Carbon capture turned upside down: high-temperature adsorption & low-temperature desorption (HALD)†

Lennart Joos,a Kurt Lejaeghere,a Johanna M. Huck,b Veronique Van Speybroecka and Berend Smit*bcd

Carbon capture & sequestration (CCS) could reduce CO₂ emissions from large fossil-fuel power plants on the short term, but the high energy penalty of the process hinders its industrial deployment. Moreover, the utility of nanoporous materials, known to be selective for the CO₂/N₂ separation, is drastically reduced due to the competitive adsorption with H₂O. Taking advantage of the power plant’s waste heat to perform CCS while at the same time surmounting the negative effect of H₂O is therefore an attractive idea. We propose an upside-down approach for CCS in nanoporous materials, high-temperature adsorption & low-temperature desorption (HALD), that exploits the temperature-dependent competitive adsorption of CO₂ and H₂O. First, we provide a theoretical background for this entropy-driven behavior and demonstrate under what conditions competitive adsorption can be in favor of CO₂ at high temperature and in favor of H₂O at low temperature. Then, molecular simulations in all-silica MFI provide a proof of concept. The International Zeolite Association database is subsequently screened for potential candidates and finally, the most promising materials are selected using a post-Pareto search algorithm. The proposed post-Pareto approach is able to select the material that shows an optimal combination of multiple criteria, such as CO₂/H₂O selectivity, CO₂/N₂ selectivity, CO₂ uptake and H₂O uptake. As a conclusion, this work provides new perspectives to reduce the energy requirement for CCS and to overcome the competitive adsorption of H₂O.

1 Introduction

Nearly half of the world’s CO₂ emissions originate from fossil-fuel power plants. Cutting emissions at these concentrated CO₂ sources would therefore be very effective in fighting climate change.1–4 Carbon capture & sequestration (CCS) is one of the most promising technologies to reduce the CO₂ emissions from large power plants on the short term. CCS can act as an intermediary measure in the transition from fossil fuels to renewable energy, tackling CO₂ emissions of the fossil fuel era, while providing breathing room for renewable technologies to be developed. There are nanoporous materials that can adsorb
CO₂ and separate it from N₂, but the high energy penalty and associated monetary cost CCS imposes on the plant present a serious bottleneck for its industrial deployment. Moreover, most materials show a significant performance drop when H₂O is present in the exhaust stream, further increasing the energy penalty for CCS and hampering its large-scale application.

In Fig. 1, a typical fossil-fuel power plant is outlined schematically. A fossil fuel is burned and the hot combustion gases are brought into contact with a heat exchanger. The high-pressure steam that is produced drives a turbine, which subsequently produces electricity. The exhaust gases still contain some residual heat (around 400 K), but it is difficult to convert into work or electricity and therefore essentially waste heat. In many countries, environmental regulations stipulate that the most hazardous components should be removed from the flue gases before they are released into the atmosphere. Therefore, components such as NOₓ and SOₓ are removed in ‘wet scrubbers’, where the flue gases are contacted with a reactive solution that removes the undesired components from the gas stream. As the hot gases go through an aqueous solution, some H₂O evaporates from the scrubber into the exhaust gases. In order to avoid corrosion in downstream equipment, it is important that this water does not condense, so the exhaust gases should leave the stacks of the power plant well above the saturation point of H₂O.

To remove CO₂ from the exhaust gases of an existing power plant, a post-combustion carbon capture facility could be installed before the flue gases leave the stacks. Currently, the most mature technology to selectively capture CO₂ from post-combustion flue gases is amine scrubbing. The flue gases are washed with an amine solution, in which CO₂ binds with the amines in a chemical reaction. The solution is regenerated in a second step by ‘stripping’ the CO₂ from the amines at high temperature.

Heating the dilute aqueous mixture imposes a severe energy penalty on the process and alternative technologies have therefore been explored. Several nanoporous materials demonstrated a high CO₂/N₂ selectivity, a good CO₂ uptake as well as a less energy demanding regeneration than the amine solutions. Advantageous materials can be found among zeolites, cation-exchanged zeolites (CEZ), metal–organic frameworks.
In the current work, we focus on zeolites. Zeolites are nanoporous materials that are mainly built from SiO₂, although their frameworks may also contain Al, Ge, P and some other elements. From the thousands of theoretically possible topologies only 225 framework topologies have actually been synthesized and are included in the database of the international zeolite association (IZA). Due to its industrial availability as well as commercial applications, all-silica MFI (also known as silicalite-1) is often used as a reference material.

Fig. 1(A) and 2(A) show how an existing power plant can be retrofitted with CCS technology based on nanoporous materials. CCS is a cyclic two step process: in step 1, the flue gas is sent over a bed of the nanoporous material, which retains CO₂ while letting N₂ go through towards the stacks. The CO₂ uptake and CO₂/N₂ selectivity of nanoporous materials drop significantly with temperature, so the incoming stream is cooled, typically to 325 K. In step 2, the CO₂ saturated bed is taken out of the bed of the nanoporous material while N₂ is not retained. CCS2: the bed is regenerated by heating, with the presence of H₂O imposing an additional energy penalty. (B) High-temperature adsorption, low-temperature desorption (HALD). HALD1: adsorption is performed at high temperature, whereas the release of CO₂ and desorption of H₂O.

