Advanced search
1 file | 1.73 MB

What you see is what you get: motor resonance in peripheral vision

(2015) EXPERIMENTAL BRAIN RESEARCH. 233(10). p.3013-3022
Author
Organization
Abstract
Observation of others' actions evokes a subliminal motor resonant response, which reflects the motor program encoding observed actions. The possibility that actions located in the peripheral field of vision may also activate motor resonant responses has not been investigated. We examine the excitability modulation of motor pathways in response to grasping actions viewed in near peripheral vision; results are directly compared to responses to the same actions viewed in central vision (Borroni et al. in Eur J Neurosci 34:662-669, 2011. doi:10.1111/j.1460-9568.2011.07779.x). We hypothesize that actions observed in peripheral vision are effective in modulating the excitability of motor pathways, but that responses have a low kinematic specificity. While the neural resources of central vision provide the most accurate perception of biological motion, the decreased visual acuity in periphery may be sufficient to discriminate only general aspects of movement and perhaps to recognize the gist of visual scenes. Right-handed subjects observed a video of two grasping actions at 10A degrees eccentricity in the horizontal plane. Motor-evoked potentials were elicited in the right OP and ADM muscles by TMS of the left primary motor cortex at different delays during the observed actions. Results show that actions viewed in near peripheral vision are effective in modulating the subliminal activation of motor circuits, but that responses are rough and inaccurate, and do not reflect the motor program encoding the observed action or its goal. We suggest that due to their limited kinematic accuracy, these subliminal motor responses may provide information about the general aspects of observed actions, rather than their specific execution.
Keywords
EXCITABILITY, MODULATION, HAND MOVEMENT, HUMAN LOCOMOTION, VISUAL-PERCEPTION, TMS, BIOLOGICAL MOTION, Mirror neuron system, Grasping, MIRROR NEURON ACTIVITY, Motor cortex, CORTEX, Action observation, MECHANISMS, RECOGNITION

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.73 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Leonetti, Antonella, Guglielmo Puglisi, Roma Siugzdaite, Clarissa Ferrari, Gabriella Cerri, and Paola Borroni. 2015. “What You See Is What You Get: Motor Resonance in Peripheral Vision.” Experimental Brain Research 233 (10): 3013–3022.
APA
Leonetti, A., Puglisi, G., Siugzdaite, R., Ferrari, C., Cerri, G., & Borroni, P. (2015). What you see is what you get: motor resonance in peripheral vision. EXPERIMENTAL BRAIN RESEARCH, 233(10), 3013–3022.
Vancouver
1.
Leonetti A, Puglisi G, Siugzdaite R, Ferrari C, Cerri G, Borroni P. What you see is what you get: motor resonance in peripheral vision. EXPERIMENTAL BRAIN RESEARCH. 2015;233(10):3013–22.
MLA
Leonetti, Antonella, Guglielmo Puglisi, Roma Siugzdaite, et al. “What You See Is What You Get: Motor Resonance in Peripheral Vision.” EXPERIMENTAL BRAIN RESEARCH 233.10 (2015): 3013–3022. Print.
@article{6908955,
  abstract     = {Observation of others' actions evokes a subliminal motor resonant response, which reflects the motor program encoding observed actions. The possibility that actions located in the peripheral field of vision may also activate motor resonant responses has not been investigated. We examine the excitability modulation of motor pathways in response to grasping actions viewed in near peripheral vision; results are directly compared to responses to the same actions viewed in central vision (Borroni et al. in Eur J Neurosci 34:662-669, 2011. doi:10.1111/j.1460-9568.2011.07779.x). We hypothesize that actions observed in peripheral vision are effective in modulating the excitability of motor pathways, but that responses have a low kinematic specificity. While the neural resources of central vision provide the most accurate perception of biological motion, the decreased visual acuity in periphery may be sufficient to discriminate only general aspects of movement and perhaps to recognize the gist of visual scenes. Right-handed subjects observed a video of two grasping actions at 10A degrees eccentricity in the horizontal plane. Motor-evoked potentials were elicited in the right OP and ADM muscles by TMS of the left primary motor cortex at different delays during the observed actions. Results show that actions viewed in near peripheral vision are effective in modulating the subliminal activation of motor circuits, but that responses are rough and inaccurate, and do not reflect the motor program encoding the observed action or its goal. We suggest that due to their limited kinematic accuracy, these subliminal motor responses may provide information about the general aspects of observed actions, rather than their specific execution.},
  author       = {Leonetti, Antonella and Puglisi, Guglielmo  and Siugzdaite, Roma and Ferrari, Clarissa  and Cerri, Gabriella  and Borroni, Paola },
  issn         = {0014-4819},
  journal      = {EXPERIMENTAL BRAIN RESEARCH},
  language     = {eng},
  number       = {10},
  pages        = {3013--3022},
  title        = {What you see is what you get: motor resonance in peripheral vision},
  url          = {http://dx.doi.org/10.1007/s00221-015-4371-0},
  volume       = {233},
  year         = {2015},
}

Altmetric
View in Altmetric
Web of Science
Times cited: