once the optimal setting Copt of the knobs
is applied on the system, the resulting QoS(Copt,Mcurrent)
value is evaluated and the outcome is compared to the pre-
dicted PQoS = f(Copt,Mcurrent) of the surrogate model.

|f(Copt,Mcurrent)−QoS(Copt,Mcurrent)| < τ (4)

If the discrepancy of the outcome is larger than a prede-
fined threshold τ , then the prediction of the model was
not sufficiently accurate and a corresponding data sam-
ple {Copt,Mcurrent, QoS(C

opt,Mcurrent)} is added to the
dataset. If the surrogate model prediction was sufficiently
accurate, then the experiment can be discarded. Since the
QoS metric chosen in this paper is throughput, a value of
τ = 3[Mbps] is proposed. This step improves the accuracy
of the surrogate model in regions where optima are located.

V. MODEL OPTIMIZATION

Once a surrogate model is considered to be sufficiently
accurate, it can be deployed in the cognitive decision frame-
work for real-time optimization. The optimization algorithm
continuously monitors the QoS performance and the values
of M that are changing in a dynamical way over time. If
network degradation is detected, a genetic algorithm can be
used to solve (3) and to determine the optimum value Copt

of the knobs. Note that the optimization is quasi real time
because the surrogate model is very fast to evaluate. In cases
where the result of the optimization step was unsuccessful in
predicting the QoS, the outcome of the experiment can be
added as additional data to improve the model predictions.

VI. EXPERIMENTAL EXAMPLE: PRACTICAL CASE STUDY

A. Setup configuration

The practical case study is conducted in a pseudo-shielded
testbed environment w-iLab.t [17] in Ghent, Belgium. The
nodes in the testbed are mounted in an open room (66 m x
20.5 m) in a grid configuration with an x-separation of 6 m
and a y-separation of 3.6 m. Figure 2 shows a partial ground
plan of the test lab with an indication of the location of the
nodes. Each node has two Wi-Fi interfaces. Furthermore, a
ZigBee sensor node and a USB 2.0 Bluetooth interface are
incorporated into each node.

SUT

INT

INT

Monitor

Monitor

2
0.

5
m

6 m

Fig. 2. Partial layout of the W-iLab.t living lab test environment (66m x
20.5m) with indication of the nodesRSSI.

The setup that was considered is a typical scenario of two
IEEE 802.11 standard compliant nodes, operating on infras-
tructure mode with 802.11g standard and generating traffic on
up-link (node 50 to 51, see Figure 2). We refer to these two
nodes as the System Under Test (SUT). The experiments are
performed in a quasi-ideal shielded environment, where the
effect of external interference or environmental conditions is
not dominantly present. For each experiment that is configured,
the sender node will directly transmit iperf [18] UDP (User
Datagram Protocol) data to a receiver node over a period of
30 seconds. At the same time, two external collocated pair of
IEEE802.11 compliant interference links start generating iperf
traffic. We refer to these links as the interference generating
group, abbreviated as INT. The effect of these external interfer-
ence sources on the QoS performance of the wireless system
is highly unpredictable in nature, so this experiment can be
seen as an analogy to real-life operation of the system. Setting
30 seconds as the duration of time steps is motivated by the
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TABLE I. OVERVIEW OF PARAMETER LIST CONSIDERED FOR THE
CASE STUDY.

Parameter type Name Values Unit
Meter COD of channel 1 [0-100] %
Meter COD of channel 6 [0-100] %
Knob Channel of SUT {1,6} -

fact that based on our experience, obtaining reliable throughput
values in presence of a fixed interference setup requires letting
the iperf produce its stream for so long that the competition
for spectrum utilization between the interference link and the
SUT converge to equilibrium.

In this scenario we use the proposed CDE to optimize the
throughput of the SUT which is an important QoS param-
eter for many wireless networks. We assume that INT and
SUT operate on the same or non-overlapping IEEE 802.11g
channels [19]. In this condition, the dominant external pa-
rameters influencing the throughput of the SUT is the traffic
characterization of the homogeneous collocated interference
links. As authors in [7] suggest, the most crucial parameters
of the interference, namely channel occupancy degree (COD)
and transmission rate of the interference could be practically
measured by means of packet sniffers and looking up the
radio tap header information of sniffed packets. Two dedicated
monitoring agents are incorporated that are basically Wi-Fi
interfaces operating on IEEE 802.11 monitor mode [19] on
every of the channels in the vicinity of the SUT (see Fig. 2).

For simplicity, we only consider two non-overlapping IEEE
802.11g channels. Thus, the meters measured in this scenario
are the COD values of IEEE 802.11g channels 1 and 6, the
knob is the SUT channel of operation (1 or 6). The INT
links (node 28 to 40 and node 39 to 49 in Figure 2) operate
on channel 1 and 6 with interference CODs according to
each experiment configuration. In order to create a dynamic
environment, the COD of the INT links is varied after a certain
number of time steps during learning. As such, this creates an
interference pattern that is changing over time and it forces the
CDE to react and switch between “optimal” operating points.
The layout of the testbed for this scenario is visualized in Fig.
2, and Table I lists the parameters that are considered during
the cognitive decision making. In addition to the knobs, also
some meters must be derived to assess the current state of
the environment. To this end, CODs of the channel of INT
can be derived from the REM. This meter provides additional
information to the CDE about the interference pattern. Hence,
the decision engine should monitor the current value of the
meters and optimizes the channel of SUT, in such a way
that the SUT throughput is maximized. As the meter changes
over time, the CDE adjusts the optimal knob (SUT channel)
instantaneously. Since a real-time response of the CDE is
desired, the engine is subjected to the model building phase
where it learns the behavior of the wireless system.

