
Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes
(2015)
- Author
- Ashish Kumar (UGent)
- Promoter
- Ingmar Nopens (UGent) , Thomas De Beer (UGent) and Krist V Gernaey
- Organization
- Abstract
- A shift from batch to continuous processing is challenging but equally rewarding for the pharmaceutical sector. This opportunity for moving beyond traditional batch processing is possible due to a change of attitude in the regulatory environment by the publication of the process analytical technology (PAT) guidance. However, in order to utilise this opportunity, detailed process understanding about the key processes in pharmaceutical manufacturing is required to turn this transformation to the continuous mode into a success. Continuous wet granulation is a crucial part of future continuous manufacturing of solid dosage forms. Continuous high shear wet granulation is performed using a twin-screw granulator (TSG) which is characterised by a modular screw profile including a sequence of different screw elements with various shapes, orientations and functions. A TSG achieves mixing and granulation by a complex interplay between the screw configuration and process settings (e.g. feed rate, screw speed, etc.) to produce granules with certain specifications in a short time. Therefore, a fundamental understanding of these complex phenomena is required to optimise and control this new technology. Analysing the twin-screw wet granulation to a satisfactory degree is only possible when sufficient information on the rheo-kinetic characteristics of the granulation mixture is available. Thus an investigation of residence time distribution (RTD), the solid-liquid mixing, and the resulting granule size distribution (GSD) evolution governed by the field conditions in the TSG contain interesting information about mixing and different granulation rate processes such as aggregation and breakage. For this purpose, a combination of experimental and mathematical techniques/approaches was applied in this work. Additionally, a single placebo formulation based on α-lactose monohydrate was granulated in the experimental studies performed to verify the hypothesis proposed in this work. The characterisation of wetted material transport and mixing inside the confined spaces of the rotating screws was performed by the experimental determination of the residence time distribution at different process conditions and screw configurations using near infrared chemical imaging. The experimental data was later compared with a conceptual model based on classical chemical engineering methods to estimate the parameters of the model and to analyse the effects of changes in number of kneading discs and their stagger angle, screw speed, material throughput and liquid-to-solid ratio (L/S) on RTD. According to this study, increased screw speed resulted in a low mean residence time mean residence time and wider RTD, i.e. more axial mixing. Increasing powder feed rate increased mean residence time by higher throughput force while increasing L/S increased mean residence time by raising the sluggishness or inertia of the material in the barrel. The material transport in the mixing zone(s) of the TSG became more plug-flow like. Thus, an increase in the number of kneading discs reduced the axial mixing in the barrel. In addition, to understand the GSD dynamics as a function of individual screw modules along the TSG barrel, the change in GSD was investigated both experimentally and mathematically. Using a TSG which allows the opening of the barrel, samples from several locations inside the TSG barrel were collected after granulation at different process conditions and screw configurations. A detailed experimental investigation was hence performed to understand the granule size and shape dynamics in the granulator. The experimental data from this study together with the residence time measurements was then used for calibrating a population balance model for each kneading disc module in the twin-screw granulator in order to obtain an improved insight into the role of the kneading discs at certain locations inside the TSG. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. It was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Also, a high throughput can be achieved by increasing the liquid-solid ratio and screw speed. Furthermore, the study indicated that the first kneading block after wetting caused an increased aggregation rate, which was reduced after the material processing by the second kneading block. In contrast, the breakage rate in the increased successively along the length of the granulator. Such a reversion in physical phenomena indicated potential separation between the granulation regimes, which can be promising for future design and advanced control of the continuous twin-screw granulation process. In another experimental study the transport and mixing (both axial and bulk mixing of solid-liquid) was linked to the GSD of the produced granules. This study demonstrated that insufficient solid-liquid mixing due to inability of the currently used kneading discs is the reason behind the inferior performance of the TSG in terms of yield. It was shown that other factors which support mixing such as higher axial mixing at a high screw speed and a low fill ratio support an increase in the yield. However, more effort is required to explore non-conventional screw elements with modified geometries to find screws which can effectively mix the solid-liquid material. Furthermore, in order to generalise the TSG knowledge, a regime map based approach was applied. Herewith, the scale independent parameters, L/S and specific mechanical energy (SME) were correlated. It was shown that an increasing L/S strongly drives the GSD towards a larger mean granule size. However, an increasing energy input to the system can effectively be used to lower the mean granule size and also narrow the width of the size distribution. Along with this, particle-scale simulations for the characterisation of liquid distribution in the mixing zone of the granulator were performed. It was found that the agglomeration is rather a delayed process which takes place by redistribution of liquid once the excess liquid on the particle surface is transferred to the liquid bridges. Moreover, the transfer of liquid from particle surface to liquid bridges, i.e. initialisation of agglomeration, is most dominant in the intermeshing region of the kneading discs. Besides the major outcomes of this work, i.e. building fundamental knowledge on pharmaceutical twin-screw wet granulation by combining experimental and theoretical approaches to diagnose the transport, mixing and constitutive mechanisms, several gaps and potential research needs were identified as well. As the regulators have opened up to increasingly rely on the science- and risk-based holistic development of pharmaceutical processes and products for commercialisation, the opportunity as well as responsibility lies with academic and industrial partners to develop a systematic framework and scientific approach to utilise this opportunity efficiently.
