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Scope 
 

In nature, agricultural plants are continuously suffering from a multitude of biotic 

stresses such as viral, bacterial and fungal infection, insect predation and herbivore 

attack… Every year, these factors cause great losses in global agricultural economy. 

Due to their immobility plants cannot escape from these pests and diseases. 

However each plant species has developed its own set of defense proteins to 

successfully cope with all hostile attacks. For instance plants accumulate 

carbohydrate binding proteins (lectins) and ribosome-inactivating proteins (RIPs) as 

part of their natural defense system. The first RIP was discovered more than a 

century ago and since then this class of proteins has been the subject of many 

research projects. Despite the detailed knowledge of the biological activities of the 

proteins the physiological role of RIPs is still poorly understood.  

 
The family of RIPs is classically divided into type 1 RIPs composed of one domain 

with enzymatic activity, and type 2 RIPs in which the enzymatic domain is linked to 

carbohydrate binding domain. This PhD research focuses on the type 1 and type 2 

RIPs from apple (Malus sp.), as well as the RIP family from Sambucus nigra. Apple is a 

major fruit crop, and more than one hundred countries are growing apples every 

year. Apple is a favorite fruit for many people. The presence of ricin-like proteins in 

common fruits like apple raises important questions. The statement, “An apple a day 

keeps the doctor away” indicates that apple is a healthy fruit for our daily 

consumption. There are many benefits of eating apples we heard from doctors, 

newspapers and internet, such as protecting against Parkinson’s, reducing the risk of 

developing cancers, controlling your weight and so on. Definitely, all these evidences 

tell us that apple is a healthy fruit. In the first part of the PhD thesis we focus on the 

question why RIP sequences are present in the genome of Malus domestica? It is 

important and interesting to investigate the biological activities and the possible 

(cyto)toxic effects of RIPs expressed in edible fruits like apple. The thesis starts with 

a general introduction describing the occurrence, distribution and biological 

characterizes of RIPs from plants. 

 
The first objective of this PhD project was the characterization of RIPs from apple. In 

Chapter 2, the focus of the research was on the cloning, the heterologous expression 

and the purification of recombinant type 1 and type 2 RIPs. Subsequently, the 

recombinant proteins have been characterized for what concerns their molecular 

structures and biological activity. The toxicity of the proteins for animal cells was 
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investigated in detail. In addition, the carbohydrate binding property of the type 2 

RIP was analyzed using glycan arrays.  

The second goal for this work was to study the localization of the type 1 and type 2 

RIPs from apple in plant cells. In Chapter 3, the subcellular localization of the RIPs 

from apple was analyzed in different plant systems. Furthermore a quantitative 

analysis of the transcript levels of the apple RIPs was performed in different tissues 

from an apple tree and throughout fruit development.  

 
The third aim of this PhD research was to study of the effects of the type 1 and type 

2 RIPs from apple and their involvement in disease resistance. In Chapter 4, 

transgenic tobacco plants were constructed. These plants were used to study the 

effects of overexpression of the RIP genes on the overall growth as well as the 

development of the plants, and their disease resistance to tobacco mosaic virus and 

fungi. Furthermore, the insecticidal activity of the apple RIPs was analyzed by adding 

the recombinant proteins to an artificial diet.   

 
In the second part of this PhD, the research focuses on the RIP family from Sambucus 

nigra. Besides the studies of RIPs in agriculture, RIPs are also important from a 

medical point of view because of their potential anti-tumor activity. However, 

selective targeting of cancer cells requires knowledge on their specific cytotoxic 

activity and working mechanism. This also requires enhanced insight in their binding 

affinity, internalization and intracellular destination in the cell. Although previous 

studies have addressed mechanisms of RIP induced cell death and the internalization 

of specific type 2 RIPs, mainly with galactose-recognition domains, for many RIPs, 

this information is still lacking or incomplete. In this context, two major questions 

are pending, namely, whether (i) translation-inhibition activity is the sole factor for 

RIP-induced apoptosis, and whether (ii) there is a direct contribution of the lectin 

chain to the cytotoxicity of the protein. An ideal model system for such studies is the 

family of elderberry lectins (SNA-II and SNA-IV)/RIPs (SNA-I, SNA-V and SNLRP). The 

availability of both RIPs and related non-RIP lectins with different carbohydrate-

binding specificities offers an opportunity to study the contributions of the RIP 

domain and the lectin domain to the cytotoxicity of the protein, binding to the cell 

surface, internalization and trafficking in the cell.   

The fourth objective of this research was to investigate the effects of RIPs from 

Sambucus nigra (elderberry) on mammalian cells. In Chapter 5, the carbohydrate 

specificities of RIPs and lectins from elderberry were analyzed and compared in 
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detail. In Chapter 6, the in vitro and in vivo activities of several S. nigra proteins have 

been characterized. We studied the cytotoxicity of several RIPs/lectins from 

elderberry towards human cells. In an attempt to explain the interaction of the 

proteins with the cells, the internalization and intracellular localization of the 

RIPs/lectins was determined and cell surface glycoproteins and glycolipids were 

analysed.  

 

Chapter 7 aims to integrate all the data into a general discussion and some 

perspectives for future research are suggested. 
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Chapter 1                                  
General introduction 
 

 

 

Partly redrafted from:  

Shang, C., Peumans, W. J. and Van Damme, E. J. M. (2014) Occurrence and 

taxonomical distribution of ribosome-inactivating proteins belonging to the 

ricin/shiga toxin superfamily. In: Ribosome-inactivating proteins: ricin and related 

proteins. Stirpe, F. and Lappi, D. A. (eds.)  pp. 11-27. Wiley Blackwell Press, NJ, USA 

 

Peumans, W. J., Shang, C. and Van Damme, E. J. M. (2014) Updated model of the 

molecular evolution of RIP genes. In: Ribosome-inactivating proteins: ricin and 

related proteins. Stirpe, F. and Lappi, D. A. (eds.) pp. 134-150. Wiley Blackwell Press, 

NJ, USA 

 

Shang, C., Dang, L. and Van Damme, E. J. M. (2015) Plant AB toxins with lectin 

domains. In: Toxinology: Plant Toxins. Gopalakrishnakone, P., Carlini, C. R. and 

Ligabue-Braun, R. (eds.) Springer, Berlin, Germany. In press 
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1.1 General introduction of ribosome-inactivating proteins 

1.1.1 Historical note 
 
The scientific history of ribosome-inactivating proteins (RIPs) started in 1888 when 

Peter Hermann Stillmark discovered the lethal toxicity of a “ferment” in castor bean 

(Ricinus communis) seeds which he named “ricin” (Stillmark, 1888). Throughout 

more than a century, the properties of ricin and related proteins have been 

extensively investigated and described, including their molecular structures, 

enzymatic activities, biological roles and potential applications in agriculture as well 

as in medicine.            

1.1.2 Definition 
   

The observation that plant proteins can irreversibly inactivate ribosomes resulted in 

the term of “ribosome-inactivating proteins”, which was first introduced by Stirpe 

(1982). Though the activity of ribosomes can be affected by different types of 

proteins/enzymes (e.g. proteases, RNases, ribosome-binding proteins), this 

contribution deals exclusively with proteins that by virtue of a well-defined RNA N-

glycosidase activity are capable of depurinating a specific adenine in what is called 

the conserved α-sarcin/ricin loop of the large ribosomal RNA (Stirpe and Battelli, 

2006). This depurination of the α-sarcin/ricin loop by RIPs can inhibit protein 

synthesis and cause cell death (Puri et al., 2012). At present, the family of RIPs 

groups all proteins with an RNA N-glycosidase domain (EC3.2.2.22). A more detailed 

description of the enzymatic activities of RIPs will be described in the part dealing 

with enzymatic activity (chapter 1.2.1.1).  

