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Abstract: Poly(2-alkyl/aryl-2-oxazoline)s (PAOx) have been gaining increasing attention because they 

combine biocompatibility with so-called stealth behavior, making them ideal candidates for use in a 

wide variety of biomedical applications. Especially, the possibility of side-chain modification makes 

them a valuable alternative to poly(ethylene glycol), currently the gold standard amongst 

biocompatible polymers. Nevertheless, the cationic ring opening polymerization of 2-oxazolines is not 

compatible with nucleophilic entities, for example hydroxyl and amine moieties. Therefore, the 

modular approach of ‘click chemistry’ offers an elegant strategy towards functional PAOx by post-

polymerization modification of PAOx that contain clickable groups. This feature describes the 

synthesis of PAOx with such clickable entities at the chain-end or in the side-chain, as well as their 

potential (bio)materials applications. 
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1 Introduction 

Environmental, economical and social considerations have directed scientific research towards the 

development of sustainable materials and technologies. In organic chemistry, this has progressed to a 

general mindset of reducing the complexity of synthesis routes and minimizing the use of harmful 

reactants and solvents. Especially research in chemistry for biomedical applications is bound to 

extreme reduction of toxic chemicals, which is strictly regulated by different agencies such as the U.S. 

Food and Drug Administration (FDA) and the European Medicines Agency (EMA). In this context, 

Kolb, Sharpless et al. introduced the concept of click chemistry in 2001, which embodies a selective 

set of reactions that are wide in scope, modular, tolerant to a broad range of functional groups, excel in 

terms of yield, purity, simplicity and ease of purification (use of non-chromatographic methods) and 

are conducted under mild conditions (e.g. low temperatures), producing only inoffensive or no 

byproducts.1 Reactions that meet these criteria are usually highly energetically favorable, for example, 

by formation of σ-bonds from energetically less stable π-bonds (f.e. 1,3-dipolar azide-alkyne 

cycloadditions)1-2 or by relaxation of ring strain energies (f.e. tetrazine ligation).3 

Within the field of polymer science, click chemistry has proved to be extremely successful and has 

found application in the synthesis of biohybrids,4 hydrogels,5 nanocarriers for drug delivery,6 

functionalized surfaces,7 and design of polymers with a variety of architectures.7b, 8 It must be noted 

that true polymer click reactions must comply with some additional criteria, such as equimolarity, 

which is especially important for polymer-polymer coupling reactions, large scale purification and fast 

time scales.9 The latter requirement is probably more relevant to biochemical reactions than to pure 

polymer chemistry. In Scheme 1, an overview of click reactions that have extensively been used in 

polymer chemistry is given. 
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Scheme 1. Illustrative click reactions that are frequently used in polymer chemistry. 

 

The copper(I) catalyzed azide-alkyne (Huisgen) cycloaddition (CuAAC), as reported by Kolb, 

Sharpless et al., has been the most popular click reaction to date. Nevertheless, the presence of 

residual copper poses toxicity issues for further use in biomedical applications, stimulating the 

development and use of metal-free click reactions.10 As such, strain promoted azide-alkyne 

cycloadditions (SPAAC) have been emerging as metal-free, bioorthogonal alternative to the CuAAC 

reaction.11 Furthermore, thiol-ene coupling has proven to be an extremely efficient and non-invasive 

method for post-polymerization modifications and for the formation of polymeric networks.12 

However, it is important to distinguish between the base-catalyzed thiol Michael addition and the 

radical-mediated thiol-ene reaction. For the latter, the real ‘click’ nature can be debated as large 

excesses of the thiol-containing compound is often needed in order to reach full conversion and the 

radicals present in the reaction mixture can induce side reactions. This argument is particularly true for 

polymer-polymer coupling, for which purification becomes complicated in the presence of side-
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products and/or unreacted starting materials.13 Nevertheless, thiol-ene coupling can be an efficient tool 

for ligation of smaller thiol-containing molecules that can easily be separated from the modified 

polymer by simple precipitation. The popularity of click chemistry has stimulated researchers to look 

for new modular reagents for efficient polymer conjugation. Hawker et al. recently reported the 

nitrosocarbonyl hetero-Diels-Alder cycloaddition for the synthesis of block copolymers.14 Also, 

reversible linking was recently realized by Winne, Du Prez and coworkers, using 1,2,4-triazoline-3,5-

dione (TAD) click chemistry.15 At the same time, it should be emphasized that not all efficient 

reactions can be associated with the click concept and a critical evaluation of Sharpless’ criteria and 

additional polymer click requirements is essential before labeling new procedures ‘click reactions’. 

