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The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated

in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the

retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev

pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic poten-

tial. The existence domains for Mach numbers and hot electron densities clearly show that both rar-

efactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic

point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.

Increasing the relative cool electron density further yields a switch to compressive double layers,

which ends when the model assumptions break down. These qualitative results are but little influ-

enced by variations in compositional parameters. A comparison with a Boltzmann distribution for

the hot electrons shows that only the cool electron sonic point limit remains, giving higher maxi-

mum Mach numbers but similar densities, and a restricted range in relative hot electron density

before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the

double layer solutions nor the switch in rarefactive/compressive character or negative/positive po-

larity. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926513]

I. INTRODUCTION

Nonlinear electrostatic waves in plasmas were first

described by a Korteweg-de Vries (KdV) equation,1 through

a reductive perturbation analysis, with nonlinear ion-acoustic

modes as the simplest and earliest example.2 A great many

papers have attested to the fact that other modes and plasma

compositions could also be handled, as long as the nonlinear-

ities were not too large. However, this restriction was soon

lifted by describing solitary waves of arbitrarily large ampli-

tudes within the framework of the Sagdeev pseudopotential

analysis,3 in a frame which comoves with the solitary wave,

for one mode at a time. By a generally sanctioned abuse of

notation, such large-amplitude solitary waves are often

referred to as “solitons,” even though the Sagdeev formalism

excludes all discussion of their stability and interaction

properties.

Acoustic-type electrostatic modes require at least one

species whose thermal velocity is smaller than the structure

velocity and also at least one species with a larger thermal

velocity.4,5 In the simplest example of the ion-acoustic soli-

ton, in a proton-electron plasma, the heavier ions are

described as a cold fluid (their temperature effects

neglected), while the hot electrons are treated as being

Boltzmann-distributed (that is, their inertia is neglected).

The latter simplification, however, assumes explicitly or im-

plicitly that the soliton structure speed is considerably

smaller than the hot electron thermal velocity. Such a

requirement is fundamental for the validity of the results, yet

very difficult to check a posteriori or quantify, as the latter

velocity has, of course, been assumed to be infinite by use of

the Boltzmann distribution. More modern approaches, treat-

ing the hot species distributions as deviating from a

Maxwellian, like the Cairns,6 kappa,7,8 or Tsallis9,10 distribu-

tions, also neglect hot species inertia, and are thus subject to

the same caveat.

There have been rather sporadic discussions in which

authors have tried to compare the inertialess and the inertial

treatments, so as to gain a better feeling for how reliable

results derived in an inertialess approach are, and which

restrictions on the parameter ranges might follow from such

a comparison. Some of these relate to the effects of heavy

species’ drifts on acoustic soliton behaviour. An early exam-

ple11 used a KdV approach in comparing ion relativistic

effects and electron finite-mass effects, and reported that the

latter were considerably larger. Some other more recent

papers involving small amplitude expansions, include, for

instance, inertial isothermal light species in studying dust-

acoustic solitons,12 and effects of viscosity13 or isothermal

electrons and warm dust14 on dust-ion-acoustic solitons.

However, none of these have carried out systematic arbitrary

amplitude investigations of the effects of considering the

light species as being inertial and isothermal rather than

inertialess.

Following on the work of Kuehl and Zhang,11 Rice

et al.15 used the Sagdeev approach to consider finite electron

mass effects on ion-acoustic solitons in a two electron tem-

perature plasma, while Mace and Hellberg16 investigated an

analogous model related to dust-acoustic double layers in a

three-species dusty plasma with two positive ion tempera-

tures. Although finite electron inertia was shown to have a

negligible effect on positive potential ion-acoustic solitons,
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large reductions in the maximum amplitudes and the exis-

tence domains of negative potential (“rarefactive”) solitons

and double layers were found.15 Analogous effects (but with

reversed polarity) were reported by Mace and Hellberg16 for

dust-acoustic double layers. It was shown that these large

effects were due to a break down of the underpinning model

when amplitudes exceeded a critical value. This was related

to the ratio of the nonlinear structure speed to the thermal

speed of the cooler of the two “hot” components. Where the

latter component is modeled by an inertialess expression,

such as the Boltzmann relation, this limit of the model is

ignored, as the thermal speed is assumed to be infinite.

Later, this work was followed by Cattaert et al.17 and

Verheest et al.,18 who used the McKenzie fluid dynamical

approach4,19 (a fully nonlinear technique that is analogous to

the Sagdeev formalism), in investigating electron-acoustic

solitons and double layers. They showed that both positive

and negative potential electron-acoustic structures could

exist in a plasma in which there were no drifts. This was in

contrast to general beliefs at the time, in that a number of

papers had considered the effects of drifts in attempts to

explain space observations of both polarities of nonlinear

electron-acoustic structures.20,21

However, honesty forces one to admit that the above

efforts at systematic studies have not resonated much nor do

they boast of a great following, and that the large majority of

papers still use one or other inertialess description for the hot

species.

In this paper, we investigate nonlinear electron-acoustic

modes in a plasma composed of positive ions and a two-

temperature electron distribution. There are three thermal

velocities in the system, ordered in the usual way from low

to high, of the ions, the cool electrons, and the hot electrons.

In such a three-component plasma, there are two overall

acoustic velocities, a lower one, in the window between the

ion and the cool electron thermal velocities, and a higher

one, in the window between the cool and the hot electron

thermal velocities. There is a further range with phase speeds

greater than the hot electron thermal speed. However, that

does not yield an acoustic mode, but the electron plasma

wave in a two-electron plasma.