1.1.3 Classification of RIPs   
 
Plant RIPs are classically subdivided in three main groups namely the type 1 RIPs, 

type 2 RIPs and one type 3 RIP (Fig. 1.1).  
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Classification of RIPs 

 
 

Figure 1.1 Schematic overview of the molecular structure of different types of RIPs. 
Examples of one-chain and two-chain type 1 RIPs refer to mature, catalytically active PAP 
and maize RIP b-32, respectively. The schematic structure of type 2 RIPs refers to mature 
ricin whereas that of type 3 RIPs refers to intact JIP60 (Van Damme et al., 2001).   
 

Type 1 RIPs 

 
Type 1 RIPs are single chain proteins consisting of a catalytically active domain of 

approximately 30kDa (Barbieri et al., 1993; Nielsen and Boston, 2001; Van Damme et 

al., 2001). Type 1 RIPs can be divided into three subgroups (Peumans and Van 

Damme, 2010): (i) the “classical” type 1 RIPs are synthesized on the rough 

endoplasmic reticulum (ER) and follow the secretory pathway to the 

vacuole/extracellular space. They were described in several dicotyledonous plant 

species. For example, saporin is found in the intercellular space and vacuole of the 

developing as well as mature seeds of soapwort (Saponaria officinalis), while it is 

only located in the extracellular space of young leaves (Carzaniga et al., 1994; 

Marshall et al., 2011). Another famous example, PAP (pokeweed antiviral protein) is 

located in the cell wall matrix in pokeweed (Phytolacca americana) leaves (Ready et 

al., 1986). (ii) A few type 1 RIP sequences from Poaceae (e.g. wheat and barley) lack 

a signal peptide, and hence are synthesized on free ribosomes and are located in the 

cytoplasm (Nielsen and Boston, 2001; Frigerio and Roberts, 1998; Leah et al., 1991). 

One example is tritin found in the germs of Triticum aestivum (wheat) (Coleman and 

Roberts, 1981). (iii) The third subgroup is found in Zea mays and related Panicoideae 

species. These type 1 RIPs are synthesized on free ribosomes as inactive precursors. 

Enzymatic activity of the protein is acquired only after proteolytic processing of the 

RIP precursor into two smaller polypeptides (e.g. the maize RIP b-32, Walsh et al., 

1991).  

 
Type 2 RIPs 

 
Type 2 RIPs consist of an N-terminal domain with enzymatic activity (A chain) fused 

to a C-terminal carbohydrate binding domain (B chain). Type 2 RIPs are typically 
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described in terms of an AB structure, where the A chain is linked to the B chain 

through a disulphide bridge (Barbieri et al., 1993; Nielsen and Boston, 2001; Van 

Damme et al., 2001). Since type 2 RIP sequences contain a signal peptide, they 

follow the secretory route through the ER-Golgi pathway and finally end up in the 

vacuole or the intercellular space. The most famous type 2 RIP is ricin. Its 

biosynthesis and targeting in the plant cell have been studied in great detail: First, 

the preproricin polypeptide is translocated into the ER, where the signal peptide is 

cleaved. Second, the inactive single-chain precursor, referred to as proricin is 

transported via the ER and the Golgi apparatus to the protein storage vacuoles (PSV) 

of castor bean endosperm cells. There, an N-terminal propeptide and a linker 

peptide are proteolytically removed. The mature ricin consists of disulphide-linked A 

and B chains (Butterworth and Lord, 1983, Hiraiwa et al., 1997). The B chain of ricin 

is a lectin domain which specifically recognizes galactosylated carbohydrate 

structures and therefore ricin can also be considered as a galactose-binding lectin 

(Cummings and Etzler, 2009).      

