A Bayesian model to estimate individual skull conductivity for EEG source imaging

T. Verhoeven, G. Strobbe, P. van Mierlo, P. Buteneers, S. Vandenberghe and J. Dambre
Reservoir Lab & Medical Image and Signal Processing Group, Department of Electronics and Information Systems
Ghent University – iMinds, Belgium
Thibault.Verhoeven@UGent.be -- http://medisip.ugent.be

EEG Source Imaging

Estimating 3D brain activity based on measured scalp EEG and a parametric model of the head:

- Geometry of the head can be modelled precisely with anatomical MR image.
- Electrical conductivity of a tissue is usually set to a conventional value, found in previous studies: \(\sigma = 0.022 \text{ S/m} \)

Problem: Individual skull conductivity is reported to vary within a wide range of values, \(\sigma \in [0.0041 \rightarrow 0.070] \text{ S/m} \). Using the conventional value results in substantial errors on estimated source location, especially in the direction from source to skull. A very expensive MEG scan, unaffected by electrical conductivities, is the current solution to this problem.

Goal: Design a probabilistic framework for estimating the individual skull conductivity value based on scalp EEG. As such approach the source localization performance of an MEG scan.

Expectation Maximization

- Initialize skull conductivity on conventional value: \(\sigma_0 = 0.022 \text{ S/m} \)
- E-step
 - Create head model with current \(\sigma \)
 - Calculate the source distribution over volume of the head \(p(T) \)
- M-step
 - Find the \(\sigma \) that maximizes the likelihood of the measured EEG \(Y \) under the given source distribution

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(\Delta x) mean ± std</th>
<th>(\Delta y) mean ± std</th>
<th>(\Delta z) mean ± std</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG ((\sigma = 0.022 \text{ S/m}))</td>
<td>2.6 ± 3.0</td>
<td>2.5 ± 3.0</td>
<td>2.6 ± 2.8</td>
</tr>
<tr>
<td>EEG ((\sigma) estimated)</td>
<td>1.0 ± 3.4</td>
<td>0.6 ± 1.6</td>
<td>0.7 ± 1.9</td>
</tr>
<tr>
<td>MEG</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>After Rotation</th>
<th>(\Delta x') mean ± std</th>
<th>(\Delta y') mean ± std</th>
<th>(\Delta z') mean ± std</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG ((\sigma = 0.022 \text{ S/m}))</td>
<td>0.3 ± 0.3</td>
<td>2.1 ± 3.3</td>
<td>3.7 ± 4.1</td>
</tr>
<tr>
<td>EEG ((\sigma) estimated)</td>
<td>0.3 ± 0.4</td>
<td>0.6 ± 1.7</td>
<td>1.2 ± 3.8</td>
</tr>
<tr>
<td>MEG</td>
<td>0.1 ± 0.1</td>
<td>0.1 ± 0.1</td>
<td>0.2 ± 0.2</td>
</tr>
</tbody>
</table>

Conclusion

Estimation of individual skull conductivity with the expectation maximization algorithm improves EEG source localization. Further research is needed to confirm this improvement on realistic head models and real data.

Table 1: EEG and MEG source localization performance before and after rotation for different conductivity values.

Graphs:
- EEG and MEG source localization before and after rotation.
- Graphs showing the estimated skull conductivity values.

Diagrams:
- Diagrams illustrating the estimation process and results for EEG and MEG source imaging.

References:
- [Strobbe et al., 2015](#)
- [Koseem et al., 1998](#)
- [Hukkamp, 2008](#)