- Keywords
- Continuous processing, Mathematical modelling, Pharmaceutical, Wet granulation, Experimental analysis
Downloads
-
phDThesis AKumar final.pdf
- full text
- |
- open access
- |
- |
- 35.06 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-6956586
- MLA
- Kumar, Ashish. Experimental and Model-Based Analysis of Twin-Screw Wet Granulation in Pharmaceutical Processes. Ghent University. Faculty of Bioscience Engineering, 2015.
- APA
- Kumar, A. (2015). Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes. Ghent University. Faculty of Bioscience Engineering, Ghent, Belgium.
- Chicago author-date
- Kumar, Ashish. 2015. “Experimental and Model-Based Analysis of Twin-Screw Wet Granulation in Pharmaceutical Processes.” Ghent, Belgium: Ghent University. Faculty of Bioscience Engineering.
- Chicago author-date (all authors)
- Kumar, Ashish. 2015. “Experimental and Model-Based Analysis of Twin-Screw Wet Granulation in Pharmaceutical Processes.” Ghent, Belgium: Ghent University. Faculty of Bioscience Engineering.
- Vancouver
- 1.Kumar A. Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes. [Ghent, Belgium]: Ghent University. Faculty of Bioscience Engineering; 2015.
- IEEE
- [1]A. Kumar, “Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes,” Ghent University. Faculty of Bioscience Engineering, Ghent, Belgium, 2015.
@phdthesis{6956586, abstract = {{A shift from batch to continuous processing is challenging but equally rewarding for the pharmaceutical sector. This opportunity for moving beyond traditional batch processing is possible due to a change of attitude in the regulatory environment by the publication of the process analytical technology (PAT) guidance. However, in order to utilise this opportunity, detailed process understanding about the key processes in pharmaceutical manufacturing is required to turn this transformation to the continuous mode into a success. Continuous wet granulation is a crucial part of future continuous manufacturing of solid dosage forms. Continuous high shear wet granulation is performed using a twin-screw granulator (TSG) which is characterised by a modular screw profile including a sequence of different screw elements with various shapes, orientations and functions. A TSG achieves mixing and granulation by a complex interplay between the screw configuration and process settings (e.g. feed rate, screw speed, etc.) to produce granules with certain specifications in a short time. Therefore, a fundamental understanding of these complex phenomena is required to optimise and control this new technology. Analysing the twin-screw wet granulation to a satisfactory degree is only possible when sufficient information on the rheo-kinetic characteristics of the granulation mixture is available. Thus an investigation of residence time distribution (RTD), the solid-liquid mixing, and the resulting granule size distribution (GSD) evolution governed by the field conditions in the TSG contain interesting information about mixing and different granulation rate processes such as aggregation and breakage. For this purpose, a combination of experimental and mathematical techniques/approaches was applied in this work. Additionally, a single placebo formulation based on α-lactose monohydrate was granulated in the experimental studies performed to verify the hypothesis proposed in this work. The characterisation of wetted material transport and mixing inside the confined spaces of the rotating screws was performed by the experimental determination of the residence time distribution at different process conditions and screw configurations using near infrared chemical imaging. The experimental data was later compared with a conceptual model based on classical chemical engineering methods to estimate the parameters of the model and to analyse the effects of changes in number of kneading discs and their stagger angle, screw speed, material throughput and liquid-to-solid ratio (L/S) on RTD. According to this study, increased screw speed resulted in a low mean residence time mean residence time and wider RTD, i.e. more axial mixing. Increasing powder feed rate increased mean residence time by higher throughput force while increasing L/S increased mean residence time by raising the sluggishness or inertia of the material in the barrel. The material transport in the mixing zone(s) of the TSG