The CCS performance of nanoporous materials can easily be evaluated with one straightforward metric: the parasitic energy, i.e. the energy output parasitized by CCS. Although the parasitic energy of some nanoporous materials is lower than for amine scrubbing, still some 20–30% of the power plant’s energy output would be used for CCS, corresponding to $40–$60 per tonne of CO₂ abated. Additionally, H₂O in the exhaust stream has a detrimental effect on the performance of most nanoporous materials that have been proposed for CCS in the past, because most of the adsorption sites for CO₂ are fully saturated with H₂O instead. This lowers the CO₂ uptake and increases the energy for the regeneration, as H₂O also has to be removed from the adsorption bed, resulting in an even higher parasitic energy altogether. The detrimental effect of water is indicated with the H₂O warning sign in Fig. 1(A).

In this paper, we propose an alternative operation of the carbon capture process that circumvents the high energy penalty for the CO₂/N₂ separation in the presence of H₂O. CO₂ adsorption is performed at high temperature (400 K), whereas the release of CO₂ happens at low temperature, through saturation of the absorbent with H₂O. Inspiration for the proposed methodology was found in the chemisorption of NOₓ on phosphotungstic acid. At high temperature, NOₓ molecules are chemisorbed in the crystal structure of the acid, substituting the H₂O molecules that were present in the crystal structure before. The NOₓ moieties are released only at low temperature and in the presence of H₂O. The phenomenon of competitive adsorption of H₂O and NOₓ is driven by the entropy difference between the adsorbed and desorbed molecules. Although the search for efficient absorbents is most often based on differences in adsorption enthalpy, this and other examples show the potential of entropy-driven adsorption/desorption processes. In HALD, we also want to exploit the entropy as a driver for competitive adsorption and desorption of CO₂ and H₂O.

A practical setup for this HALD approach is shown in Fig. 1(B) and 2(B). The carbon capture unit is installed immediately after the wet scrubbers, taking in the wet flue gas without cooling at 400 K (step 1). In step 2, the regeneration cycle, the bed is cooled down and saturated with H₂O. When the regenerated bed, empty of CO₂ but full of H₂O, is brought into contact with the hot exhaust gases again, the waste heat of the exhaust gases is used to desorb the H₂O and give CO₂ again a competitive advantage. H₂O is in this process no longer sabotaging the process, but assisting in the adsorption/desorption cycles.

In this process, CO₂/H₂O selectivity, CO₂/N₂ selectivity, CO₂ uptake and H₂O loading are important criteria. When screening a large set of materials, it is interesting to select those that perform best for the four parameters. This multicriteria selection problem can be tackled with a so-called Pareto-approach. First, the materials that outperform all other materials for at least one criterium are selected, thereby drastically reducing the number of candidates. Afterwards, a post-Pareto procedure can rank the materials in the Pareto set by determining how much one or more criteria can be improved with a minimal deterioration in all other parameters. The concept of Pareto efficiency is borrowed from economics, where Pareto efficiency
indicates that resources are allocated in a way that no individual can improve his/her situation without making other individuals worse off.41

In this manuscript, the concept of ‘high-temperature adsorption & low-temperature desorption’ (HALD) is proposed. First, a Langmuir model shows how this counterintuitive approach is based on the temperature dependence of the competitive adsorption between CO2 and H2O. Molecular simulations on the all-silica MFI zeolite subsequently provide a proof of principle for HALD. Furthermore, the Langmuir model is tested by screening the IZA database for the expected trends and the best performing materials are selected using a post-Pareto approach. Finally, we provide an outlook on the commercialization of this technology, and the opportunities and challenges ahead.

2 Theoretical origin of HALD

The concept of high-temperature adsorption & low-temperature desorption (HALD) is based on a competitive adsorption between CO2 and H2O. We want to exploit a behavior in which CO2 wins the competition at high temperatures, whereas H2O adsorption is favored at low temperature. To introduce the concept properly, we first give a theoretical rationalization of the effects governing the process.

Fig. 3 explains the HALD approach with a breakdown of the Gibbs free adsorption energy for CO2 and H2O into an enthalpic and an entropic contribution, at low temperature (here chosen to be 300 K) and high temperature (here set to 400 K). The energy diagram shows a hypothetical situation where the enthalpy and entropy are assumed to be temperature-independent. In the ESI,† we justify this choice by pointing out that ΔHads and ΔSads only have a weak temperature dependence in the 300–400 K interval. For H2O to adsorb preferentially at low temperature (and in the limit at 0 K), the adsorption enthalpy for H2O should be more negative than for CO2 (ΔHads,H2O < ΔHads,CO2 < 0). If then the entropy loss upon adsorption of H2O is higher than that of CO2 (ΔSads,H2O < ΔSads,CO2 < 0), there will be a temperature at which the relative order of the Gibbs free adsorption energy switches. It should also be mentioned that at high temperature, the driving force for adsorption of both gas molecules has decreased significantly, as ΔG has become less negative for both gases.