 
Type 3 RIP 
 
Type 3 RIPs consist of an N-terminal RNA N-glycosidase domain fused to an 

unrelated domain with unknown activity (Chaudhry et al. 1994). At present a 60 kDa 

jasmonate-induced protein in barley, referred to as JIP60, is the only protein 

identified as a type 3 RIP. A recent study reported that the C-terminal domain of 

JIP60 is similar to the eukaryotic translation initiation factor 4E and plays a role in 

recruiting a subset of cellular messengers for translation when barley leaves are 

subjected to jasmonate and senescence stress (Rustgi et al. 2014). Microscopic 

observations allowed to show that JIP 60 is located in the cytoplasm (Feussner et al., 

1995).  

1.1.4 Occurrence of RIPs 
 
RIPs are widely distributed in the plant kingdom and have been detected in 

Angiospermae (mono- and dicotyledons) or flowering plants from at least 14 families 

(Puri et al., 2012, Di Maro et al., 2014). However, RIPs are not ubiquitous in all 

plants. For example, the putative RIP domain is absent in the complete genome of 

Arabidopsis thaliana (Peumans and Van Damme, 2010). RIPs have been reported 

frequently in some plant families, particularly in Cucurbitaceae, Euphorbiaceae, 

Sambucaceae, Phytolaccaceae, Poaceae and Caryophyllaceae (Stirpe, 2014; Girbés et 

al., 2004). The Poaceae takes a special position in the whole group of RIPs, because 

this family contains both classical type 1 RIPs, two-chain type 1 RIPs and a type 3 RIP 
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(Van Damme et al., 2001). Hitherto, more than 50 RIPs have been purified and 

characterized from different plants. The expression level of RIPs is highly variable in 

plant tissues, ranging from traces of protein to hundreds of milligrams per 100 g 

fresh weight plant material (Szalai et al., 2005). RIPs are not associated with (a) 

particular tissue(s) but are found in virtually all plant parts (e.g. seeds, roots, leaves, 

bulbs, fruits and bark) (Szalai et al., 2005). Both the distribution over different tissues 

and the abundance are highly variable depending on the species. Often, different 

isoforms are found, sometimes even within the same tissue (e.g. pokeweed leaves, 

Parente et al., 2014; Jiménez et al., 2014). In addition, both type 1 and type 2 RIPs 

can occur within one plant species even in the same tissue (e.g. iris bulbs, Hao et al., 

2001). 

 
At present, besides plants, genuine RIPs have been purified exclusively from 

bacteria, e.g. shiga toxin (Obrig, 1997) and shiga-like toxin (Reisbig et al., 1981). It 

appears, however, that (expressed) RIP genes occur also in some fungi, algae and a 

few insects (Girbés et al., 2004; Stirpe 2004; Reyes et al., 2012; Lacadena et al., 

2007).   

1.2 Biological activities of RIPs 

1.2.1 The enzymatic activity  

1.2.1.1 The site-specific RNA N-glycosidase activity  

RIPs are officially classified as proteins endowed with “rRNA N-glycosidase activity” 

(EC.3.2.2.22) (Fig. 1.2). Type 1 RIPs and the A chain of type 2 RIPs as well as the type 

3 RIP can recognize a specific adenine residue (A4324 on rat liver 28S rRNA) and 

irreversibly cleave the nucleotide N-C bond between this specific adenine and the 

ribose (Fig. 1.2) (Endo, 2014; Puri et al., 2012). The depurination happens on the 

stem-loop of a GAGA sequence, known as the conserved α-sarcin/ricin loop, present 

in the large rRNA. This α-sarcin/ricin loop is highly conserved from E.coli to humans 

(Fig. 1.3) (Girbés et al., 2004) and plays important role in guanosine triphosphatase 

(GTPase) activation and hydrolysis in translational GTPase on ribosome (Voorhees et 

al., 2010). Furthermore, protein synthesis requires several GTPase factors, including 

the elongation factor 1 (EF1) and elongation factor 2 (EF 2) (Tumer and Li, 2012). The 

irreversible depurination of the α-sarcin/ricin loop by RIPs renders the ribosomes 

incapable of binding EF-2 (Montanaro et al., 1975) and interferes with the delivery of 

the EF1-dependent aminoacyl-tRNA to the ribosome and prohibits EF2-dependent 



Chapter 1 General introduction 

 6 

GTPase activities, causing protein synthesis inhibition (Wong et al., 2012; Mansouri 

et al., 2006).  