Before going on, we would like to point out that one can

compute these acoustic speeds in two fully equivalent ways,

either from the electrostatic dispersion law for linear har-

monic waves in the long-wavelength limit or from the proper

convexity condition of the pseudopotential in a Sagdeev

approach for nonlinear solitary waves. Because both meth-

ods yield precisely the same values4,5,22–24 and we are inter-

ested in the nonlinear regime, there is no need to treat first

the linear modes.

The lower acoustic mode is the ion-acoustic wave, with

the ions providing the inertia, and the cool and hot electrons

the pressure to sustain the wave. The higher acoustic mode is

usually called electron-acoustic, since it is on the electron

timescale, with a phase speed lying between the cool and hot

electron thermal speeds. Hence, the ions can play only a

minimal role, with the two electron components providing

both the pressure and the inertia to sustain the wave. This

will be further illustrated in Sec. II, when the analytical con-

vexity conditions are derived.

In the literature, one encounters several simplifications

in the description of some of the species. On the lower side,

the ions can be strictly cold, or cool enough to respect the

ordering of the thermal velocities, or may even be treated as

an immobile, neutralizing background in the electron-

acoustic regime. On the other hand, the hot electrons are,

much more often than not, treated as inertialess, through

Boltzmann or more sophisticated distributions, the latter

reflecting various forms of nonthermal behaviour at the

phase space level.

The model that we have chosen keeps the ion dynamics

on board, but treats the ions as strictly cold, to simplify the

algebra and also because the ion thermal effects obviously

play a very subsidiary role in the electron-acoustic mode.

The cool electrons are described through an adiabatic

pressure-density relation, and their inertia is essential to

respect the electron-acoustic ordering. We have chosen to

retain also the inertial effects of the hot electrons, in order

to make a valid comparison with the inertialess description,

which dominates in the literature. As the thermal speed of

the hot electrons is much greater than the phase speed and

the typical soliton speeds, one may assume that heat flow is

possible, and hence they behave isothermally (with c¼ 1).

This model reduces to the commonly used inertial

Boltzmann distribution for infinite thermal speed.

In contrast to the above discussion, we note that there

have been some studies of ion-acoustic and electron-acoustic

solitons in plasmas in which all species are assumed to be

adiabatic.25–28 Thus, even the species having the highest

thermal speeds are assumed to behave adiabatically. Like the

isothermal hot electron model, the adiabatic model takes

account of the effects of finite hot electron inertia. However,

it also changes significantly the kind of physical response

that is assumed for the hot species from that underpinning

the Boltzmann approximation, thus making an investigation

of the inertial effects alone more difficult.

Furthermore, the assumption of adiabatic hot electrons

implies that they appear to be thermally insulated, with ther-

mal conduction being slow. That is, their thermal speed is at

most only marginally greater than the wave speed. Although

there are probably situations where such a model is valid, it

would seem that it is subject to significant restrictions on the

range of hot electron thermal speeds that fit it. We recall that

for thermal speeds sufficiently close to the phase speed, there

will be linear Landau damping, thus potentially preventing

sustainable nonlinear structures from being generated.

Unfortunately, the papers do not appear to have quantified

the range of thermal speeds that would be permitted by the

physics on which the fully adiabatic model is based.

Given that the extant literature on electron-acoustic

modes is vast, and that we are focusing on hot electron iner-

tia effects in the nonlinear regime, we have only quoted

references in which there has been a genuine effort to assess

what the effects of retaining finite mass effects for the hot

electrons are on arbitrary amplitude structures, as compared

to the usual assumptions that for the hottest species inertial

effects can be neglected.
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As we shall see in what follows below, retaining inertia

in the calculation by considering hot isothermal electrons

yields a switch in polarity in certain parameter ranges, a

result that is in line with earlier investigations along these

lines.17 At the same time, switching between inertial and

inertialess models shows that the inertialess (Boltzmann)

description is only valid for a fairly small range in relative

cool electron density.

The paper is structured as follows: the model equations

are briefly recalled in Sec. II, Sec. III then containing the

analysis and discussion. We summarize our conclusions in

Sec. IV.

II. MODEL EQUATIONS

The model we study here comprises singly-charged, cold

positive ions (label i), cool adiabatic (label c) and hot isother-

mal (label h) electrons. The assumption of singly-charged

ions is not a restriction, as one can easily deal with multiply-

charged ions by modifying the normalization. The fraction of

negative charge residing on the cool electrons is f ¼ nc0=ni0

and on the hot electrons 1� f ¼ nh0=ni0, in terms of the posi-

tive ion density ni0. The normalization has been carried out

with respect to the cool electron parameters: a mass ratio

l ¼ me=mi, a kind of Mach number M ¼ V=ctc (where V is

the speed of the solitary wave structure with respect to an in-

ertial frame and ctc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Tc=me

p
is the cool electron thermal

velocity), a kinetic temperature ratio r ¼ Th=Tc (in energy

units), and the electrostatic potential u is normalized by Tc=e.

For the electron acoustic mode, the ordering, ctc < V < cth,

is 1 < M <
ffiffiffi
r
p

in normalized form.

The continuity equations for the three species, with run-

ning label a, are

@na

@t
þ @

@x
nauað Þ ¼ 0; (1)

whereas the momentum equations are more distinct

@ui

@t
þ ui

@ui

@x
þ l

@u
@x
¼ 0; (2)

@uc

@t
þ uc

@uc

@x
þ nc

@nc

@x
� @u
@x
¼ 0; (3)

@uh

@t
þ uh

@uh

@x
þ r

nh

@nh

@x
� @u
@x
¼ 0: (4)

Here, ua are the normalized species velocities, and we have

used the pressure-density relation pc ¼ n3
c and ph¼ nh.