A more detailed approach to the competitive adsorption of CO2 and H2O is to consider a Langmuir model. Assuming that both gases are competing for the same adsorption sites, the coverage of CO2 and H2O can be written as:

\[
\theta_{\text{CO}_2} = \frac{K_{\text{CO}_2}p_{\text{CO}_2}}{1 + K_{\text{CO}_2}p_{\text{CO}_2} + K_{\text{H}_2\text{O}}p_{\text{H}_2\text{O}}} \tag{1}
\]

\[
\theta_{\text{H}_2\text{O}} = \frac{K_{\text{H}_2\text{O}}p_{\text{H}_2\text{O}}}{1 + K_{\text{CO}_2}p_{\text{CO}_2} + K_{\text{H}_2\text{O}}p_{\text{H}_2\text{O}}} \tag{2}
\]

\(\theta_x\) is the fraction of adsorption sites covered with molecule \(x\), \(p_x\) is the partial pressure of molecule \(x\) in the gas phase and \(K_x\) is the equilibrium constant of the adsorption of molecule \(x\). Dividing eqn (1) by 2 yields

\[
x = \frac{\theta_{\text{CO}_2}}{\theta_{\text{H}_2\text{O}}} = \frac{K_{\text{CO}_2}p_{\text{CO}_2}}{K_{\text{H}_2\text{O}}p_{\text{H}_2\text{O}}} \tag{3}
\]

And given that

\[
K_x = \exp \left(-\frac{\Delta G_{\text{ads},x}}{RT}\right) \tag{4}
\]

we can write

\[
x = \frac{\theta_{\text{CO}_2}}{\theta_{\text{H}_2\text{O}}} = \frac{p_{\text{CO}_2}}{p_{\text{H}_2\text{O}}} \exp \left(-\frac{\Delta G_{\text{ads},\text{CO}_2} - \Delta G_{\text{ads},\text{H}_2\text{O}}}{RT}\right) \tag{5}
\]

or

\[
x = \frac{\theta_{\text{CO}_2}}{\theta_{\text{H}_2\text{O}}} = \frac{p_{\text{CO}_2}}{p_{\text{H}_2\text{O}}} \exp \left(-\frac{\Delta H_{\text{ads},\text{CO}_2} - \Delta H_{\text{ads},\text{H}_2\text{O}}}{RT}\right) \times \exp \left(\frac{\Delta S_{\text{ads},\text{CO}_2} - \Delta S_{\text{ads},\text{H}_2\text{O}}}{R}\right) \tag{6}
\]

\(\Delta G_{\text{ads}}, \Delta H_{\text{ads}}\) and \(\Delta S_{\text{ads}}\) are the Gibbs free energy, the enthalpy and the entropy of adsorption respectively, \(T\) is the temperature and \(R\) is the universal gas constant. Eqn (6) contains three terms: the first term, the ratio of the CO2 and H2O partial pressures, is imposed by the flue gas composition and set to be 14 kPa CO2 and 6 kPa H2O. That is the typical composition of the exhaust gases of coal-fired power plants, where most of the H2O enters the exhaust gas stream during the wet scrubbing stages.42 The second term in eqn (6) is dependent on the difference in adsorption enthalpy between CO2 and H2O. Finally, the third term of eqn (6) includes the difference in adsorption entropy between CO2 and H2O, which is expressed as a function of temperature (\(\Delta S_{\text{ads},\text{CO}_2} - \Delta S_{\text{ads},\text{H}_2\text{O}}\))(T). In ESI,† we compare several models for assessing the adsorption entropy and we selected the model that shows the best agreement with simulation results. Overall, \(x\) (the CO2/H2O selectivity) can be written as a function of \(\Delta H = \Delta H_{\text{ads},\text{CO}_2} - \Delta H_{\text{ads},\text{H}_2\text{O}}\) (the difference in adsorption enthalpy between CO2 and H2O, a material property) and \(T\) (the temperature, a process condition),

\[
x = x(\Delta H, T) \quad \tag{7}
\]

Assuming that the entropic term in eqn (6) is temperature-independent, the Langmuir model implies that \(x\) increases with
increasing temperature only if $\Delta H_{CO_2} - \Delta H_{H_2O} > 0$, in line with the observations from Fig. 3. However, as the adsorption entropy $S(T)$ is dependent on temperature, the threshold from HALD to non-HALD behavior will be shifted to a slightly different value than $\Delta H_{CO_2} - \Delta H_{H_2O} = 0$. This dependence on temperature is clearly visible in Fig. 4a, which shows x_{CO_2/H_2O} as a function of ΔH for different T and Fig. 4b displays the difference between the curves at different temperatures.

In Fig. 4a, it is clear that if ΔH_{CO_2} is becoming more negative than ΔH_{H_2O}, the selectivity towards CO$_2$ adsorption increases for all temperatures. However, when considering the difference in selectivity at various temperatures (Δx in Fig. 4b), it becomes apparent that the CO$_2$/H$_2$O selectivity is higher at 400 K than at 300 K only if ΔH is higher than approximately -2 kJ mol$^{-1}$. The exact threshold value between HALD and non-HALD behavior is based on the temperature dependence of the entropy, which is determined by the model for the entropy (cf. ESI†) as well as by the temperatures at which the adsorption and desorption are considered. In the case of Fig. 4, if ΔH is higher than -2 kJ mol$^{-1}$, the selectivity for CO$_2$ is higher at 400 K than at 300 K and HALD is possible, whereas if ΔH is smaller than -2 kJ mol$^{-1}$, the selectivity towards CO$_2$ only decreases as a function of temperature.