In polymer chemistry, clickable entities can be introduced on polymer chains by end-functionalization, 

using functional initiating and terminating species and/or by side-chain functionalization, making use 

of functional monomer(s) or by post-polymerization modification. Ideally, a universal polymer 

backbone could serve as scaffold to which different functionalities can be attached in an orthogonal 

fashion, as was previously applied for, e.g., supramolecular side-chain functionalized 

polynorbonenes.16 Such a multi-functional design strategy requires synthesis of highly versatile 

polymers with well-defined microstructures. In this view, poly(2-oxazoline)s (PAOx) seem to be 

perfect candidates (Figure 1).17 

 

 

 

 

 

Figure 1. Representative functionalization possibilities of poly(2-oxazoline)s using click chemistry. 
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PAOx are prepared by living cationic ring-opening polymerization (CROP) of 2-oxazolines (Scheme 

2).18 The living nature of CROP can lead to narrow molar mass distributions (Ð < 1.2) and allows for 

controlled introduction of chain-end (initiation/termination) and side-chain functionalities.19 However, 

the CROP of 2-oxazolines is associated with limitations in terms of monomer and initiator choice as 

well as purity of the reaction mixture, since undesired nucleophilic groups/species, including water, 

induce termination or chain transfer and coupling side reactions leading to less defined polymers.20 

Nevertheless, a variety of 2-oxazoline monomers suitable for CROP are readily available or can easily 

be synthesized, which allows for tuning of physico-chemical properties such as solubility (e.g. lower-

critical solution temperature (LCST)),21 and crystallinity.18c, 22 

 

 

Scheme 2. Schematic representation of the cationic ring opening polymerization (CROP) of 2-oxazolines. 

 

In the past decade, PAOx – that can be regarded as pseudo-peptides based on structural analogy – have 

become of particular interest as versatile biomaterials and potential alternatives to poly(ethylene 

glycol) (PEG), which is currently the gold standard in polymer-based biomaterials.23 The 

biocompatibility and non-cytotoxicity of PAOx, mostly documented for poly(2-methyl-2-oxazoline) 

(PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx), have been demonstrated in several in vitro and in 

vivo studies.24 The structural adaptability, biocompatibility and so-called ‘stealth’ behavior of PAOx 

makes them suitable for a variety of biomedical applications such as polymer therapeutics,21a, 25 

scaffolds for 3D cell culture,26 surface modification,27 tissue adhesives,28 matrix excipient for solid 

dispersions,26c, 29 and antimicrobial agents.30 

As the living CROP of 2-oxazolines is susceptible to chain-transfer reactions, conjugation of 

biological functionalities such as targeting groups, labeling moieties, etc. to the polymer backbone is 

preferably performed via post-polymerization modification reactions.31 In order to retain the highly 

defined structure in the final (co)polymer, the number of post-polymerization reaction steps should be 
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minimized and highly selective reactions with quantitative conversion are of utmost importance. The 

concept of click chemistry, therefore, perfectly matches this need for straightforward, efficient post-

polymerization modification of PAOx (co)polymers that are intended for biomedical use. The aim of 

this feature article is to show that PAOx can serve as a universal clickable polymer platform and that 

click chemistry presents a versatile toolbox towards multi-functional PAOx as biocompatible 

polymers. Therefore, the synthesis of PAOx with clickable chain-end and side-chain functionalities 

will be discussed in detail as well as their potential applications, especially in the biomedical area. 

 

2 Poly(2-oxazoline)s with clickable chain-end functionalities 

End-group functionalization of PAOx is fairly straightforward in the sense that functional initiators 

and/or terminating agents can be utilized during CROP to introduce α- and/or ω-chain-end 

functionalities, which has widely been reported in the past.19 While many end-functionalities suitable 

for post-polymerization modification using click chemistry can be introduced, only a limited number 

have been used as such (Figure 2). Thus far, most research has focused on material properties and 

applications of CuAAC ‘end’-coupled PAOx, rather than exploring new synthetic click strategies and 

reports are mostly limited to PMeOx and PEtOx. 

 

 

 

 

 

 

Figure 2. Overview of end-functionalities used for click chemistry introduced by initiation (top left), termination (top right) 

and post-polymerization modification (bottom). 
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2.1 Synthesis of chain-end clickable poly(2-oxazoline)s 

As discussed above, the living CROP of 2-oxazolines offers good control over molar mass distribution 

as well as high end-group fidelity of the resulting PAOx. In terms of initiation, this requires fast 

initiation and compatibility of functional groups in the initiator with CROP. Currently, alkylating 

agents such as halides, triflates and tosylates are predominantly used to achieve the required fast 

initiation, with tosylates being mostly preferred based on their higher stability and ionic character of 

the propagating species. It should however be noted that less reactive aliphatic tosylates, such as 

butynyl and pentynyl tosylates lead to slow initiation and nosylates might be used instead as faster 

intiating, yet stable, alternatives.32 In a first report on clickable end-functionalized PAOx by 

Hoogenboom and Schubert, propargyl tosylate was used as initiator.33 As a proof of concept, 

acetylene-functionalized PEtOx was subsequently clicked to aromatic, UV-active moieties bearing an 

azide group as well as heptakis-azido-β-cyclodextrin by means of CuAAC “click” chemistry. 

