Axial pile forces in piled embankments, field measurements

Forces axiales dans les piles dans les remblais empilées, mesures sur le terrain

S.J.M. van Eekelen*12, A. Bezuijen31 and A.F. van Tol21

1 Deltares, Delft, Netherlands
2 Delft University of Technology, Delft, Netherlands
3 Ghent University, Ghent,
* Corresponding Author

ABSTRACT Several measurements were carried out in a basal reinforced piled embankment in the Netherlands. The present paper focuses on the influence of truck passages on the axial forces in the piles. The changes in axial forces in the piles were measured using two systems: (1) optic fibres attached to a square steel tube pile, measuring pile strains at ten positions along the pile length and (2) the total pressure on the pile cap with total pressure cells. Additionally, the axle loads of passing trucks and the load on the subsoil between the piles were measured. The measured changes in pile strains show that most truck load is transported to the subsoil by friction along the pile shafts. Comparison between measurements and calculations show that the truck wheel loads are spread stronger than assumed by Boussinesq.

RÉSUMÉ Plusieurs mesures ont été effectuées dans un remblai renforcé basal empilés dans les Pays-Bas. Le présent document met l'accent sur l'influence des passages de camions sur les forces axiales dans les piles. Les changements dans les forces axiales dans les piles ont été mesurées à l'aide de deux systèmes: (1) des fibres optiques attachées à un pieu à tube d'acier carré, mesurant souches de pile à dix positions le long de la longueur de la pile et (2) la pression totale sur le capot de pile avec un total cellules de pression. En outre, les charges par essieu des camions de passages, et la charge sur le sous-sol ont été mesurées. Les changements mesurés dans les souches de pois montrent que plus la charge du camion est transportée vers le sous-sol par frottement le long des arbres de pois. Comparaison entre les mesures et calculs montrent que les charges de roues de camion doivent être réparties plus que prévu par Boussinesq.

1 INTRODUCTION

Several researchers have published about research on piled embankments. Only a limited number of them presented measurements of load distributions and pile responses during the passage of a train or a truck (Van Eekelen et al., 2010, Van Duijnen et al., 2010). This is for example of importance because the truck loads need to be converted into a uniformly distributed load to be able to design the construction.

This paper reports axial load and strain measurements on a steel tube pile in a basal reinforced piled embankment. These measurements were carried out using optic fibres at 10 different depth levels and with total pressure cells on top of the pile caps. The response of the piles during truck passages will be presented in the present paper.

2 WOERDEN FIELD TEST

A motorway exit in Woerden, the Netherlands, was reconstructed. Part of the new road was built on a basal reinforced piled embankment. The road construction started in April 2010, and the road was opened in June 2010.

The subsoil consists of a ca. 17 m thick layer of very soft clay. The average undrained shear strength \(c_u \) along the pile shaft can be determined from the CPT in Figure 2: top-down until NAP -10 m \(c_u = \text{average} \quad (q_{t-15}) = 13 \, \text{kPa}, \) until NAP -13 m \(c_u = 17 \, \text{kPa}, \) where \(u \) is the pore pressure in kPa.

Figure 1 shows the piled embankment at the monitoring location. The system consisted of precast piles with average 2.24x2.26 m² centre-to-centre (CTC)-spacing and square 0.75x0.75 m² precast concrete piles.
A layer of PET geotextile 600/50 lies upon the sand, perpendicular to the road axis. A layer of PET geogrid 600/50 lies on top of that along the road axis. On top of the fill lies 0.25 m asphalt granular material and 0.18 m asphalt. Van Eekelen et al. (2012, 2015a,b,c) describe the monitoring program. The present paper presents measured axial pile loads.

A layer of PET geotextile 600/50 lies upon the sand, perpendicular to the road axis. A layer of PET geogrid 600/50 lies on top of that along the road axis. On top of the fill lies 0.25 m asphalt granular material and 0.18 m asphalt. Van Eekelen et al. (2012, 2015a,b,c) describe the monitoring program. The present paper presents measured axial pile loads.

The present paper presents measured axial pile loads. Therefore, pile 693 strains. The fibres were protected by casting them into a resin. The purpose of the optic fibres was to be able to calculate the bending pile moments in the pile from the measured pile strains. Therefore, pile 693 was not a precast concrete pile, but a square steel tube pile, specified in Table 1. This was done to be sure about the section modulus of the pile, which is necessary to calculate the pile moments.