Moreover, the spacing between the curves at different temperatures is highest around $\Delta H = 2$ kJ mol$^{-1}$, so the model predicts materials in this region show good performance for HALD. At high ΔH, the selectivity is less dependent on temperature and the corresponding materials will likely not perform well for HALD. The relatively small range between -2 kJ mol$^{-1}$ and $+2$ kJ mol$^{-1}$ is an indication that the method will be sensitive to small variations, in material properties (ΔH) and process conditions (T) alike.

These simple theoretical considerations give a preliminary insight into the factors that control the HALD concept. For materials with $\Delta H_{CO_2} - \Delta H_{H_2O}$ larger than -2 kJ mol$^{-1}$, an entropy-driven adsorption/desorption of CO$_2$ and H$_2$O is theoretically possible. We validate this concept by means of molecular simulations (Sections 4 and 5), but we first present the used methodology (Section 3).

3 Methodology

In the previous section, we have provided a theoretical background for HALD. In the next sections, we want to validate this model with Monte Carlo simulations. To do so, we need to assess the adsorption enthalpies, ΔH_{CO_2} and ΔH_{H_2O}, and the CO$_2$/H$_2$O selectivity. The adsorption enthalpies can be determined with single-component NVT simulations whereas the CO$_2$/H$_2$O selectivity requires grand canonical Monte Carlo (GCMC) simulations of binary mixtures. We fixed the composition of the adsorbing binary mixture at 14 kPa CO$_2$ and 6 kPa H$_2$O. Adsorbate molecules are allowed to make translation, rotation, swap, and regrowth moves and the zeolite framework is assumed rigid. The CO$_2$/N$_2$ selectivities are determined using the ideal adsorbed solution theory (IAST) and taken from previous work. These studies have shown that these assumptions give reasonable predictions for CO$_2$/N$_2$ binary mixtures.

The simulations in this work are performed using existing force fields. The Lennard-Jones parameters and partial atomic charges for CO$_2$ are taken from the Calero force field, which has proven to be successful in reproducing experimental CO$_2$ isotherms in zeolite frameworks. Parameters for H$_2$O are taken from previous work where the H$_2$O–H$_2$O interactions are modeled with the SPC/E model and the H$_2$O-framework interactions are obtained by scaling the H$_2$O–H$_2$O parameters with the ratio of the CO$_2$–CO$_2$ to CO$_2$–framework parameters. The electrostatic contribution is computed with the Ewald summation, set at a cut-off of 12.5 Å. For all simulations, inaccessible pockets in the zeolite framework are determined with Zeo++ and blocked during the simulations. The force field parameters and atomic charges are listed in the ESI.

The performance of a H$_2$O/zeolite force field is highly sensitive to the H$_2$O model, partial charges as well as the crystal structure and cation content of the zeolites. We used...
the computationally cheap three-site H₂O model, although it will likely favor H₂O–H₂O interactions and might not describe the H₂O-framework interactions accurately. However, the predicted trends should remain valid for other force fields, except for a possible shift of the H₂O isotherms to slightly different pressures and temperatures.

We will now use these Monte Carlo simulations to demonstrate the concept of HALD

1. for the showcase example of all-silica MFI. For MFI, the difference in adsorption enthalpy between CO₂ and H₂O can be determined, so the only variable left in eqn (7) is the temperature, α(T).

2. in a screening of the IZA database. Across the materials in the database, ΔH CO₂ − ΔH H₂O varies. If the adsorption conditions are fixed at 400 K and 14 kPa CO₂/6 kPa H₂O, it is possible to examine α(ΔH). This screening also allows us to pinpoint the most promising materials.

4 HALD in MFI: α(T)

First, we want to provide a proof of concept for HALD using the commercially available all-silica MFI zeolite (often referred to as silicalite-1). For MFI, we find an adsorption enthalpy for CO₂ and H₂O of −26.6 and −31.9 kJ mol⁻¹ respectively. The difference in adsorption enthalpy between CO₂ and H₂O is +5.5 kJ mol⁻¹, so according to the proposed model, this material should exhibit HALD behavior. As the ΔH is now fixed for this material, the only remaining variable in eqn (7) is the temperature, α(+5.5 kJ mol⁻¹, T). Using GCMC simulations, we want to assess whether the CO₂/H₂O selectivity of MFI indeed increases with increasing temperature.

Fig. 5 displays the binary CO₂ (red) and H₂O (blue) loadings as a function of the temperature. The temperature range of this plot is extended towards lower temperatures, to visualize the drop in the binary H₂O loading, starting before 300 K. It is clear that the drop in the H₂O loading is more sudden than the gradual decrease in the CO₂ loading, resulting in a peak in the CO₂/H₂O selectivity. Note that at high temperatures, loadings of both components are very low (<1 molecule per unit cell). Fig. 5 also shows the H₂O loading for single-component H₂O (green) adsorption at 100 kPa. At 100 kPa and 300 K (low temperature desorption conditions in HALD), the material is fully saturated with H₂O. At higher temperatures, there is a sudden drop in the H₂O loading. The drops/steps in the H₂O loadings can also be observed in the pure H₂O isotherms in Fig. 6. For all isotherms, there is a pressure at which the H₂O drop occurs before 300 K. It is clear that at high temperatures, loadings of both components are very low (<1 molecule per unit cell).

