Advanced search
1 file | 6.08 MB

SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

(2014) SENSORS. 14(2). p.1918-1949
Author
Organization
Abstract
Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field.
Keywords
wireless sensor networks, sound source localization, beamforming, microphone array, SoundCompass, MEMS microphone, sound map, noise map

Downloads

  • sensors-14-01918.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 6.08 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Tiete, Jelmer , Federico Domínguez, Bruno da Silva, Laurent Segers, Kris Steenhaut, and Abdellah Touhafi. 2014. “SoundCompass: a Distributed MEMS Microphone Array-based Sensor for Sound Source Localization.” Sensors 14 (2): 1918–1949.
APA
Tiete, J., Domínguez, F., da Silva, B., Segers, L., Steenhaut, K., & Touhafi, A. (2014). SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization. SENSORS, 14(2), 1918–1949.
Vancouver
1.
Tiete J, Domínguez F, da Silva B, Segers L, Steenhaut K, Touhafi A. SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization. SENSORS. MDPI; 2014;14(2):1918–49.
MLA
Tiete, Jelmer , Federico Domínguez, Bruno da Silva, et al. “SoundCompass: a Distributed MEMS Microphone Array-based Sensor for Sound Source Localization.” SENSORS 14.2 (2014): 1918–1949. Print.
@article{6928847,
  abstract     = {Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field.},
  author       = {Tiete, Jelmer  and Dom{\'i}nguez, Federico  and da Silva, Bruno and Segers, Laurent  and Steenhaut, Kris  and Touhafi, Abdellah },
  issn         = {1424-8220},
  journal      = {SENSORS},
  keyword      = {wireless sensor networks,sound source localization,beamforming,microphone array,SoundCompass,MEMS microphone,sound map,noise map},
  language     = {eng},
  number       = {2},
  pages        = {1918--1949},
  publisher    = {MDPI},
  title        = {SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization},
  url          = {http://dx.doi.org/10.3390/s140201918},
  volume       = {14},
  year         = {2014},
}

Altmetric
View in Altmetric
Web of Science
Times cited: