Classifying resource efficiency indicators based on LCA practices

Sofie Huysmans, Serenella Sala, Lucia Mancini, Fulvio Ardente, Fabrice Mathieux, Rodrigo A.F. Alvarenga, Steven De Meester, Jo Dewulf

*Research Group ENVOC, Ghent University, Coupure Links 653, 8000 Ghent, Belgium
*European Commission - Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, 21027 Ispra, Italy
*Universidade Federal de Santa Catarina, UFSC, CEP: 88040-970, Florianópolis, SC Brazil
*Universidade do Estado de Santa Catarina, UDESC, CEP: 88509-000, Lages, SC, Brazil

Introduction

Our whole society depends on the use of natural resources. But despite the fact that most natural resources are limited, they are not always used in a sustainable way. To monitor the transition towards a more resource efficient society, a wide variety of indicators has been developed over the years. However, these indicators are not univocally defined, generating confusion about the real meaning of resource efficiency. This paper tries to bring order into these different visions by proposing a systematized framework for resource efficiency indicators.

Defining the concepts

1) **Defining efficiency:**

 Level 1 efficiency originates from process engineering
 \[\text{Level 1 efficiency} = \frac{\text{benefits}}{\text{inventoried flows}} \]

 Level 2 efficiency is based on the eco-efficiency concept
 \[\text{Level 2 efficiency} = \frac{\text{benefits}}{\text{environmental impacts}} \]

2) **Defining benefits, flows, impacts:**

 Flows = natural, industrial & waste resources, emissions
 Benefits = the useful outputs, i.e. products and services
 Impacts = based on natural resource or emission flows

Presenting the framework

- The framework provides insights in what exactly one likes to indicate: flows or environmental impacts, a domestic or global perspective, etc.
- The framework can be used to systematize and further develop existing indicators, or to theorize new indicators (e.g. for waste-as-resources).
- In the article, existing indicators were structured within the framework. One of the main observations was that policies may benefit from insights in the scientific community, e.g. a higher completeness at resource level and the use of other metrics than monetary values to evaluate outputs.

<table>
<thead>
<tr>
<th>Fields of study: environmental science and engineering versus environmental policy</th>
<th>Level 1</th>
<th>Level 2 (Eco-efficiency)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource efficiency at flow level</td>
<td>Benefits over resource flows (natural, waste or industrial)</td>
<td>Benefits over resource flows (often the reciprocal is used)</td>
</tr>
<tr>
<td>Emission efficiency at flow level</td>
<td>Benefits over emission flows</td>
<td>Benefits over (ADP) impact</td>
</tr>
<tr>
<td>Resource efficiency at impact level</td>
<td>Benefits over impacts derived from the resource flows</td>
<td>Benefits over (GWP) impact</td>
</tr>
<tr>
<td>Overall efficiency at impact level</td>
<td>Benefits over impacts from both resource and emission flows</td>
<td></td>
</tr>
</tbody>
</table>

Framework with general examples

The white columns represent ‘resource efficiency indicators in sensu stricto’, the light grey columns represent ‘resource efficiency indicators in sensu lato’. The dark grey columns are here not seen as resource efficiency indicators. They are also presented to clearly accentuate the difference with the other efficiencies.

- GDP = Gross Domestic Product
- ADP = Abiotic Depletion Potential
- GWP = Global Warming Potential

Contact: Sofie.Huysmans@Ugent.be