The steps correspond to a sudden saturation of the framework with water as an extensive H₂O network forms. This has implications for the H₂O adsorption enthalpy (Fig. 7). At low loadings (<1 water molecule per unit cell), the adsorption enthalpy is as weak as −20 kJ mol⁻¹. Near saturation however, ΔH H₂O can range from −45 to −75 kJ mol⁻¹. It is important to notice here that it is hard to uniquely define ‘the’ H₂O adsorption enthalpy: at too low loadings, the adsorption properties of the H₂O network are not taken into account, while at high loadings, the spread on the adsorption enthalpy is large. Moreover, the step region is poorly sampled.

To understand the origin of the discrepancy between theory and simulations, Fig. 8 shows the CO₂/H₂O selectivity as a function of the temperature. The black curve represents the data from the simulations of a binary mixture, where the CO₂/H₂O selectivity is defined as the ratio of the CO₂ and H₂O loadings.
The blue curve on the other hand is the Langmuir model for MFI from eqn (6). It is clear that for both curves, the CO\textsubscript{2}/H\textsubscript{2}O selectivity is higher at 400 K than at 300 K. The material is therefore suitable for the HALD process. However, the monotonous rise in the theoretical $\alpha(T)$ curve is not seen in the simulation results. The peak in the simulated selectivities is related to the sudden drop in the H\textsubscript{2}O loading (blue curve in Fig. 5), which cannot be described with the Langmuir model.

Fig. 7 demonstrates the sensitivity of the HALD method on the flue gas composition. The solid lines represent the Langmuir model from eqn (6), the connected points in the same color are taken from the simulations at the corresponding partial pressures. The blue line, corresponding to a binary mixture with 14 kPa CO\textsubscript{2} and 6 kPa H\textsubscript{2}O is taken as a reference. When the H\textsubscript{2}O partial pressure is reduced from 6 kPa to 3 kPa (green line), the Langmuir model predicts that the CO\textsubscript{2}/H\textsubscript{2}O selectivity to be higher. The simulations confirm this and show that the peak in the selectivity occurs at lower temperature than was the case for the reference mixture (blue line). On the other hand, when the H\textsubscript{2}O partial pressure in the flue gas is doubled compared to the reference case, the CO\textsubscript{2}/H\textsubscript{2}O selectivity is lower and the peak occurs at higher temperatures. Finally, we also considered a situation where the H\textsubscript{2}O partial pressure is kept at the original 6 kPa and the CO\textsubscript{2} partial pressure is decreased from 14 kPa (the flue gas composition of a coal-fired power plant) to 4 kPa (the composition of exhaust gases of a natural gas-fired power plant). In this case, the peak occurs at the same temperature as for the reference, whereas the CO\textsubscript{2}/H\textsubscript{2}O selectivity is lower. As a general conclusion, the CO\textsubscript{2}/H\textsubscript{2}O selectivity is mainly driven by the partial pressures of CO\textsubscript{2} and H\textsubscript{2}O, which is clear from the first term in the Langmuir model and confirmed by the simulations. The temperature at which the peak occurs is related to the sudden H\textsubscript{2}O desorption from the material and is imposed by the partial pressure of H\textsubscript{2}O in the binary mixture (see Fig. 6).

Furthermore, we emphasize that adsorption at 400 K and desorption at 300 K are chosen process conditions and could be changed to optimize the HALD behavior. For instance, the CO\textsubscript{2}/H\textsubscript{2}O selectivity peaks at 320 K (Fig. 5), so adsorption at that temperature offers a competitive advantage for CO\textsubscript{2} adsorption. However, if the amount of adsorbed CO\textsubscript{2} is important (for instance to minimize the size of the adsorption bed), then adsorption at 310 K may become more favorable, as the CO\textsubscript{2} loading is still relatively high, while the step in the H\textsubscript{2}O loading has already occurred. In Section 6, we will return to the point of simultaneously optimizing the CO\textsubscript{2}/H\textsubscript{2}O selectivity and CO\textsubscript{2} loading at high temperature.

Finally, we provide a short outlook on the possibilities of cation exchanged zeolites (CEZs). Extra-framework cations balance the net negative charge, which is introduced when some silicon atoms in the framework are replaced by aluminum atoms. In Fig. 10, the CO\textsubscript{2}/H\textsubscript{2}O selectivity is shown as a function of the temperature for different Si/Al ratios in the MFI framework.
and with Na\(^+\) countercations. CEZs have lower CO\(_2\)/H\(_2\)O selectivities than the all-silica framework, with a decreasing selectivity as the Si/Al ratio becomes lower. For all finite Si/Al ratios considered moreover, the peak in the CO\(_2\)/H\(_2\)O selectivity of the all-silica MFI framework (Si/Al = \(\infty\)) disappears and the increase in selectivity is monotonous as a function of temperature. Indeed, the extra-framework Na\(^+\) cations are easily coordinated with H\(_2\)O, decreasing the hydrophobicity of the zeolite and increasing the competitive advantage of H\(_2\)O.