In a frame where the nonlinear structure is stationary

(@=@t ¼ 0) and all variables tend to their undisturbed values

at x! �1, in particular, u! 0, one integrates the ion and

cool electron equations, (1)–(3) with respect to x and obtains

normalized densities

ni ¼ 1� 2lu
M2

� ��1
2

; (5)

nc ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 1ð Þ2 þ 2u

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M � 1ð Þ2 þ 2u

q� �
: (6)

The latter expression is easily found using standard

methods.29,30

In order to bring out the differences between keeping and

omitting the hot electron inertial effects, while treating the

species as behaving isothermally, we proceed to the Bernoulli

integrals4,19,31 by integrating (4) and using mass conservation

from (1). This yields a relation between nh and u

M2

2

1

n2
h

� 1

� �
þ r ln nh ¼ u: (7)

A similar equation for the density of an isothermal compo-

nent was found in analogous ion-acoustic and dust-acoustic

soliton studies.15,16 We note here that the first term arises

from including finite inertia. When hot electron inertia is

neglected, the inversion of this integral to express nh as a

function of u leads to the well known Boltzmann expression

nhB ¼ exp
u
r

� �
; (8)

where the subscript B reminds us that we are using the

Boltzmann expression. An important point is that the validity

of (8) requires that M�
ffiffiffi
r
p

, which, as we shall see, is a

severe restriction.

Retaining hot electron inertia leads in the usual Sagdeev

approach, in which the pseudopotential is expressed in terms

of the electrostatic potential, to the need for a numerical so-

lution.15,16 Instead, we shall use (7) to express u in terms of

nh, also in the cold ion and cool electron densities. We will

then subscript the hot electron density with A, nhA, as this

will be the main focus of the analytical treatment.

The densities are substituted into Poisson’s equation

d2u
dx2
þ ni � fnc � 1� fð Þnh ¼ 0; (9)

which has to be integrated to obtain an energy-like integral

1

2

du
dx

� �2

þ S u;Mð Þ ¼ 0; (10)

in terms of a Sagdeev pseudopotential Sðu;MÞ.
However, this procedure only works if all three densities

can be expressed in terms of u, hence for the case of

Boltzmann electrons. Using (5), (6), and (8) in (9) thus gives

upon integration that

SB u;Mð Þ ¼ M2

l
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lu

M2

r !

þ f

6

n
6M2 þ 2� ½ðM þ 1Þ2 þ 2u�3=2

þ ½ðM � 1Þ2 þ 2u�3=2
o

þ 1� fð Þ r 1� exp
u
r

� �� �
: (11)

Here, as in the following, the purely compositional parame-

ters (f, l, r) are not explicitly listed as arguments of Sðu;MÞ,
so as not to overload the notation. The integration constants
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have been adjusted to ensure that SBð0;MÞ ¼ 0, for the

undisturbed conditions faraway from the solitary structure,

which is standard practice in Sagdeev pseudopotential

analysis.

When hot electron inertia is retained, we cannot invert

(7) and instead express (5) and (6) in terms of nhA by defin-

ing u as a function of nhA, given in (7). In this case, we will

use n ¼ nhA for notational brevity and write (7) in short as

u ¼ FðnÞ. To keep it simple, we use the integrated forms of

ni and nc, obtained in (11), and then replace u by F(n). We

have to compute separately, however, the hot electron

contribution

ð
n du ¼

ð
n �M2

n3
þ r

n

� �
dn ¼ M2 1

n
� 1

� �
þ r n� 1ð Þ;

(12)

where now the undisturbed conditions are at n¼ 1.

The change from u to n also has repercussions on the

term in du=dx ¼ ðdn=dxÞðdu=dnÞ in (10). Collecting all this

together yields

1

2

dn

dx

� �2

þ SA n;Mð Þ ¼ 0; (13)

in terms of a quite different, more complicated Sagdeev

pseudopotential

SA n;Mð Þ ¼ n6

M2 � rn2ð Þ2

(
M2

l
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lF nð Þ

M2

r !

þ 1� fð Þ M2 1� 1

n

� �
þ r 1� nð Þ

� �

þ f

6
ð6M2 þ 2� ½ M þ 1ð Þ2 þ 2F nð Þ�3=2

þ ½ M � 1ð Þ2 þ 2F nð Þ�3=2Þ
)
: (14)

For further comparison between the inertial and Boltzmann

approach to the hot electron characteristics, we cannot use

SBðu;MÞ, given in (11), but have to convert that also in

terms of n instead of u as the defining variable. This can be

done in various ways, but the easiest is to start from (14),

omit the inertial contribution of the hot electrons and use

FðnÞ ¼ rln n, yielding

SB n;Mð Þ ¼ n2

r2

(
M2

l
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2lrln n

M2

r !
þ 1� fð Þr 1� nð Þ

þ f

6
ð6M2 þ 2� ½ Mþ 1ð Þ2 þ 2rln n�3=2

þ ½ M� 1ð Þ2 þ 2rln n�3=2Þ
)
: (15)

By assumption, SAð1;MÞ ¼ SBð1;MÞ ¼ S0Að1;MÞ ¼ S0Bð1;MÞ
¼ 0, but S00Að1;MÞ � 0 and S00Bð1;MÞ � 0 are required for the

undisturbed conditions to be a (local) unstable maximum, at

least on one side.24,32–34 Here, primes denote derivatives of

SAðn;MÞ and SBðn;MÞ with respect to n. The convexity con-

dition becomes

S00A 1;Mð Þ ¼ l
M2
þ f

M2 � 1
þ 1� f

M2 � r

� �
� 0: (16)

When S00Að1;MÞ ¼ 0, this gives a biquadratic in M2, for which

one can prove that there are two positive roots, one being

smaller, the other larger than 1. This is illustrated in Fig. 1.