However, conjugation of heptakis-azido-β-cylcodextrin had to be performed at high temperature (100 

°C) under microwave irradiation, so that the click nature of this reaction is questionable. It must be 

noted that the acetylene group is susceptible to deprotonation and side reactions can occur upon 

termination with methanolic potassium hydroxide, which is a commonly used terminating agent for 

the CROP of 2-oxazolines.34 The commercial availability of propargyl tosylate and the efficiency of 

the CuAAC click conjugation, made this route towards clickable PAOx very popular and many 

functionalities, including virus-like particles,35 thermo-responsive dendrimers,36 amino acids,37 and 

cyclic peptides38 have been coupled in a similar way (cfr. section 2.2). However, clicking of 

incompatible macromolecules, e.g. for the synthesis of polymer-polymer and polymer-dendrimer 

conjugates, does not always result in the expected high yields, because of solubility issues.34, 39 

Schubert et al. prepared star-shaped poly(ɛ-caprolactone)-block-PEtOx copolymers by an arm-first 

approach using CuAAC.40 As pointed out by the authors, these reactions technically do not qualify as 

true click reactions because quantitative conversion requires a large excess (> 24-fold) of polymer 

arms. Additionally, the polyamide backbone of PAOx strongly interacts with residual copper, making 

its removal rather cumbersome, especially for difficult to solubilize amphiphilic multiblock 
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conjugates. Theogarajan et al. showed effective removal of the copper catalyst using sodium sulfide, 

but this led to the introduction of trace amounts of sulfur.34 A transition-metal free alternative to the 

CuAAC click reaction is thiol-ene coupling. Therefore, allyl p-toluene sulfonate was employed by 

Robin and coworkers to initiate the CROP of 2-oxazolines PAOx yielding allyl end-functionalized 

PAOx. Subsequent radical thiol-ene modification was optimized for radical initiator content and 

concentration of the reaction mixture.41 

While the introduction of clickable triple bonds is mostly accomplished by propargyl tosylate 

initiation, it has also been reported using hexynoic acid as terminating agent leading to PAOX with a 

pentynyl group that is connected via a degradable ester linkage.42 Similarly, azide functionalities can 

be easily incorporated during termination by addition of an excess of sodium azide,40, 43 or can be 

incorporated during CROP by initiation with 6-azido-1-hexane tosylate.44 These azide end-capped 

PAOx can be used in CuAAC coupling, as well as for the metal-free SPAAC reaction. However, 

cyclooctyne precursors are more expensive and have a low shelf stability compared to terminal 

alkynes and copper catalysts. 

Theogarajan et al. synthesized cyclooctyne functionalized PAOx that can be used in SPAAC coupling, 

by post-polymerization modification of piperazine end-capped PMeOx (Figure 2).45 The in vitro 

biocompatibility of polymersomes prepared via SPAAC, proved to be superior compared to their 

copper-clicked counterparts, emphasizing the importance of the Cu-free synthesis routes. 

Another bioorthogonal approach, reported by Hoogenboom, Barner-Kowollik et al., is the endcapping 

of living PAOx with clickable sodium cyclopentadiene yielding PAOx with cyclopentadiene at the ω-

terminus that can be conjugated to N-substituted maleimides at ambient temperatures using Diels-

Alder chemistry.46 

Recently, acrylic acid was used as terminating agent, which was used in a metal-free nitrile oxide 1,3-

dipolar cycloaddition by in situ nitrile oxide generation.47 A one-pot double ‘click’ post-

polymerization modification of PAOx was achieved by Hoogenboom and Schubert based on an 

anthracene-based initiator and sodium azide as terminating agent for Diels-Alder and CuAAC 
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clicking, respectively, presenting a prime example of the versatility of the PAOx-click synthetic 

platform.36b 

2.2 Applications of chain-end clickable poly(2-oxazoline)s 

Whereas (defined) block copolymers of PAOx are easily synthesized by sequential polymerization, 

linking of structurally different polymers is not achievable during the polymerization process. In this 

respect, chain-end modification using click chemistry is an elegant route towards the modular 

synthesis of block copolymers by coupling of well-defined macromolecular structures. Such block 

copolymers have the ability to self-assemble into supramolecular nanomaterials (f.e. micelles or nano-

phase separation in bulk), depending on the polymer design. PAOx polymer-polymer coupling using 

copper-mediated and copper-free click chemistry has been reported with hydrophilic PEG blocks.43b, 46 

In this way, PAOx-PEG star-shaped architectures could be obtained in an arm-first approach by 