In conclusion, it is theoretically possible to exploit the competitive adsorption of CO\(_2\) and H\(_2\)O for HALD in MFI. The HALD principle is applicable in a wide range of CO\(_2\) and H\(_2\)O partial pressures and was also demonstrated for CEZs.

5 IZA database screening: \(\alpha(\Delta H)\)

MFI provides a promising proof of principle for the HALD concept. Now, we want to identify the most interesting materials for HALD from the IZA database of all-silica zeolites.\(^{21}\) Across the different zeolites, \(\Delta H_{\text{CO}_2} - \Delta H_{\text{H}_2\text{O}}\) varies. Considering a 14 kPa CO\(_2\) and 6 kPa H\(_2\)O binary mixture and fixing the adsorption and desorption temperature at 400 K and 300 K respectively, it is possible to examine \(\alpha(\Delta H_{400\text{K}}) - \alpha(\Delta H_{300\text{K}})\) and check the correspondence of the simulations with the theoretical model.

Fig. 11 shows the difference between the CO\(_2\)/H\(_2\)O selectivity at 400 K and 300 K as taken from the binary simulations. It is expressed as a function of the difference in adsorption enthalpy between CO\(_2\) and H\(_2\)O assessed with single-component NVT simulations. The IZA frameworks are color coded according to their CO\(_2\)/N\(_2\) selectivity at 400 K (determined using IAST), to ensure that despite the high temperature, the framework is still selective enough for CO\(_2\) with respect to N\(_2\). The blue line corresponds to the theoretical Langmuir model that was derived previously (Fig. 4b). Materials which are explicitly mentioned in the text are indicated in both Fig. 11 and subsequent plots.

The shape of the theoretical curve qualitatively follows the simulation data points. First of all, at negative values for \(\Delta H_{\text{CO}_2} - \Delta H_{\text{H}_2\text{O}}\), there is a deep trench of points for which the CO\(_2\)/H\(_2\)O selectivity is lower at 400 K than at 300 K. The corresponding frameworks are therefore not suited for the HALD process, although they show very favorable CO\(_2\)/N\(_2\) selectivities (20 and up). Secondly, for enthalpy differences between 0 and 10 kJ mol\(^{-1}\), there is a group of materials (including MFI) that perform better than most other materials and also have high CO\(_2\)/N\(_2\) selectivities. Finally, for values higher than 10 kJ mol\(^{-1}\), there is a long tail of materials that show decreasing performance with increasing \(\Delta H\). In this region, most CO\(_2\)/N\(_2\) selectivities are also low. The discrepancy between the simulation data and the theoretical curve is most likely due to the larger number of adsorption sites for H\(_2\)O than for CO\(_2\), partly driven by the formation of H\(_2\)O networks.

In conclusion, the difference in adsorption enthalpy between CO\(_2\) and H\(_2\)O as determined by NVT simulations provides a first indication of candidate materials that are suited for the concept of high-temperature adsorption & low-temperature desorption and this could simplify the search in further screening procedures. In the next section, we will determine what materials have the best performance among the materials that show HALD behavior.

6 Selection of the best materials

Before selecting the best performing materials, it is necessary to determine which criteria are the most important. Bae and Snurr proposed five criteria to evaluate the performance of nanoporous materials for CCS: CO\(_2\) uptake, CO\(_2\)/N\(_2\) selectivity, CO\(_2\) working capacity, regenerability and a sorbent selection parameter.\(^{29}\) Some of these parameters can be translated into the context of HALD.
As we discussed earlier, the CO₂/H₂O selectivity at 400 K is of paramount importance, because it is the basis of the competitive adsorption behavior. It is also important the CO₂/N₂ selectivity does not drop at high temperature. In Fig. 12, the CO₂/N₂ versus CO₂/H₂O selectivity at 400 K shows a high correlation. Materials that show good selectivity for CO₂ at high temperature, do so both when competing with H₂O and with N₂. The color code in Fig. 12 further demonstrates that the materials with the lowest ΔH_(CO₂) − ΔH_(H₂O) have the highest selectivities. Materials that do not show HALD behavior have not been included, so the range of ΔH is smaller than in Fig. 11. This further highlights the sensitivity of the HALD method: ΔH should be low, but if it is too low, the material does not show the HALD behavior anymore.

Apart from the CO₂/H₂O and CO₂/N₂ selectivity, the amount of adsorbed CO₂ is important as well. As the adsorption takes place at high temperature, only small amounts of CO₂ are adsorbed. To minimize the size of the adsorption column, it is desirable to maximize the CO₂ uptake of the material at high temperature. Note that in this competitive adsorption, the CO₂ uptake and working capacity are in principle the same: if enough pure H₂O is added to the material in the regeneration cycle, H₂O will completely substitute the CO₂ that is present in the material. This is not the case for conventional carbon capture, where even at high temperature or low pressure, some residual CO₂ may be left in the material.