Therefore, the root obtained for M2 > 1 is the appropriate

true normalized electron-acoustic speed in the plasma under

discussion, Ms. Hence, because the normalization cancels

out, M=Ms represents the true Mach number for the given

plasma composition and soliton speed. In physical terms,

M2 � M2
s means that the nonlinear structures are (super)a-

coustic. Single nonzero roots of S(n, M) give positive or neg-

ative potential solitons, whereas for double roots n changes

from one value at x¼ –1 to another at x¼þ 1, typical for

potential kinks (double layers). The full expression for Ms

involves square roots of terms which are themselves square

roots, and have not been reproduced here, as they are cum-

bersome and not enlightening.

As M is increased above Ms for a given plasma, solitons

of increasing amplitude are found, until one hits an upper

limit in M, beyond which solitons do not exist. The upper

limit in M may occur because the perturbed density for a spe-

cific species vanishes, tends to infinity or becomes complex.

That may be when the soliton speed reaches the sonic

point.4,19 Alternatively, the cutoff can be due to the occur-

rence of a double root of the Sagdeev potential (signifying a

double layer).35 Finally, we need to be aware of the limita-

tions imposed by the model, which themselves may give rise

to an upper cut-off in speed, as we have noted above

(1 < M <
ffiffiffi
r
p

).

Returning to consideration of the Sagdeev potential, we

know that the sign of S000A ð1;MsÞ determines the polarity

of the KdV-like solutions.24,32–34 However, we note that

these might have large amplitudes, well beyond typical KdV

theory limits, if M can be increased sufficiently above Ms. If

the compositional parameters allow for S000A ð1;MsÞ to go

FIG. 1. Qualitative plot of S
00
Að1;MÞ. This has been calculated for l ¼ 1=20,

f¼ 0.2, and r¼ 10, values chosen for reasons of graphical clarity, so as not

to completely compress the first (ion-acoustic) range in comparison with

the second (electron-acoustic) soliton range. These ranges indicate where

(16) is obeyed. For other parameter values, the graphs are all topologically

equivalent.
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through zero and change sign, the polarity of the KdV-like

modes changes.32,36,37 This will be the case here, as long as

hot electron inertia is retained, but becomes impossible

when one adheres to the Boltzmann description of the hot

electrons.

Indeed, for the Boltzmann case, the Sagdeev pseudopo-

tential (15) leads to a modification of (16), resulting in

S00B 1;Mð Þ ¼ l
M2
þ f

M2 � 1
� 1� f

r

� �
� 0; (17)

which is illustrated in Fig. 2. Consequently, a different Ms is

obtained, with the result that now S000B ð1;MsÞ < 0 for all f.
Thus, solitons have the same polarity for all f. Specifically,

this means that compressive (positive polarity) electron-

acoustic solitons cannot be found in the Boltzmann para-

digm, as is well-known.28,38

Examples of S000A ð1;MsÞ and S000B ð1;MsÞ are shown in

Fig. 3 for l ¼ 1=1836 and r¼ 100. We have checked that,

over a very wide range in l and/or in r, the curves shown in

Fig. 3 hardly change. In particular, this applies to the polarity

switchover point near f¼ 0.6 in the case of hot electron iner-

tia. Thus, it is a general characteristic that only negative

potential (rarefactive) electron-acoustic solitons occur for a

cool electron density fraction nc0=ni0 � 0:6, while for higher

relative cool electron densities, the solitons are compressive

(positive polarity).

A general remark in this and the following is that, while

we are able to plot graphs from very near f¼ 0 to f¼ 1, the

regions of f much below 0.2 or above 0.8 are not really credi-

ble, for reasons of model limitations (including possible

Landau damping in the linear kinetic picture,39,40 which

would lead to nonlinear waves being unsustainable) and nu-

merical accuracy.

III. ANALYSIS AND DISCUSSION

A. Existence domains

In the numerical interpretation of the existence domains,

we will assume that the cold ions are protons, so that

l ¼ 1=1836. As we will see, varying r over a wide range

does not qualitatively change the graphs clarifying the limits

on soliton and double layer speeds and amplitudes. We

therefore restrict the graphs to two specific values of r,

namely, 10 and 100, giving hot electron thermal velocities as

FIG. 2. Qualitative plot of S
00
Bð1;MÞ, using the same parameter values and

conditions as in Fig. 1, now based on (17). However, the condition M2 � r
severely curtails the electron-acoustic range, which is therefore indicated by

a dashed line.

FIG. 3. Plot of S000ð1;MsÞ for l ¼ 1=1836 and r¼ 100, when hot electron

inertia has been included (red solid curve) or neglected (blue dashed curve).

It is seen that hot electron inertia allows a polarity change from negative to

positive around f¼ 0.6, whereas the Boltzmann assumption does not allow

for such a polarity change.