CuAAC clicking of propargyl PAOx arms to an azido-functionalized star-shaped PEG core.48 In a 

similar approach, star polymers have been prepared starting from azido-functionalized β-

cyclodextrin.33 However, conjugation of hydrophilic PAOx (PMeOx or PEtOx) with hydrophobic 

polymer blocks offers even more possibilities towards complex architectures due to microphase 

segregation of immiscible polymer segments. Well-defined micellar assemblies consisting of a 

hydrophobic core and a hydrophilic outer shell have received a great amount of attention as drug 

delivery vehicles to prevent fast blood clearance of small drug molecules or enhance dissolution of 

poorly water-soluble drugs.49 It was shown that star-shaped poly(ɛ-caprolactone)-block-PEtOx 

copolymers with good loading capacities (19 moldye/molpolymer) of the hydrophobic dye fat brown RR 

could be obtained through CuAAC click chemistry.40 Moreover, high blood compatibilities were 

observed for these micellar assemblies, proving their potential in biomedical applications. Other 

PAOx-based polymeric architectures that were synthesized using the CuAAC click concept and are 

able to form self-assembled vesicles include amphiphilic poly(ɛ-caprolactone)–PEtOx graft 

copolymers,50 linear PMeOx-poly(tert-butyl acrylate) copolymers,39 and ABA triblock copolymers of 

PMeOx (block A) and poly(siloxane) (block B).34 The latter could also be obtained via metal-free 

SPAAC coupling.45 Besides block copolymers, self-assembling polymer-dendrimer conjugates have 
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also been prepared based on the click concept. Acid-labile polyester dendron-PEtOx aggregates were 

prepared by Sanyal, Hoogenboom et al. in a one-pot cascade reaction using 9-

(azidomethyl)anthracene, a difunctional linker that can be reacted using Diels-Alder cycloaddition and 

contains an alkyne moiety for CuAAC click chemistry.36b Dual-responsive poly(benzyl ether)-poly(2-

isopropyl-2-oxazoline) (PiPropOx) assemblies could be obtained using CuAAC click chemistry. 

Interestingly, these copolymers combine dendron pH-responsiveness and PiPropOx LCST behavior 

resulting in reversible morphology changes upon variation of both pH and temperature (Figure 3).36a 

Under basic conditions the acidic groups on the dendron are deprotonated, so that both blocks are 

hydrophilic and the dendritic-linear block copolymers are fully water-soluble. On the other hand, at 

low pH and high temperature, these dendritic-linear block copolymers were insoluble in aqueous 

solution. At low temperatures, fibrous assemblies could be obtained by increasing the pH, due to 

aggregation of the hydrophobic dendritic wedges, whereas increasing the temperature at high pH 

resulted in the formation of lamellar structures with a hydrophilic carboxylate periphery and a 

hydrophobic (collapsed) PiPropOx interior. Similar temperature-induced alterations of the morphology 

were observed for CuAAC clicked PEtOx-peptide bioconjugates that self-assembled into nanotubes 

below the LCST and hydrophobic microspheres above the LCST.38 Conjugates of PiPropOx and 

fluorenylmethoxycarbonyl-amino acids, prepared using CuAAC click chemistry, formed colloidal 

particles depending on the type of amino acid attached, as shown by Caponi et al.37 Moreover, two 

component mixtures of these colloidal systems and a phosphate functionalized iPropOx-amino acid, 

showed additional enzyme responsive behavior upon addition of phosphatase, which alters the amino 

acid charge and functionality by transforming the phosphate moiety to a hydroxyl group. 
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Figure 3. Morphology changes upon variation of pH and temperature, by dendron (de)protonation and reversible LCST 

behavior of PiPropOx, respectively. Reproduced with permission from Kataoka, K.; Jang, W.-D. et al. Chem. Commun. 2012, 

48, 3662-3664. 

In an interesting study of Xia et al., liposome morphology alteration was used to release the anti-

cancer drug doxorubicin encapsulated in the hydrophobic core.44 Therefore, an alkyne-modified pH-

sensitive distearoyl phosphatidyl ethanolamine (DSPE) moiety was clicked to azide-functionalized 

PEtOx. Additionally, a tumor targeting folate unit could be attached to the ammonium terminated 

PEtOx-DSPE block polymer through a N-hydroxysuccinimide/amine coupling. This study nicely 

exemplifies that click chemistry can be used to selectively attach certain functionalities and, as such, 

obtain multifunctional PAOx in a straightforward manner. Other drug delivery vehicles, characterized 

by a hydrophobic core and a hydrophilic PAOx shell, that have been synthesized through CuAAC 

click chemistry, are deep-cavity cavitands, i.e. rigid hydrophobic cage-like macrocycles for which the 

attachment of peripheral PAOx is essential for water-solubility.43a 

Other, non-spherical nanostructures, were reported by Schacher et al. for self-assembling 

oligophenyleneethynylenes (OPE)-PEtOx bolaamphiphiles.51 In order to avoid side reactions of the 

azido-functionalized PEtOx with the internal alkyne bonds present in OPE, a template assisted 