became more plug-flow like. Thus, an increase in the number of kneading discs reduced the axial mixing in the barrel. In addition, to understand the GSD dynamics as a function of individual screw modules along the TSG barrel, the change in GSD was investigated both experimentally and mathematically. Using a TSG which allows the opening of the barrel, samples from several locations inside the TSG barrel were collected after granulation at different process conditions and screw configurations. A detailed experimental investigation was hence performed to understand the granule size and shape dynamics in the granulator. The experimental data from this study together with the residence time measurements was then used for calibrating a population balance model for each kneading disc module in the twin-screw granulator in order to obtain an improved insight into the role of the kneading discs at certain locations inside the TSG. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. It was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Also, a high throughput can be achieved by increasing the liquid-solid ratio and screw speed. Furthermore, the study indicated that the first kneading block after wetting caused an increased aggregation rate, which was reduced after the material processing by the second kneading block. In contrast, the breakage rate in the increased successively along the length of the granulator. Such a reversion in physical phenomena indicated potential separation between the granulation regimes, which can be promising for future design and advanced control of the continuous twin-screw granulation process. In another experimental study the transport and mixing (both axial and bulk mixing of solid-liquid) was linked to the GSD of the produced granules. This study demonstrated that insufficient solid-liquid mixing due to inability of the currently used kneading discs is the reason behind the inferior performance of the TSG in terms of yield. It was shown that other factors which support mixing such as higher axial mixing at a high screw speed and a low fill ratio support an increase in the yield. However, more effort is required to explore non-conventional screw elements with modified geometries to find screws which can effectively mix the solid-liquid material. Furthermore, in order to generalise the TSG knowledge, a regime map based approach was applied. Herewith, the scale independent parameters, L/S and specific mechanical energy (SME) were correlated. It was shown that an increasing L/S strongly drives the GSD towards a larger mean granule size. However, an increasing energy input to the system can effectively be used to lower the mean granule size and also narrow the width of the size distribution. Along with this, particle-scale simulations for the characterisation of liquid distribution in the mixing zone of the granulator were performed. It was found that the agglomeration is rather a delayed process which takes place by redistribution of liquid once the excess liquid on the particle surface is transferred to the liquid bridges. Moreover, the transfer of liquid from particle surface to liquid bridges, i.e. initialisation of agglomeration, is most dominant in the intermeshing region of the kneading discs. Besides the major outcomes of this work, i.e. building fundamental knowledge on pharmaceutical twin-screw wet granulation by combining experimental and theoretical approaches to diagnose the transport, mixing and constitutive mechanisms, several gaps and potential research needs were identified as well. As the regulators have opened up to increasingly rely on the science- and risk-based holistic development of pharmaceutical processes and products for commercialisation, the opportunity as well as responsibility lies with academic and industrial partners to develop a systematic framework and scientific approach to utilise this opportunity efficiently.}}, author = {{Kumar, Ashish}}, isbn = {{9789059898363}}, keywords = {{Continuous processing,Mathematical modelling,Pharmaceutical,Wet granulation,Experimental analysis}}, language = {{eng}}, pages = {{XXII, 266}}, publisher = {{Ghent University. Faculty of Bioscience Engineering}}, school = {{Ghent University}}, title = {{Experimental and model-based analysis of twin-screw wet granulation in pharmaceutical processes}}, year = {{2015}}, }