B. Building the surrogate model

In the model building phase, a limited set of experiments
are performed to learn the resulting throughput over the SUT
link as a function of 3 parameters (interference COD on chan-
nels 1 and 6, SUT operating channel). The meters change in an
uncontrollable way. However, the values of the knob are chosen
by the CDE such that the parameter space is well covered,

i.e. a balanced trade-off is made between exploitation (trying
configurations that are most likely to give good throughput
performance) and exploration (trying configurations that are
different from what that the algorithm has tried before) of
the parameter space. The settings of the 87 experiments that
were performed during this learning phase of the algorithm
are shown in Figure 3 where experiments were carried out
to cover parameter combinations on both channels and for
different pairs of interference CODs on channel 1 and 6.
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Fig. 3. Exploration space used for the learning phase of the algorithm in
practical example.

Using these selected samples, an interpolation model is
generated by the CDE so as to find a surrogate model for
the throughput over the entire design space. The model is
expected to become more accurate as additional experiments
are performed. However the number of experiments that can be
performed is limited by the amount of time that is available for
the experimentation. In order to better quantify the accuracy
of the surrogate model, the predicted throughput is compared
to the actual throughput that is obtained after executing 15
validation experiments, shown in Figure 4. In the ideal case,
all data samples (marked by a red dot) are located close to the
linear solid line which indicates a perfect agreement. Taking
into account stochastic variability of the testbed, it is found
that most experiments lie with a 3 Mbps boundary (marked by
2 linear dashed lines), that corresponds closely to the model
accuracy threshold τ as chosen in Equation 4. As seen in
Figure 4, only a couple of sample points are out of the accuracy
bound.

C. Model deployment

Finally the performance of the CDE was assessed by
comparing the obtained throughput in 15 experiments with
different configurations. Once with an static operation of the
SUT and second time with utilization of the CDE to steer the
SUT channel. The results are shown in Figure 5 where for each
time step, its corresponding meter and knob values are also
indicated. From time step 1 to 6, channel 6 was the optimum
channel of operation for the SUT since as seen in Figure 5
staying on channel 1 caused a huge performance degradation
for the case where the CDE was not deployed. The CDE
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Fig. 4. Actual QoS versus predicted QoS for 15 experiments.

switched the SUT channel at time steps 6 when according to
its internal surrogate model, a better throughput was predicted
and this decision works out also in reality as evidenced also
by observing the COD values of the channels. Figure 5 also
reveals the performance improvement of the CDE at different
time steps when different interference configurations are in
place, e.g. at the worst case condition (time step 1) more than
100% performance improvement was achieved.

Concerning the limitation of the proposed approach, firstly,
the algorithm was applied in a pseudo-shielded all line of
sight single hop environment where the measurements were
performed. The hidden node problem is not taken into con-
sideration since it is not an issue in this environment, i.e. the
surrogate model does not consider interference of nodes that
are not in the radio range of the monitors. The monitors are
assumed to capture all present traffic without dropping any
packets. If for any reason the interference is not perceived
by the sniffers, an event detector as proposed in [7] could
assist by detecting the unpredicted throughput degradation
in the network. Secondly, deploying both the CDE and the
REM imposes data and processing overhead on the network.
Spectrum monitoring data overhead could be formulated in two
cases depending on the mobility of spectrum sensing devices.
Excluding mobile devices from spectrum monitoring and only
depending on the fixed Wi-Fi sniffers does not introduce any
data overhead to the wireless network.

VII. CONCLUSION

A novel approach for decision making is presented in
the context of cognitive ISM band WLANs where all users
have equal regulatory status in terms of spectrum utilization.
The method incorporates surrogate models for predicting the
performance of the network by monitoring environmental pa-
rameters and transmission parameters. It improves the models
by following the accuracy of its predictions in real time.
The generic design of the algorithm is beneficial for differ-
ent scenarios with different set of parameters. As proof of
concept, a use case was experimentally investigated to verify
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Fig. 5. (a) Throughput performance of cognitive vs. static configuration, (b)
Channel of INT. Each time step is 30s.

the efficiency of this method in optimizing the performance
of wireless networks. This was shown by comparing the
throughput of the link when its channel of operation was
selected by the CDE with a case when the channel was fixed.
A worst case improvement of more than 100% was observed.

Large scale implementation of the algorithm in different
environments such as home, office, industry, etc. would be the
topic of future research. Finding the most appropriate set of
meters and knobs in different scenarios on the one hand, and,
coupling the model-based predictions with heuristic decision
making methods on the other hand, would lead to useful
endeavors aiming at improving the current algorithm.
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