CuAAC coupling was performed. Therefore, sheet-like aggregates of OPE, in which the internal 

alkyne bonds are situated at the interior and the terminal alkyne bonds are located at the exterior, were 

prepared prior to CuAAC with azido-PEtOx. Depending on the ratio of the hydrophilic/hydrophobic 

parts, the resulting bolamphiphiles showed a cooperative two-step (nucleation-elongation) 

supramolecular organization in aqueous solution into anisotropic platelets. Furthermore, the self-

assembly of block copolymers consisting of incompatible blocks has been investigated for use in 

nanolithography.42 Microphase-segregation of such block copolymers is controlled by the size and 

chemical composition of the individual blocks and a modular synthetic approach allows optimization 

of both characteristics in a straightforward manner. In this respect, a family of polystyrene-PEtOx 

block copolymers with varying PEtOx volume fraction, have been prepared by means of CuAAC click 

chemistry. Thin films of the resulting block copolymers on a silicon substrate showed, after annealing, 

the formation of hexagonally packed cylinders with sub-20 nm feature sizes perpendicular to the 

surface (Figure 4). 
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Figure 4. AFM height image of hexagonally packed cylinders formed in annealed thin films of phase-segregated 

polystyrene-PEtOx block copolymers. Reproduced with permission from Schubert, U.S.; Campos, .L.M. et al. ACS Macro 

Lett. 2013, 2, 677-682. 

 

Click chemistry-based surface modification of icosahedral virus-like particles (VLP) was 

demonstrated by Jordan, Finn et al.35 Ligation of polymers on the VLP surface not only leads to 

enhanced bioavailability, but also allows for biological labeling. In this study, the thermal stability of 

the capsids was demonstrated to significantly increase by CuAAC coupling with chain-end and side-

chain alkyne-functionalized PAOx, of which the latter showed the best results. Surface modification of 

inorganic substrates has proven to be extremely successful making use of click chemistry, because of 

its high reactivity in heterogeneous media.7a PAOx functionalization of silicon surfaces was 

demonstrated using microwave-assisted CuAAC modification.52 Furthermore, thin polymer films 

bearing azido groups could be coated with propargyl tosylate initiated PMeOx, resulting in antifouling 

surfaces.53 Contrary to PEG, these PMeOx coatings proved to be suitable for micropatterning using 

RGD-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT), resulting in nanoarrays with 

specific cell binding sites. In a different approach, crack-free PMeOx films on different polymeric 

substrates were prepared from α,ω-alkoxysilane PMeOx that was cross-linked in a sol-gel process 

through condensation with tetraethoxysilane and (3-glycidoxypropyl)trimethoxysilane.41 To this end, 

the α,ω-telechelic alkene-functionalized PMeOx precursor, synthesized using allylic tosylate as 

initiator and allylamine as terminating agent, was silylated at both the α- and ω-end using thiol-ene 

coupling. 
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3 Poly(2-oxazoline)s with clickable side chains 

One of the main features and advantages of PAOx, f.e. compared to the widely utilized PEG, is the 

possibility of straightforward side-chain modification. Side-chain functionalities can be introduced 

making use of functional 2-oxazoline monomers. Similar to initiating species, compatibility of the 

functional group on the 2-oxazoline moiety with CROP is of prime importance. Therefore, many 

interesting functionalities are not directly accessible via CROP and protected monomers with 

additional post-polymerization functional group deprotection is often required, complicating the 

synthetic procedure. Quantitative post-polymerization modifications using click chemistry has been 

successfully reported for PAOx with side-chain alkenes, alkynes and azides (Figure 5). 

 

 

 

 

 

 

Figure 5. Overview of reported 2-oxazoline monomers with clickable side chains. 

 

In addition, polymer properties such as hydrophilicity can be further fine-tuned by copolymerization 

of two monomers. Especially copolymerization of functional monomers with hydrophilic MeOx and 

EtOx has proven to be very popular in order to obtain water-soluble, biocompatible copolymers with 

clickable side chains. In a typical (co)polymerization a solution of the initiator and monomer(s) in a 

dry solvent, typically acetonitrile, is reacted at high temperatures by means of conventional heating or 

microwave irradiation.54 
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3.1 Synthesis of poly(2-oxazoline)s with clickable side chains 

Since the first synthesis of a 2-oxazoline structure in 1889, a variety of strategies have been developed 

for the preparation of 2-oxazoline monomers.17b, 55 Especially the Wenker method (starting from 

activated carboxylic acids) and the Witte-Seeliger reaction (starting from nitriles) are widely applied 

synthesis routes, both of which have been applied for the synthesis of 2-oxazolines with clickable side 

chains (Figure 6). In a first report on side-chain clickable PAOx by Jordan et al., the Wenker method 

was used for the synthesis of an alkyne 2-substituted-2-oxazoline.56 Therefore, hexynoic acid acid (1a) 

was activated to the acid chloride (1b) which was subsequently reacted with 2-chloro-2-ethylamine, 

resulting in a secondary amide (1c). Ring-closure of the secondary amide under basic conditions 

yielded the corresponding 2-pentynyl-2-oxazoline. A variation of the Wenker method was reported for 

the synthesis of 2-butynyl-2-oxazoline (ButynOx), where a carbodiimide / N-hydroxysuccinimide 