Table 1. Square steel tube pile 693, properties and optic fibres.

<table>
<thead>
<tr>
<th>Width</th>
<th>mm</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>d</td>
<td>mm</td>
</tr>
<tr>
<td>Length</td>
<td>l</td>
<td>m</td>
</tr>
<tr>
<td>Area</td>
<td>A_{hub}</td>
<td>mm2</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E</td>
<td>N/mm2</td>
</tr>
<tr>
<td>Weight</td>
<td>G</td>
<td>kg/m</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>$I_x=I_y$</td>
<td>mm4</td>
</tr>
<tr>
<td>Section modulus</td>
<td>$W_x=W_y$</td>
<td>mm3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth pile cap surface</th>
<th>NAP a m</th>
<th>-1.36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt surface</td>
<td>NAP a m</td>
<td>+0.50</td>
</tr>
<tr>
<td>Distance to neighbouring piles:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>m</td>
<td>2.31</td>
</tr>
<tr>
<td>West</td>
<td>m</td>
<td>2.21</td>
</tr>
<tr>
<td>South</td>
<td>m</td>
<td>2.23</td>
</tr>
<tr>
<td>East</td>
<td>m</td>
<td>2.28</td>
</tr>
</tbody>
</table>

NAP: Dutch reference level

Due to problems with the optic fibre measurements, only the changes in pile strains due to truck passages can be presented in the present paper.
3.2 Axle loads of passing trucks

The weight of the axles of passing trucks was measured using weigh-in-motion devices (WIM) with pressure sensors, installed in the asphalt at two locations. Each WIM measured the truck velocity and configuration and the weight of each axle twice.

Table 2 gives the measured geometry and weight distribution of the considered trucks. These measurements were carried out on June, 12th, 2012, which is more than two years after opening the road. The ground water on that day was at 0.06 m below the pile cap surface of pile 693. It should be noted that the standard deviation of the four axle load measurements is ca. 25% of the measured load. This large standard deviation is probably caused by a limited accuracy of the WIM devices.

Table 2 Considered trucks.

<table>
<thead>
<tr>
<th>Distance to axle</th>
<th>1339a</th>
<th>1339b</th>
<th>1354</th>
<th>1355</th>
<th>1405a</th>
<th>1405b</th>
</tr>
</thead>
<tbody>
<tr>
<td>km/h</td>
<td>58</td>
<td>56</td>
<td>49</td>
<td>47</td>
<td>45</td>
<td>64</td>
</tr>
<tr>
<td>Number of axles</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Distance (mm)</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total weight (kN)</td>
<td>283</td>
<td>360</td>
<td>189</td>
<td>307</td>
<td>768</td>
<td>298</td>
</tr>
<tr>
<td>Standard deviation (kN)</td>
<td>67</td>
<td>a</td>
<td>47</td>
<td>73</td>
<td>163</td>
<td>86</td>
</tr>
</tbody>
</table>

Note: a total weight and configuration of truck 1339b has been provided by truck owner.

3.3 Load distribution

The total load on pile 693 (and pile 692, not presented in the present paper) was measured on the pile cap, below the geosynthetic reinforcement, as described by Van Eekelen et al. (2012, 2015a,b). For this purpose, the square pile cap was replaced by a circular one. This made it possible to apply a using a total pressure cell (TPC) with the same diameter (0.85 m) as the pile cap. However, a smaller wooden plate of 0.75 m diameter had to be applied between the TPC and the pile cap because of the relatively stiff edges of the large TPC.

Converting the pressure (in kPa) measured within the TPC into a force (in kN) can be done two ways: using the TPC diameter (maximum interpretation) or using the diameter of the wooden plate (minimum interpretation). Figure 3 to Figure 7 give both results. Figure 9 gives the average of these two values.

The pressure underneath the GR at locations G23 and G38 (Figure 1) was also measured with TPCs.

4 RESULTS MEASUREMENTS

Figure 3 to Figure 7 show the measured axle loads, the changes in pile strains Δe and axial forces ΔN.