FIG. 4. Existence diagram in Mach number space vs. cool electron density

ratio, for l ¼ 1=1836 and r¼ 100. Upper panel: Soliton velocities are lim-

ited, in ascending order, respectively, by cool electron sonic point (green

dotted-dashed curve), hot electron sonic point (red solid curve), negative

and positive double layers (blue dashed curve), and model limitations

(black dotted line), when hot electron inertia is taken into account. Lower
panel: Lower f part of the upper panel, with the hot Boltzmann electron

limitations also included (purple solid curve). The purple solid curve is

drawn up to M ¼
ffiffiffi
r
p

, although by then the Boltzmann assumption has lost

all validity.
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ffiffiffi
r
p
¼ 3:16 and 10, and start the discussion with r¼ 100. In

much of the literature, existence domains are written in terms

of a soliton speed M that is normalized relative to an arbi-

trary fixed speed. However, we have here preferred to use the

parameter M=Ms, the true Mach number, which is more fun-

damental in terms of physical understanding, but obviously

varies with the plasma characteristics, e.g., f.
The existence domain for the case when hot electron

inertia is taken into account is shown in the upper panel of

Fig. 4. It is seen that, for f increasing from 0 to 1, the soliton

velocities are limited by, respectively, the cool electron sonic

point4,19 (green dotted-dashed curve), the hot electron sonic

point (red solid curve), the occurrence of negative and posi-

tive double layers (blue dashed curve), and the model limita-

tions (black dotted line). The model limit, where the Mach

number equals the hot electron thermal speed, applies for

f � 0:822. The above sequence of upper limits is qualita-

tively the same as set out in Cattaert et al.17

The lower f part of the upper panel is shown in more

detail in the lower panel. This panel now also includes the

cool electron limitation for the case when the hot electrons

are Boltzmann-distributed (purple solid curve), i.e., hot elec-

tron inertia is neglected. Surprisingly, the two limit curves

coincide only for f �0:05, and then deviate sharply from one

another as f is increased. The purple solid curve is drawn up

to M ¼
ffiffiffi
r
p

, although by then the Boltzmann assumption of

an infinite thermal speed has lost all validity. This cutoff

occurs at f¼ 0.289. The f range is thus severely curtailed,

and no changes of polarity are possible. We emphasize that

this restriction of the range of applicability of the Boltzmann

FIG. 5. Existence diagram in amplitude space vs. cool electron density ra-

tio, for l ¼ 1=1836 and r¼ 100. The curve coding and meaning is as in

Fig. 4.

FIG. 6. Existence diagram in Mach number space vs. cool electron density ra-

tio, for l ¼ 1=1836 and r¼ 10. The curve coding and meaning is as in Fig. 4.

FIG. 7. Existence diagram in amplitude space vs. cool electron density ratio,

for l ¼ 1=1836 and r¼ 10. The curve coding and meaning is as in Fig. 4.
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approximation is recognizable only when finite inertia is

considered, and it is thus invariably ignored.

There is also in principle a limit due to infinite cold ion

compression, but that is not encountered in practice. The na-

ture of the infinite compression or sonic point constraints is

such that points on the limit curves do not represent proper

soliton solutions, but indicate how high one can go in M=Ms.

The double layers, on the other hand, represent acceptable

solutions, and signal the end of a soliton range,35 at given f,
as M=Ms is increased. We note that double layers are not

found when the hot electrons have a Boltzmann distribution.

This result agrees with, for instance, earlier work,41 which

showed that weak electron-acoustic double layers do not

occur, as well as a more recent study of arbitrary amplitude

structures in a fully adiabatic plasma.28

We now represent the analogous information in terms of

the hot electron density vs. f, in Fig. 5. It will be recalled that

the equilibrium hot electron density is given by n¼ 1. For

clarification, we point out that for given f, as increasing soli-

ton speed M is considered, soliton amplitudes increase from

M¼Ms to the limit curve shown. It is seen that in the range

f¼ 0 to 0.599, the solitons and double layers are rarefactive

in the hot electron density. Using (7), one then obtains nega-

tive electrostatic potentials, u < 0, while (5) and (6) show

that the soliton is also rarefactive in the ion density, but com-

pressive in the cool electron density. We will call such

solutions “rarefactive” for short, but point out that in plasmas

with more than two species the labels rarefactive and com-

pressive are ambiguous. In the same vein, from f¼ 0.599 the

solitons and double layers are “compressive,” with u > 0. It

is obvious that without hot electron inertia only rarefactive

or dark solitons are possible (u < 0). That is, omitting hot

electron inertia means that compressive or bright solitons

cannot occur. However, in the range from f¼ 0 to 0.3, there

is seemingly little difference in amplitude between the

Boltzmann and inertial cases, as indicated in the lower panel

of Fig. 5, a point to which we shall return in Sec. III B.

In Figs. 6 and 7, information is given for l ¼ 1=1836

and r¼ 10, in the same coding as in Figs. 4 and 5, respec-

tively. The comparison between the figures for r¼ 100 and

r¼ 10 shows that qualitatively the conclusions are similar,

and although there are some quantitative differences, the

maximum amplitudes are hardly affected by the lower tem-

perature ratio. We do note, however, that for r¼ 10 the

ranges in f in which the cool and the hot electron sonic points

provide the amplitude limits, are wider and narrower, respec-

tively, than is the case for r¼ 100.

Figures 4 and 6 are reminiscent of results obtained by

Cattaert et al.17 for a rather simpler configuration: the ions

were treated as an immobile neutralizing background (in an

inertial frame) and the cool electrons treated as completely

cold. This omitted all ion dynamics and all cool electron

thermal effects, but captured the gist of what happens when

FIG. 9. Two examples of Sagdeev pseudopotentials (14) for l ¼ 1=1836,

r¼ 100, and f¼ 0.3 (upper panel), with the respective soliton profiles (lower

panel). The red solid curve is for M=Ms ¼ 1:1 and the blue dashed curve for

M=Ms ¼ 1:15. Here, the solitons are ultimately limited by hot electron sonic

points, which, however, do not themselves give acceptable solutions.