system was used to activate the carboxylic acid.57 Although this butynyl moiety was used for post-

polymerization functionalization and cross-linking of P(EtOx-ButynOx) copolymer micelles through a 

thiol-yne click reaction, it can also be used in CuAAC or SPAAC click reactions.58 The Witte-Seeliger 

reaction is used to a much lesser extent for the synthesis of clickable 2-oxazoline monomers, due to 

the high cost of their nitrile precursors and possible side-reactions of the unsaturated bonds at the 

required elevated reaction temperatures. Also, the release of ammonia during this reaction is a major 

drawback as it acts as a chain transfer agent in CROP. 2-(4-Bromophenyl)-2-oxazoline was prepared 

via the Witte-Seeliger procedure and was further reacted in a Sonogashira coupling to obtain 

trimethylsilyl-protected 2-(4-ethynylphenyl)-2-oxazoline.59 

 

 

 

 

Figure 6. Commonly used synthesis routes towards 2-substituted-2-oxazolines: 1) Wenker method using an activated 

carboxylic acid. 2) Witte-Seeliger reaction. 
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The carbodiimide / N-hydroxysuccinimide variation on the Wenker method, similar to that for the 

synthesis of ButynOx, was also used to prepare 2-butenyl-2-oxazoline (ButenOx) by Schlaad et al.60 

In contrast to 2-isopropenyl-2-oxazoline, in which the double bond interferes with CROP,61 the double 

bond of ButenOx is preserved during the polymerization as it is electronically decoupled from the 

oxazoline ring. Hoogenboom, Schubert et al. reported on a green approach for the synthesis of 2-

decenyl-2-oxazoline (DecenOx) based on naturally derived undecenoic acid, in which traditionally 

used organic solvents such as dichloromethane and methanol were replaced by 2-methyl-

tetrahydrofuran (mTHF), a solvent obtained from waste biomass.62 As the (co)polymerization of 

DecenOx was performed in bulk and the subsequent UV-initiated thiol-ene click reaction proceeded in 

mTHF or methyl laurate, this represents a green alternative towards functional PAOx. Furthermore, 

the carbodiimide / N-hydroxysuccinimide system was applied for the synthesis of an azido-

functionalized 2-oxazoline monomer, using 6-azidohexanoic acid as starting material by Udet and 

coworkers.63 

The use of thiol-ene click reactions at the monomer stage has been explored for 2-isopropenyl-2-

oxazoline, resulting in PAOx with aryl, ester, (protected) amine and (protected) carboxylic acid side 

chains.64 However, CROP of these functional monomers gave low yields and no high molecular 

weight PAOx could be obtained because of incompatibility of the thio-ether bond with the CROP of 2-

oxazolines.65 A modular approach, using PAOx as a universal backbone, is also amenable since the 

number of synthesis steps is reduced to a minimum and a variety of functional PAOx can be produced. 

Up to now, post-polymerization modification of PAOx by means of click chemistry is mainly focused 

on CuAAC and thermal or UV-initiated free radical thiol-ene reactions.56, 60 

 

3.2 Applications of poly(2-oxazoline)s with clickable side chains 

Side-chain functionalization offers new perspectives in the sense that different architectures are 

achievable and higher degrees of functionality can be obtained compared to end-group 

functionalization. Polymer-polymer coupling, as described in section 2.2, has been performed on 
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PAOx with clickable side chains to obtain amphiphilic graft copolymers that self-assemble into 

nanoparticles. The grafting-onto approach as reported by Monge et al. (cfr. section 2.2),50 has been 

applied for grafting of poly(D,L-lactide) onto side-chain functionalized azido-PAOx.63 A frequently 

adopted approach to stabilize self-assembled micelles is covalent cross-linking of the micellar core. 

Such cross-linked micelles show better pharmaco-kinetic profiles, i.e. longer retention times, because 

fast disintegration is prevented. PAOx-based micelles have been cross-linked using thiol-yne click 

chemistry, with poly[2-(heptyl/pentynyl)-2-oxazoline] serving as hydrophobic blocks (Figure 7).66 

Moreover, amine end-functionalization of the hydrophilic PMeOx block, allowed surface modification 

of the obtained nanoparticles by alkylation of the amine functionality with different aromatic 

molecules. 

 

 

 

 

Figure 7. Self-assembly of amphiphilic PAOx and subsequent core cross-linking using CuAAC chemistry. Reproduced with 

permission from Weberskirch, R. et al. Macromol. Chem. Phys. 2013, 214, 2783-3791. 

 

Other PAOx-based microparticles, for which click chemistry has been applied to cross-link side-chain 

functionalized linear PAOx, are hollow capsules that can be used in drug delivery applications.67 

These capsules were synthesized by layer-by-layer assembly of PAOx/poly(methacrylic acid) brush 

copolymers onto silica particle templates, which were etched away with HF. Investigation of the 

protein adsorption showed low fouling behavior, although the best results were obtained for brush-like 

capsules based on a oligo(2-ethyl-2-oxazoline)methacrylate macromonomer with cross-linkable 

oligoethyleneglycol moieties. 

