Linking instrumental, sensory and emotional evaluation of flavoured chocolates.

Joachim J. Schouteten¹, Anthony Vella², Nathalie De Clercq³, Jim Van Durme³, Sofie Lagast¹, Sara De Pelsmaeker¹, Koen Dewettinck², Xavier Gellynck¹

¹Ghent University, Department of Agricultural Economics, Coupure Links 653, Gent, Belgium
²Ghent University, Department of Food Safety and Food Quality, Coupure Links 653, Gent, Belgium
³KULeuven, Department of Microbial and Molecular Systems, Gebroeders De Smetstraat 1, Gent, Belgium

Joachim.Schouteten@UGent.be
Tel: +32 9 264 5945, Fax: +32 9 264 6246, www.sensolab.be

Objectives

Research on emotions associated with food products is gaining popularity in food sensory and consumer research since emotions can influence consumers' behaviour and offer competitive advantages for food companies. Moreover, more companies and research is performed with consumers instead of trained panelists for the sensory evaluation of food products. But, little is known if instrumental measurements could provide additional information for emotional measurements and similar results with consumer evaluation. Therefore, the aim of this study was to examine if instrumental evaluations of flavoured chocolates could be linked to emotional and sensory profiling by consumers.

Materials & methods

PRODUCTS:
- 3 Flavoured chocolates:
 - Mint
 - Strawberry
 - Orange

 Reference: Dark chocolate (similar cocoa%)

INSTRUMENTAL EVALUATION
- GC-MS
 - headspace solidphase micro-extraction

- DCS
 - Melting point
 - TA Instruments, heat-flux DSC, refrigerated Cooling System
 - 10 times measured for repeatability

- Penetration test
 - Lloyd Instruments TA500 Texture Analyzer
 - 3 times measured for repeatability

CONSUMER TEST
- Sensory evaluation
 - 1 Reference and 1 flavoured chocolate
 - Overall liking
 - Emotional conceptualizations and sensory characteristics
 - Rate-all-that-apply

- Socio-demographic
 - age, gender

- Location: consumer goods trade fair

STATISTICAL ANALYSIS: IBM® SPSS 22

RESPONDENTS
- Mint: 51 respondents (30% ♂, 70% ♀)
- Strawberry: 41 respondents (42% ♂, 58% ♀)
- Orange: 60 respondents (45% ♂, 55% ♀)

Results

INSTRUMENTAL EVALUATION

GC-MS

<table>
<thead>
<tr>
<th>Concentration (µg/L)</th>
<th>OC</th>
<th>SC</th>
<th>GC</th>
<th>ML</th>
<th>LC</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.S. Heptadecanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>J.S. Hexadecanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>J.S. Pentadecanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-ethylhexanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-methylheptanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-ethylheptanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-ethylhexanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-ethylpentanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2-methylhexanoic</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2,3-dimethylheptano</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2,3-dimethylhexano</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
<tr>
<td>2,3-dimethylpentano</td>
<td>0.236 ± 0.06</td>
<td>0.238 ± 0.06</td>
<td>0.239 ± 0.06</td>
<td>0.240 ± 0.06</td>
<td>0.241 ± 0.06</td>
<td>F</td>
</tr>
</tbody>
</table>

Melting point

Penetration test

CONSUMER EVALUATION

Sensory and emotional profiles

Acceptance

Conclusions

- Sensory evaluation by consumers shows similar results with instrumental measurements
- Consumers still preferred regular chocolate, however consumer clustering revealed certain target groups keen of a specific flavoured chocolate
- Almost no differences were found between the emotional profiles when comparing a flavoured chocolate with reference chocolate

Practical applications:
This study shows that the overall acceptability and emotional profiles differs between flavoured chocolates. It explores how sensory characteristics, overall acceptability and emotional conceptualisations are interrelated which can offer interesting insights for both scientific research as food companies. Future research could include larger consumer groups, additional instrumental measurements and other food products.

Pangborn 2015, 11th Pangborn Sensory Science Symposium, 23 – 27 August 2015, Gothenburg, Sweden