FIG. 8. Two examples of Sagdeev pseudopotentials (14) for l ¼ 1=1836,

r¼ 100, and f¼ 0.2 (upper panel), with the respective soliton profiles (lower

panel). The red solid curve is for M=Ms ¼ 1:1 and the blue dashed curve for

M=Ms ¼ 1:2. For comparison, the green dotted curves are for the Boltzmann

description of the hot electrons, given in (15), for M=Ms ¼ 1:2. In this f range,

all solitons are ultimately limited for increasing M=Ms by cool electron sonic

points, which, however, do not themselves give acceptable solutions.
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inertia is retained for the hot electrons. The normalization

had to be done in terms of the hot electron parameters, with

essentially l¼ 0 and 0 < M < 1, whereas in the present

paper it is done as functions of the cool electron (thermal)

parameters, purely for analytic expediency. Also, in the ear-

lier study,17 M2 was plotted as a function of f in Figs. 2, 8,

and 9, whereas we now use the true Mach number M=Ms.

More recently, Maharaj et al.28 obtained the same quali-

tative sequence when considering adiabatic hot electrons,

albeit the switch in polarity was found at a much lower value

of f, namely, at f¼ 0.43. Interestingly, Cattaert et al.17 consid-

ered a number of different values of c for the hot electrons

and found that the results were robust in the qualitative behav-

iour, with the actual value of f at which the polarity changed

varying from f ’ 0:43 for c¼ 3 to f ’ 0:6 for c¼ 1.

B. Pseudopotentials, solitons, and double layers

In the figures which follow, we will illustrate some

Sagdeev pseudopotentials in the upper panels, using (14) or,

where appropriate, (15), while their corresponding soliton or

double layer solutions are shown in the lower panels. We

again consider the case l ¼ 1=1836 and r¼ 100, and vari-

ous values of f.
We start the discussion with f¼ 0.2 in Fig. 8, in the range

where all solitons are ultimately limited (for increasing

M=Ms) by cool electron sonic points, in this case at a value

1.25. However, the latter do not themselves yield acceptable

solutions, by nature of the stagnation effect occurring there.

Here, the red solid curves are for M=Ms ¼ 1:1, the blue

dashed curves for M=Ms ¼ 1:2. For comparison, the green

dotted curves are for the Boltzmann description of the hot

electrons, given in (15), for M=Ms ¼ 1:2. It is seen that an

increase in the soliton speed, through the Mach number

M=Ms, increases the amplitude in absolute value, but restricts

the width. In fact, using (13), it is clear from the far greater

well-depth found from SAðnÞ for M=Ms ¼ 1:2, that the associ-

ated soliton profile has a far steeper slope than is the case for

M=Ms ¼ 1:1. At the same Mach number, the Boltzmann pro-

files present a lower amplitude, but this effect is related in

part to the different definition of the acoustic speed Ms, as

may be seen from a comparison of (16) and (17).

Similar tendencies will be obvious for higher values

of f, as illustrated in Fig. 9 for f¼ 0.3, where the limiting fac-

tor is the hot electron sonic point. It is evident that for

Boltzmann hot electrons there cannot be a sonic point, and

hence comparison between the solutions of (14) and (15) is

meaningless. In addition, one would be in the regime where

M exceeds
ffiffiffi
r
p

if one were to take proper account of the hot

electron inertia.

Next come the double layer limitations, which represent

perfectly acceptable solutions of the nonlinear propagation

problem. This is illustrated in Fig. 10 for f¼ 0.5, with

FIG. 10. Two examples of Sagdeev pseudopotentials (14) for l ¼ 1=1836,

r¼ 100, and f¼ 0.5 (upper panel), with the respective soliton or double

layer profiles (lower panel). The red solid curve is for M=Ms ¼ 1:016 and

the blue dashed curve for M=Ms ¼ 1:01. In this range, the solitons are ulti-

mately limited by negative double layers, which are perfectly acceptable sol-

utions, as illustrated by the red solid curve.

FIG. 11. Two examples of Sagdeev pseudopotentials (14) for l ¼ 1=1836,

r¼ 100, and f¼ 0.7 (upper panel), with the respective soliton or double

layer profiles (lower panel). The red solid curve is for M=Ms ¼ 1:017 and

the blue dashed curve for M=Ms ¼ 1:01. In this range, the solitons are ulti-

mately limited by positive double layers, which are perfectly acceptable sol-

utions, as illustrated by the red solid curve.
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negative solitons and double layers, and in Fig. 11 for

f¼ 0.7, now for positive solitons and double layers, on oppo-

site sides of the polarity change at f¼ 0.599.

Traditionally, double layers are defined to be made up

of adjacent layers of opposite charge density polarity. From

Poisson’s equation, the resulting two opposing curvatures

in electrostatic potential lead to a kink in the potential.

They are identified numerically by double roots, in electro-

static potential u, of the Sagdeev pseudopotential Sðu;MÞ.
In what has gone before, we have identified double roots, in

hot electron density n, of S(n, M) as double layers. To show

that the soliton profiles illustrated in the lower panels of

Figs. 10 and 11, in particular, the double layers, indeed cor-

respond to what is usually understood by the concept, we

convert the information to u with help of the relation (7).

As Fig. 12 shows, the double layers in n correspond exactly

to those in u, but, of course, on different scales for the

amplitudes. The fairly large values for the double layer

amplitudes (in absolute value) are here a corollary of our

normalization in terms of the cool electron thermal velocity

and temperature, rather than, say, the hot electron variables

or a weighted average.

Finally, we point out that we have chosen not to go

much higher than f¼ 0.7, because the model limitations, rep-

resented in Figs. 4–7 by black dotted lines beyond f¼ 0.822,

are expressed by M ¼
ffiffiffi
r
p

, which in principle cannot be

accessed, as the structure velocity would equal the hot elec-

tron thermal velocity!