Multifunctional nanoparticles based on P(EtOx-DecenOx) were synthesized by fully exploiting the 

versatility of PAOx and the modular approach of click chemistry, as reported by Hoogenboom, 
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Schubert et al. (Figure 8).68 Here, three different clickable groups were incorporated into the PAOx 

structure, namely anthracene (initiation), alkene (side-chain) and azide (termination). Three Cu-free 

reactions, namely the Diels-Alder, thiol-ene and SPAAC reaction with maleimide, a thiol-

functionalized sugar and cyclootyne, respectively, could be performed in a one-pot synthesis, 

emphasizing the orthogonality of the different reactions. Nanoparticles were obtained by labeling the 

cyclooctynol hydroxyl group with hydrophobic fluorescein 5(6)-isothiocyanate, which is a well-

known biomarker. 

 

 

 

 

Figure 8. Schematic representation of multi-functional PAOx, synthesized using multiple bioorthogonal click reactions. 

Reproduced with permission from Hoogenboom, R.; Schubert, U.S. et al. Macromolecules, 2011, 44, 6424-6432. 

 

Cross-linking of polymeric chains has also been widely applied for the formation of hydrogels. Such 

swollen polymeric networks are emerging as biomaterials for controlled drug delivery and as three 

dimensional cell (3D) culture scaffolds.69 Hydrolytically degradable PAOx hydrogels, based on 

MeOx/EtOx and DecenOx and an ester containing dithiol crosslinker, were synthesized by mild, 

cytocompatible radical thiol-ene cross-linking under low-intensity UV irradiation as reported by 

Dargaville and Hoogenboom.70 Peptide adhesive sites (arginine-glycine-aspartic acid = RGD) were 

incorporated in protease degradable PAOx hydrogels, using the same mild thiol-ene photochemistry.71 

A live/dead assay showed that fibroblasts were largely unaffected by the curing process and were 

viable within the 3D hydrogel. In a related study, cross-linked networks of P(EtOx/2-nonyl-2-

oxazoline-co-DecenOx) copolymers were obtained making use of a bis-2-oxazoline initiator.72 

Attachment of RGD motifs, using thiol-ene click chemistry, resulted in the formation of microparticles 

that show preferential binding to cancer cells. 
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Besides the use of cross-linking for hydrogel fabrication or stabilization of micro/nanoparticles, cross-

linked hydrophobic PAOx have been proposed to produce alternative polyurethane thermosets.73 Hard-

rigid to soft-elastic materials could be obtained by control over the polymer microstructure during 

CROP, which determines the position and degree of functionalization. Solid-state UV-mediated cross-

linking of alkene-functionalized PAOx copolymers was reported by Wiesbrock et al. for the 

fabrication of negative photoresists.74 

Furthermore, physicochemical properties of PAOx are largely determined by the side-chain structure 

and can be tuned by changing the substituent in the 2-position of the monomer. In particular, tailoring 

of the LCST behavior of PAOx by side-chain variation has been widely investigated, because stimuli-

responsive polymers hold great potential for biological applications.75 The use of click chemistry for 

tuning of the cloud point was shown for P(iPropOx-ButenOx) copolymers using thiol-ene chemistry 

with different ω-functional thiols (Figure 9).76 A series of glycosylated PAOx exhibited cloud points 

over the entire aqueous temperature range (10-85 °C) depending on the fraction of functional units and 

presence of hydrophilic hydroxyl groups. Similar glycopolymers based on P(EtOx-DecenOx) 

copolymers showed LCST behavior with cloud point temperatures increasing with increasing 

(hydrophobic) protected sugar content.77 This counterintuitive effect was attributed to the formation of 

aggregates by hydrogen bonding between the sugar moieties, which is facilitated by the flexible decyl 

spacer. As such, the hydrophobic chain is shielded from the aqueous environment, resulting in an 

overall decrease of the hydrophobicity. In a related, but more advanced, system two sugar units were 

attached to the polymer backbone using CuAAC monomer modification and post-polymerization 

thiol-ene functionalization.59 These thermo- and pH-responsive glycopolymers showed lectin 

(Concanavalin A) binding which renders them useful for cell targeting in diagnostic or therapeutic 

applications.78 Lectin binding microspheres have been fabricated based on the irreversible LCST 

behavior of PiPropOx. PiPropOx undergoes irreversible crystallization upon long-term annealing 

above 60 °C, resulting in the formation of coagulate particles.79 Surface modification of such 

microparticles was enabled via copolymerization of PiPropOx and ButenOx and subsequent thiol-ene 

reaction with thiol-functionalized sugars. A thermal stability study of thiol-ene glycosylated PButenOx 
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showed that C-S bond cleavage already occurs around 275 °C, while its unmodified analogue was 

stable up to ~ 405 °C.80 This indicates that click functionalization can result in thermally less stable 

materials. 

