The disability adjusted life years (DALYs) and economic burden due to haemophilia in Belgium

Séverine Henrard1,2, Brecht Devleesschauwer1,3, Philippe Beutels4, Michael Callens5, Frank De Smet5,6, Cédric Hermans6, Niko Speybroeck1

1 Institute of Health and Society (IRSS), Université catholique de Louvain, Brussels, Belgium; 2 Haematology and Thrombosis Unit, Division of Adult Haematology, Cliniques universitaires Saint-Luc, Brussels, Belgium; 3 Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; 4 Centre for Health Economic Research and Modeling Infectious Diseases (CHERMD), Vaccine and Infectious Disease Institute (Vaxinfecto), University of Antwerp, Wilrijk, Belgium; 5 National Alliance of Christian Sickness Funds, Brussels, Belgium; 6 Department of Public Health and Primary Care, Occupational, Environmental & Insurance Medicine, Katholieke Universiteit Leuven, Leuven, Belgium

Introduction & Objectives

Haemophilia is a rare hereditary haemorrhagic disease that requires regular intravenous injections of clotting factor concentrates. This study sought to estimate the health and economic burden of haemophilia in Belgium. This is the first study of its type to be conducted, and reflects the European and Belgian authorities’ growing interest for haemophilia as part of their planning for rare diseases.

Material & Methods

A probabilistic model was developed in order to estimate the lifetime haemophilia burden for the 2011 birth-year Belgian cohort. The health burden was initially expressed in terms of disability-adjusted life years (DALYs), this being the number of healthy life years lost due to both disability and premature mortality. An incidence perspective was used in line with World Health Organization recommendations. The economic burden calculated from direct and indirect haemophilia-related costs was expressed in euros. Data were drawn from the literature if none were available from federal institutions or health insurance. Disability weights for DALY calculation were derived using generic quality-of-life tools compared to population norms. Analyses were stratified according to haemophilia type and severity. Scenario analyses using different age weighting and time discounting were also conducted [1].

Results

In Belgium, haemophilia resulted in 145 undiscounted and unweighted DALYs in total (95% credible interval [CrI]=90-122), which represents an average of 11 DALYs per incident case with haemophilia during his life, varying according to haemophilia severity (Table 1). The total lifetime costs were estimated at €97.4 million (95%CrI: €47.1 - €158.1 million) for new incident haemophilia cases born in 2011, with a mean lifetime cost of €7.8 million per new incident haemophilia case, 94.3% being direct costs and 5.7% indirect costs. Clotting factors accounted for 77.8% of the total and 82.5% of the direct costs, with €75.4 million for all haemophiliacs. The extensive use of effective prophylactic clotting factor replacement therapies has considerably pushed up treatment-related costs in Belgium (Fig. 1), but has also considerably increased haemophiliacs’ quality of life as well as life expectancy.

Table 1. Number of estimated new haemophilia cases, overall lifetime haemophilia burden and lifetime haemophilia burden per case per haemophilia severity in 2011 in Belgium

<table>
<thead>
<tr>
<th>Type</th>
<th>Estimated number of new cases in 2011 (95% CrI)</th>
<th>DALY (95% CrI)</th>
<th>DALY per case (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemophilia (total)</td>
<td>14 (7-22)</td>
<td>145 (90-222)</td>
<td>11 (8-15)</td>
</tr>
<tr>
<td>Severe</td>
<td>6 (3-10)</td>
<td>98 (43-175)</td>
<td>17 (13-20)</td>
</tr>
<tr>
<td>Moderate</td>
<td>3 (1-5)</td>
<td>29 (27-31)</td>
<td>12 (5-25)</td>
</tr>
<tr>
<td>Mild</td>
<td>5 (2-8)</td>
<td>18 (17-20)</td>
<td>4 (2-9)</td>
</tr>
</tbody>
</table>

95%CrI: 95% Credible interval; DALY: Disability-adjusted life year

Conclusion

Haemophilia represents both an economic and health burden, especially regarding individual health on an individual patient level. Initiatives to counteract this burden should be clearly identified and given full support, as this burden is likely to further increase in the future, especially from an economic perspective. Our study may also contribute towards a better global evaluation of haemophilia in the future.

Tables & Figures

Fig. 1. Evolution of the cost of haemophilia treatments in Belgium between 2002 and 2011 (in million euros)

Legends — Total cost of haemophilia treatments
— Cost of haemophilia A treatments (conjugation factor VIII)
— Cost of haemophilia B treatments (conjugation factor IX and noncoagulant factor IX)
— Cost of treatments for inhibitors
(Factor VIII inhibitor bypassing activity and conjugation factor VIII)

Reference


Correspondence: severine.henrard@uclouvain.be