IV. CONCLUSIONS

We have investigated the propagation of arbitrarily large

electron-acoustic solitons in a plasma with cold positive

ions, cool adiabatic and hot isothermal electrons, with the

inclusion of full inertial effects for all species. This plasma

model is appropriate for the study of the standard electron-

acoustic wave, the phase speed of which is bracketed by the

two thermal speeds, vtc � vph � vth. It follows that the hot

electrons can thermalise ahead of the wave and are isother-

mal, while the cool electrons are effectively insulated and

hence behave adiabatically. Furthermore, one can then easily

investigate the effects of ignoring the hot electron inertia, as

the commonly assumed Boltzmann relation is the inertialess

limit of the isothermal form.

To study the inertial isothermal case, the Sagdeev pseu-

dopotential S(n, M) has to be expressed in terms of the hot

electron density, rather than the more routine electrostatic

potential u, to obtain a completely analytical expression. It

is then easy to switch the hot electron inertia off, to compare

the new results with those for an inertialess hot component.

Unlike the inertialess Boltzmann case, the existence

domains for Mach numbers M=Ms and hot electron densities

n clearly show that both rarefactive and compressive solitons

can exist, if the range of f goes beyond the point where

S000ð1;MsÞ changes sign. For small f, the hot electrons and the

cold ions are rarefied, but the cool electrons are compressed,

which corresponds to u < 0. Density limitations, giving rise

to upper limits in M, come first from the cool electron sonic

point, and then the hot electron sonic point, until a range of

rarefactive double layers is the limiting factor. Increasing f
further yields a switch in soliton character to compressive

double layers, corresponding to u > 0, and meaning that the

ions and hot electrons are compressed, the cool electrons

rarefied. The end is reached when M ¼
ffiffiffi
r
p

represents the

breakdown of the model assumptions. These qualitative

results are but little influenced by variations in l and r.

The fully inertial isothermal case immediately reduces

to a Boltzmann form when the inertia is neglected. A com-

parison with the inertialess case for the hot electrons shows

various aspects. To begin with, there is, of course, only the

cool electron sonic point limitation, which could at first sight

go on for all f< 1. However, we now have a limit on M,

namely, M ¼
ffiffiffi
r
p

, beyond which the Boltzmann results for

the hot electrons lose credibility. We note that this point of

considering the limitations of the model is sometimes

neglected. The model limit occurs already at around f¼ 0.3,

where, compared to the fully inertial case, the discrepancy in

the maximum allowed value of M=Ms is already significant,

although the estimates for the maximum densities at given f
are quite close, and certainly seem to indicate the right order

of magnitude. What cannot be reproduced at all by the

Boltzmann distribution are the double layer solutions, and

the switch from rarefactive to compressive form or negative

to positive polarity (sign of u).

The results for inertial isothermal hot electrons agree

with those of Cattaert et al.17 who used the gas-dynamic

technique, and made some slightly different assumptions

regarding the ions and cool electrons. Similarly, there is

FIG. 12. The soliton profiles illustrated in the lower panels of Figs. 10

and 11, in particular, the double layers in n, correspond exactly to those in

u, but, of course, on different scales for the amplitudes.

072303-9 F. Verheest and M. A. Hellberg Phys. Plasmas 22, 072303 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

109.130.27.122 On: Mon, 13 Jul 2015 15:53:52



qualitative agreement with the work of Maharaj et al.,28 who

assumed adiabatic hot electrons and relatively hot adiabatic

ions. However, quantitative details, e.g., the cool electron

density fraction at which the soliton polarity is reversed,

appear to be dependent essentially on the value of c assumed

for the hot electrons, with the other two species playing only

minor roles.

ACKNOWLEDGMENTS

Useful discussions with Richard Mace are gratefully

acknowledged. M.A.H. thanks the National Research

Foundation of South Africa for partial support under Grant

No. 68911. Any opinions, findings, and conclusions

expressed herein are those of the authors, and the NRF

accepts no liability whatsoever in this regard.

1D. J. Korteweg and G. de Vries, Philos. Mag. 39, 422 (1895).
2H. Washimi and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
3R. Z. Sagdeev, in Reviews of Plasma Physics, edited by M. A. Leontovich

(Consultants Bureau, New York, 1966), Vol. 4, p. 23.
4F. Verheest, T. Cattaert, G. S. Lakhina, and S. V. Singh, J. Plasma Phys.

70, 237 (2004).
5F. Verheest, M. A. Hellberg, and G. S. Lakhina, Astrophys. Space Sci.

Trans. 3, 15 (2007).
6R. A. Cairns, A. A. Mamun, R. Bingham, R. Bostr€om, R. O. Dendy, C. M.

C. Nairn, and P. K. Shukla, Geophys. Res. Lett. 22, 2709, doi:10.1029/

95GL02781 (1995).
7V. M. Vasyliunas, J. Geophys. Res. 73, 2839, doi:10.1029/

JA073i009p02839 (1968).
8M. A. Hellberg, R. L. Mace, T. K. Baluku, I. Kourakis, and N. S. Saini,

Phys. Plasmas 16, 094701 (2009).
9C. Tsallis, J. Stat. Phys. 52, 479 (1988).

10J. A. S. Lima, R. Silva, Jr., and J. Santos, Phys. Rev. E 61, 3260 (2000).
11H. H. Kuehl and C. Y. Zhang, Phys. Fluids B 3, 26 (1991).
12S. Ghosh, S. Sarkar, M. Khan, and M. R. Gupta, Planet. Space Sci. 48, 609

(2000).
13B. Sen, B. Das, and P. Chatterjee, Eur. Phys. J. D 49, 211 (2008).
14S. N. Barman and A. Talukdar, Astrophys. Space Sci. 334, 345 (2011).