Finally, the amount of H₂O that is necessary to regenerate the material through competitive adsorption at low temperature is also important. Fig. 13 shows that there is no clear correlation between the H₂O uptake at 300 K (desorption conditions) and the CO₂ uptake at 400 K (adsorption conditions). The H₂O working capacity is the difference between the loading at 300 K and 100 kPa pure H₂O and the H₂O loading at 400 K and the 6 kPa H₂O/14 kPa CO₂ binary mixtures, but since the latter term is negligible compared to the first term, the H₂O working capacity is approximately equal to the uptake at 300 K. In Fig. 13, we are therefore interested in materials with a high CO₂ uptake at 400 K and a low H₂O uptake at 300 K. The CO₂ uptake at 400 K is two orders of magnitude lower than the H₂O uptake at 300 K. To put this in perspective however, for the binary CO₂/H₂O mixtures, the H₂O loading drops by more than 3 orders of magnitude between 300 K and 400 K, whereas the CO₂ loading drops only by one. This is exactly the competitive advantage of CO₂ adsorption at high temperature.

To find the material with an optimal combination of all mentioned properties, a multicriteria optimization is necessary. Lejaeghere et al. reported how promising materials, with various competing properties, can be selected from a database with a post-Pareto algorithm. From all data points, a so-called Pareto set is determined i.e. a selection of the materials that no other candidate can improve on with respect to all criteria simultaneously. Then, a minimum win fraction is defined, which represents the trade-off between the different Pareto solutions: how much minimally needs to be sacrificed of one set of properties to improve some other properties, while also considering relative importances of the properties. Below, we will apply this approach to the four previously mentioned properties of HALD.

In Table 1, the criteria and their units are reported. The uptake is defined as the volumetric uptake in molecules per nm³, to emphasize the volume of the adsorption column, rather than the weight. The third column shows the relative importance of the criteria, the last column the objective (to maximize or to minimize the criterion).

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Weight</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂/H₂O</td>
<td>(−)</td>
<td>1</td>
<td>Max</td>
</tr>
<tr>
<td>CO₂/N₂</td>
<td>(−)</td>
<td>1</td>
<td>Max</td>
</tr>
<tr>
<td>N_CO₂,400K</td>
<td>molecules per nm³</td>
<td>1</td>
<td>Max</td>
</tr>
<tr>
<td>N_H₂O,300K</td>
<td>molecules per nm³</td>
<td>1</td>
<td>Min</td>
</tr>
</tbody>
</table>

Table 1 Properties optimized with the Pareto approach, the units, their relative weights and the objective (to maximize or to minimize the criterion)
range in the entire zeolite data set, followed by a multiplication by the appropriate scaling factor. Here, all criteria are considered equally important. In the ESI, we show that increasing the importance of the CO₂/H₂O and CO₂/N₂ selectivity does not have a large influence on the obtained minimum win fractions.

Fig. 14 graphically shows the Pareto front for three out of four criteria. The H₂O uptake is omitted in this 3D graphical representation, but is taken into account in the minimum win fractions. In Table 2, the minimum win fractions of these materials are given. The AEL framework surfaces as the best material: with respect to STW, AEL has a slightly lower CO₂/N₂ selectivity and smaller H₂O uptake, but this is compensated by a better CO₂/H₂O selectivity and smaller H₂O uptake. EAB has one of the highest CO₂ uptakes, but performs worse for the other criteria. MFI is not a part of the Pareto set, although it is beneficial to perform the adsorption at temperatures that are not as high as 400 K, to have a reasonable CO₂ loading, and the CO₂ uptake at 400 K, large amounts of H₂O will be needed. Moreover, since the H₂O loading at 300 K is much higher than at the same temperature, but at a high enough temperature, CO₂ adsorption will become more favorable. This is confirmed by a simple Langmuir model, which expresses the CO₂/H₂O selectivity as a function of ΔH_{CO₂} - ΔH_{H₂O} (a material property) and the temperature (a process condition), i.e. z(ΔH,T).

Grand Canonical Monte Carlo simulations for the commercially available all-silica MFI can be used to investigate the HALD concept in more detail. In this case, the adsorption enthalpy for CO₂ and H₂O is fixed, so the CO₂/H₂O selectivity is only dependent on the temperature, z(T). Adsorption at 400 K favors the adsorption of CO₂ over H₂O, although the loading of both components is very low. Desorption of CO₂ is obtained by saturation of the framework with pure H₂O at 300 K. Optimizing the adsorption and desorption conditions might provide room for improvements in both selectivity and uptake. This example already shows the challenges that may arise when deploying HALD on an industrial scale. The working capacity of any nanoporous material at high temperatures is low and therefore, large adsorption columns may be required. Moreover, since the H₂O loading at 300 K is much higher than the CO₂ loading at 400 K, large amounts of H₂O will be needed for the regeneration of the material. However, it might be beneficial to perform the adsorption at temperatures that are somewhat lower than 400 K, to have a reasonable CO₂ loading, as well as a competitive advantage.

Furthermore, the Langmuir model can also rationalize the results of a screening of the IZA database. Across the materials the relative order of the materials in the set remains more or less unchanged. The AEL framework outperforms the other materials for all temperatures considered. The advantage of adsorption temperatures that are not as high as 400 K, is the higher CO₂ uptake at that temperature. For AEL, for instance, CO₂ uptake is only 0.03 molecules per nm³ at 400 K, but rises to 0.20 molecules per nm³ at 325 K, while keeping the competitive advantage over H₂O. By optimizing the adsorption temperature, the efficiency of HALD can therefore be increased.