An off-set (non-zero start value) was applied for the pile strains. This makes it possible to see the differences between the different strain gauges.

The maximal axial force increments ΔN shown in the figures were calculated from the maximal measured pile strain increments, using $\Delta N = EA_{nbc} \Delta e$, where the values of E and A_{nbc} are given in Table 1.

The measurements show that deeper strain gauges measure smaller pile strain responses to the passing trucks; the truck load is almost completely transferred to the soft soil around the pile by means of friction along the pile shaft. Only a very limited amount of the pile load reaches the toe of the piles.

These measurements should agree with the undrained shear strength c_u (kPa) of the subsoil, which was determined in section 2. Consider truck 1339b. The measured average strain along the pile shaft is 4 microstrain. For a 20 m long pile this gives an elongation of $-4 \times 10^{-6} \times 20 = -0.08$ mm. We have seen that the friction behaviour along the pile shaft is dominant to the pile toe, and therefore it can be assumed that 1 mm displacement of a pile activates 50% of the max-
imum pile shaft friction (NEN, 2011). Thus -0.08 mm elongation approximately activates 4% of the maximum pile shaft friction. The maximum activated shaft friction is equal to the measured maximum axial force: 12 kN (Figure 4) as the pile toe barely feels the truck passage. The maximum pile shaft friction will therefore be: 12 kN/4% = 300 kN. The area of the pile shaft is 20 m-4·0.3 m = 24 m². The undrained shear strength c_u lies thus around 300 kN / 24 m² = 12 kPa, which indeed is in the range of $c_u \approx 13$ kPa that was determined in section 2.

Figure 3. Truck 1339a: a. axle loads b. measured pile strains c. axial pile force at the maximum value of the highest strain gauge, (results of TPCs and measured pile strains).

Figure 4. Truck 1339b: a. axle loads b. measured pile strains c. axial pile force at the maximum value of the highest strain gauge, (results of TPCs and measured pile strains).

Figure 5. Truck 1354 and 1355: a. axle loads b. measured pile strains c. axial pile force at the maximum value of the highest strain gauge, (results of TPCs and measured pile strains).
Thus -0.08 mm elongation approximately activates 4% of the maximum pile shaft friction. The maximum activated shaft friction is equal to the measured maximum axial force: 12 kN (Figure 4) as the pile toe barely feels the truck passage. The maximum pile shaft friction will therefore be: 12 kN/4% = 300 kN. The area of the pile shaft is 20 m2 = 24 m2. The undrained shear strength c_u lies thus around 300 kN / 24 m2 = 12 kPa, which indeed is in the range of c_u = 13 kPa that was determined in section 2.
better with the measurements than the load distribution assumed by Boussinesq.

![Graph](image)

Figure 8. Axial force determined from strain measured with optic fibre 0.53 m below pile cap and pile load A+B measured with TPC (minimum interpretation). On top: determination of spreading angle of axle load of truck 1339b load.

Figure 9. Calculated and measured change of total load on pile 693 due to truck 1339b. TPC \((A+B)\) is the average of the minimum and maximum interpretation.

6 CONCLUSIONS

Truck passages give changes in axial pile forces in a basal reinforced piled embankment. These changes were measured using (1) optic fibres attached to the square steel tube piles, measuring pile strains at ten positions along the pile shaft and (2) total pressure cells on the circular pile caps. Additionally, the axle loads, truck configurations and the load on the subsoil were measured.

The measured pile strain changes show a decrease with depth. The pile toe barely feels the truck. This shows that most truck load is transported to the subsoil by friction along the pile shafts.

For design purposes it is necessary to convert a passing truck into a uniformly distributed load. Two calculation methods are described and compared to the measurements: a Boussinesq-based method and spreading each wheel load with a spreading angle of 67°. This value followed from the truck velocity and time that the truck is felt by the pile. The spreading calculations agree better with the measurements than the load distribution assumed by Boussinesq.

ACKNOWLEDGEMENT

The authors are grateful for the support in the monitoring project of the Dutch research program Geolpuls, Province Utrecht, The Dutch Ministry of Public works, Huesker, KWS Infra, Movares and Deltares. The financial support from Deltares, Naue, TenCate and Huesker for the research on piled embankments is greatly appreciated.

REFERENCES