15W. K. M. Rice, M. A. Hellberg, R. L. Mace, and S. Baboolal, Phys. Lett.

A 174, 416 (1993).
16R. L. Mace and M. A. Hellberg, Planet. Space Sci. 41, 235 (1993).
17T. Cattaert, F. Verheest, and M. A. Hellberg, Phys. Plasmas 12, 042901

(2005).
18F. Verheest, T. Cattaert, and M. A. Hellberg, Space Sci. Rev. 121, 299

(2005).
19J. F. McKenzie, Phys. Plasmas 9, 800 (2002).
20M. Berthomier, R. Pottelette, and R. A. Treumann, Phys. Plasmas 6, 467

(1999).
21R. L. Mace and M. A. Hellberg, Phys. Plasmas 8, 2649 (2001).
22J. F. McKenzie, J. Plasma Phys. 69, 199 (2003).
23F. Verheest, Phys. Plasmas 13, 082301 (2006).
24T. K. Baluku and M. A. Hellberg, Plasma Phys. Controlled Fusion 53,

095007 (2011).
25G. S. Lakhina, A. P. Kakad, S. V. Singh, and F. Verheest, Phys. Plasmas

15, 062903 (2008).
26F. Verheest and M. A. Hellberg, J. Plasma Phys. 76, 277 (2010).
27S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys.

Plasmas 19, 072320 (2012).
28S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys.

Plasmas 19, 122301 (2012).
29S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas 3, 3939

(1996).
30F. Verheest, M. A. Hellberg, and I. Kourakis, Phys. Plasmas 15, 112309

(2008).
31F. Verheest, G. S. Lakhina, and M. A. Hellberg, Phys. Plasmas 21, 062303

(2014).
32T. K. Baluku, M. A. Hellberg, I. Kourakis, and N. S. Saini, Phys. Plasmas

17, 053702 (2010).
33T. K. Baluku, M. A. Hellberg, and F. Verheest, Europhys. Lett. 91, 15001

(2010).
34F. Verheest and M. A. Hellberg, Phys. Plasmas 17, 102312 (2010).
35S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 1

(1990).
36F. Verheest, Phys. Plasmas 18, 083701 (2011).
37F. Verheest, M. A. Hellberg, and T. K. Baluku, Phys. Plasmas 19, 032305

(2012).
38R. L. Mace, S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma

Phys. 45, 323 (1991).
39S. P. Gary and R. L. Tokar, Phys. Fluids 28, 2439 (1985).
40R. L. Mace and M. A. Hellberg, J. Plasma Phys. 43, 239 (1990).
41R. L. Mace and M. A. Hellberg, J. Plasma Phys. 49, 283 (1993).

072303-10 F. Verheest and M. A. Hellberg Phys. Plasmas 22, 072303 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

109.130.27.122 On: Mon, 13 Jul 2015 15:53:52

http://dx.doi.org/10.1080/14786449508620739
http://dx.doi.org/10.1103/PhysRevLett.17.996
http://dx.doi.org/10.1017/S0022377803002496
http://dx.doi.org/10.5194/astra-3-15-2007
http://dx.doi.org/10.5194/astra-3-15-2007
http://dx.doi.org/10.1029/95GL02781
http://dx.doi.org/10.1029/JA073i009p02839
http://dx.doi.org/10.1063/1.3213388
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1103/PhysRevE.61.3260
http://dx.doi.org/10.1063/1.859946
http://dx.doi.org/10.1016/S0032-0633(00)00008-8
http://dx.doi.org/10.1140/epjd/e2008-00158-3
http://dx.doi.org/10.1007/s10509-011-0729-3
http://dx.doi.org/10.1016/0375-9601(93)90201-A
http://dx.doi.org/10.1016/0375-9601(93)90201-A
http://dx.doi.org/10.1016/0032-0633(93)90063-8
http://dx.doi.org/10.1063/1.1868733
http://dx.doi.org/10.1007/s11214-006-4148-7
http://dx.doi.org/10.1063/1.1445757
http://dx.doi.org/10.1063/1.873213
http://dx.doi.org/10.1063/1.1363665
http://dx.doi.org/10.1017/S002237780300206X
http://dx.doi.org/10.1063/1.2227270
http://dx.doi.org/10.1088/0741-3335/53/9/095007
http://dx.doi.org/10.1063/1.2930469
http://dx.doi.org/10.1017/S0022377809990468
http://dx.doi.org/10.1063/1.4737895
http://dx.doi.org/10.1063/1.4737895
http://dx.doi.org/10.1063/1.4769174
http://dx.doi.org/10.1063/1.4769174
http://dx.doi.org/10.1063/1.871567
http://dx.doi.org/10.1063/1.3026716
http://dx.doi.org/10.1063/1.4881471
http://dx.doi.org/10.1063/1.3400229
http://dx.doi.org/10.1209/0295-5075/91/15001
http://dx.doi.org/10.1063/1.3494245
http://dx.doi.org/10.1017/S0022377800014975
http://dx.doi.org/10.1063/1.3610560
http://dx.doi.org/10.1063/1.3691963
http://dx.doi.org/10.1017/S0022377800015749
http://dx.doi.org/10.1017/S0022377800015749
http://dx.doi.org/10.1063/1.865250
http://dx.doi.org/10.1017/S0022377800014768
http://dx.doi.org/10.1017/S0022377800016998