Pareto analyses are gaining attention for engineering applications but are still brand new in the field of carbon capture. By using this innovative post-Pareto approach, we have highlighted some potential candidates for HALD behavior, based on multiple criteria. The method is transferrable to larger screenings and other materials.

7 Perspectives and conclusions

The concept of high-temperature adsorption & low-temperature desorption (HALD) provides potentially major advantages over conventional technologies. Most importantly, there is in principle no energy penalty on the CO₂/N₂ selectivity, as HALD effectively uses the waste heat of the exhaust gases to regenerate the nanoporous material. Additionally, H₂O in the flue gas is no longer sabotaging CCS due to the competitive advantage of CO₂ in the adsorption cycle.

First of all, a breakdown of the Gibbs free adsorption energy of CO₂ and H₂O shows that if ΔH_{ads,H₂O} < ΔH_{ads,CO₂} < 0 and ΔS_{ads,H₂O} < ΔS_{ads,CO₂} < 0, H₂O adsorbs preferentially at low temperature, but at a high enough temperature, CO₂ adsorption will become more favorable. This is confirmed by a simple Langmuir model, which expresses the CO₂/H₂O selectivity as a function of ΔH_{CO₂} - ΔH_{H₂O} (a material property) and the temperature (a process condition), i.e. z(ΔH,T).

Table 2 Minimum win fractions (mwf) showing the optimality of the materials in the Pareto set, with respect to the CO₂/H₂O selectivity, CO₂/N₂ selectivity and CO₂ uptake at 400 K of the binary mixture and the H₂O uptake at 300 K and 100 kPa

<table>
<thead>
<tr>
<th>mwf (%)</th>
<th>mwf (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEL</td>
<td>57.4</td>
</tr>
<tr>
<td>STW</td>
<td>42.6</td>
</tr>
<tr>
<td>EAB</td>
<td>29.9</td>
</tr>
<tr>
<td>MTF</td>
<td>19.4</td>
</tr>
<tr>
<td>STI</td>
<td>17.7</td>
</tr>
<tr>
<td>AWW</td>
<td>16.9</td>
</tr>
<tr>
<td>UFI</td>
<td>9.9</td>
</tr>
<tr>
<td>LTF</td>
<td>9.5</td>
</tr>
<tr>
<td>LEV</td>
<td>8.7</td>
</tr>
<tr>
<td>IHW</td>
<td>7.5</td>
</tr>
</tbody>
</table>
in this database, ΔH_{CO_2} and $\Delta H_{\text{H}_2\text{O}}$ change, but if we fix the process conditions (partial pressures and temperatures), it is possible to evaluate $\varepsilon(\Delta H)$. Not only is this an excellent validation of the model, it also demonstrates that the $\text{CO}_2/\text{H}_2\text{O}$ selectivity, CO_2/N_2 selectivity, the CO_2 uptake at high temperature and H_2O uptake at low temperature. An innovative Pareto-based search algorithm can identify the most promising materials for HALD (including AEL, STW, EAB and MTF), considering the four criteria simultaneously.

Finally, the results in this manuscript do not only intend to provide a proof of principle for the HALD method, they are highly relevant to the conventional operation of carbon capture with nanoporous materials as well. Industrial flue gases always contain some H_2O which will compete with CO_2 for adsorption sites in the pores of the material. We showed that a small increase in the adsorption temperature might already shift this competition in favor of CO_2, thereby reducing the H_2O uptake in the adsorption step and lowering the regeneration cost of the material. Moreover, in the conventional regeneration cycle, heating of the material is sometimes done by injecting steam directly into the adsorption bed. Also here, the competition of H_2O with CO_2 is a very important factor, as the competitive advantage of CO_2 over H_2O at high temperature may actually reduce the efficiency of this steam injection approach.

In conclusion, the upside-down HALD alternative to traditional CCS methods opens new perspectives to reduce the energy penalty of CCS, to validate the waste heat of the exhaust gases in the CO_2/N_2 separation and to overcome competitive adsorption of H_2O.

Acknowledgements

L.J., K.L. and V.V.S. acknowledge the Fund for Scientific Research – Flanders (FWO), the Research Board of Ghent University (BOF) and BELSPO in the frame of IAP/7/05 for financial support. L.J. is a 2013–2014 grantee of the Commission for Educational Exchange between the United States and Belgium, which administers the Fulbright Belgium and Fulbright Schuman programs. V. V. S. acknowledges funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7(2007–2013) ERC grant agreement number 240483). J.M.H. was supported by the Deutsche Forschungsgemeinschaft (DFG, priority program SPP 1570). B.S. was supported as part of the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001015. We thank Wim De Witte for help with Fig. 1 and 2. L.J. thanks Steven Vandenbrancke for fruitful discussions.

References

41 V. Pareto, Manuale di economia politica con una introduzione alla scienza sociale, Società Editrice Libraria, Milano, 1906.
60 S. Liu, R. Tao and C. M. Tam, Habitat Int., 2013, 37, 155–162.