 

 

 

 

 

Figure 9. Tuning of the LCST behavior of thiol-ene modified PAOx. Reproduced with permission from Schlaad, H. et al. 

Macromol. Biosci. 2009, 9, 157-161. 

 

Interestingly, the homopolymer of ButenOx displays an upper critical solution temperature (UCST) at 

around 44 °C in ethanol/water mixtures (55/45 w/w).81 Crystalline PButenOx microspheres, obtained 

by cooling down from solution, could be functionalized with hydrophilic short single-stranded nucleic 

acids using thiol-ene chemistry. No morphology change was observed after post-polymerization 

modification, and the nucleic acid grafts present on the surface of the microspheres were still active 

towards hybridization with complementary sequences. The specifity of the hybridization makes such 

systems attractive for sensing applications. 

Zwitterionic PAOx could be synthesized starting from statistical P(EtOx30-ButenOx10) copolymers by 

thiol-ene reaction with 2-dimethylaminoethanethiol and subsequent quaternization of the amino-

functionality with 1,3-propansultone and β-propiolactone (Figure 10).82 The resulting 

poly(sulfobetaine)s and poly(carboxybetaine)s were characterized with good cell and blood 

compatibility as well as anti-coagulant activity. Moreover, given the ‘stealth’ behavior of these 

zwiterionic PAOx, they are excellent candidates for use in anti-fouling coatings, f.e. for medical 

devices. The same P(EtOx30-ButenOx10) precursor was used for the preparation of Pt(II)-containing 
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PAOx with tumor targeting saccharides to produce an alternative for the commercial anticancer drug, 

cisplatin (Figure 10).83 Both the sugar and Pt(II) coordinating ligand, terpyridine, were attached to the 

polymer chain through thiol-ene click chemistry with the PAOx alkenyl side-chain. The in vitro 

cytotoxicity of these platinum containing glycopolymers showed similar results to cisplatin. 

 

 

 

 

 

 

 

Figure 10. Structure of zwitterionic PAOx and Pt(II) containing PAOx, synthesized using thiol-ene chemistry. 

 

Very recently, Traeger, Schubert and coworkers reported the synthesis of a library of cationic PAOx 

by thiol-ene functionalization of P(MeOx-ButenOx/DecenOx) copolymers with t-butyl carbamate 

(boc) protected 2-aminoethanethiol or dimethylaminoethanethiol.84 These PAOx, with pendant 

primary and tertiary amino groups in the side-chain, were screened for non-viral gene delivery. It was 

shown that the transfection efficiency, DNA condensation as well as cytotoxicity and polyplex 

stability strongly depends on the hydrophobicity of the PAOx copolymer and the type and amount of 

amino groups. 

Furthermore, CuAAC click chemistry was used to conjugate the antiparkinsonian drug rotigotine to 

P(PentynOx10-EtOx190).
85 The use of a hydrolytically cleavable ester linker between the PAOx chain 

and the drug allowed for control over drug release rate. As such, sustained release of rotigotine was 
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observed in male rats, leading to long-term anti-parkinsonian effects as well as a reduction of motor 

complications, which is commonly observed in therapies that cause large dopamine fluctuations. 

 

4 Conclusions and outlook 

In the past few decades, click chemistry has become very popular in polymer science as click reactions 

are characterized by quantitative yields, high functional group tolerance and can be performed in 

heterogeneous reaction media. This review describes the use of click chemistry for post-

polymerization modification of poly(2-oxazoline)s (PAOx) towards a variety of functional materials 

ranging from new polymeric architectures via supramolecular assemblies for drug delivery 

applications to bioconjugates and organic-inorganic hybrids. Especially for biomedical applications, 

PAOx have been gaining increasing interest because they combine biocompatibility with so-called 

stealth behavior leading to a wide variety of PAOx-based drug delivery systems that are already 

described. We have shown that the living nature of the cationic ring opening polymerization, followed 

by post-polymerization modification using click chemistry, allows for the synthesis of highly defined 

structures with specific (stimuli-responsive) properties. To this end, well-defined PAOx with a variety 

of ‘clickable’ groups including unsaturated bonds and azide functionalities have been synthesized, 

making use of functional initiating species, monomers and/or terminating agents.  

Nevertheless, to the best of our knowledge, a number of click chemistries has not been investigated in 

combination with PAOx so far, leaving a myriad of possibilities to be explored. For example, 

aldehyde-functionalized PAOx, that have been used in amine and hydrazine ligation reactions were 

recently reported,86 and could be further utilized in aldehyde-aminooxy click type reactions.87 

More advanced, multi-functional PAOx materials can be obtained using multiple orthogonal click 

reactions. The use of various orthogonal click reactions offers an elegant route towards complex 

polymer structures with specific functionalities and properties, as was recently reviewed by Tunca.88 

We believe that further advances within this relatively new research area will help to develop PAOx-

based platforms that fully exploit the versatility of this interesting class of polymers. 
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