 
Different RIPs may also show a diverse ribosome substrate specificity (Fig. 1.3) 

(Domashevskiy and Goss, 2015; Van Damme et al., 2001). For example, PAP 

deadenylates ribosomes from plants, yeasts, bacteria, and lower as well as higher 

animals. In contrast, ricin has a preference for mammalian and yeast ribosomes, and 

shows no or low activity on plant and E. coli ribosomes (Domashevskiy and Goss, 

2015).  

 

 

 
 
Figure 1.2 Model showing the RNA N-glycosidase activity of the ricin A chain. The specific N-
glycosidase activity cleaves adenine (A4324), which is located in the sarcin-ricin loop of the 
28S rRNA of the 60S ribosomal subunit (Puri et al., 2012).  
 

 
 

 
 

Figure 1.3 Structure of rRNA substrates for N-glycosidase activity of RIPs in E. coli (e); Homo 
sapiens (h); Mus musculus (m); Oryza sativa (o); Rattus rattus (r); Saccharomyces cerevisiae 
(s); Xenopus laevis (x) (Domashevskiy and Goss, 2015). 
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1.2.1.2 The polynucleotide: adenosine glycosidase activity  

RIPs do not only depurinate the highly conserved sequence of the α-sarcin/ricin loop 

within the rRNA, but can also act on naked RNA at multiple sites (Tan et al., 2009; 

Domashevskiy et al., 2012; Domashevskiy and Goss, 2015). It has been demonstrated 

that some RIPs can remove multiple adenine residues from various polynucleotides 

(e.g. tobacco mosaic virus RNA), which is defined as polynucleotide: adenosine 

glycosidase (PAG) activity (Van Damme et al., 2001; Barbieri et al., 1997, 2000a).  

1.2.1.3 DNA lyase activity 

Next to the “classical” enzymatic activities including the RNA N-glycosidase activity 

and the PAG activity (Van Damme et al., 2001), some researchers also reported 

other unrelated enzymatic activities for RIPs. These “novel” activities include DNA 

lyase activity (de Benito et al., 1998), ribonuclease activity (Barbieri et al., 1997), 

phosphatase activities on nucleotides (Chen et al., 1996) as well as lipids (Helmy et 

al., 1999), chitinase activity (Remi Shih et al., 1997), and superoxide dismutase (SOD) 

activity (Li et al., 1996; Park et al., 2004b, Day et al., 1998). However, these “novel” 

activities are controversial since some of these activities are possibly caused by 

contaminants in the sample preparations (Endo, 2014).          

 
For example, some studies reported that RIPs are able to cleave DNA (remove the 

base from damaged DNA), and therefore possess DNA lyase activity in addition to 

the depurination activity. E.g. Supercoiled DNA acts as a substrate and was cleaved 

into relaxed-circle and linear DNA (de Benito et al., 1998; Wang and Tumer, 1999; 

Meng et al., 2014). Since the activity was only detected at high RIP concentrations, 

the DNase activity associated with ricin, saporin and possibly with other type 1 RIPs 

is considered to be the result of nuclease contamination (Lombardi et al., 2010; de 

Virgillio et al., 2010; Barbieri et al., 2000b).  

1.2.2 Role of RIPs in plant defense 
 
RIPs are widely distributed in the plant kingdom, but certainly do not occur in all 

plant species. This indicates that RIPs do not play a universal role in the growth, 

development, or defense of plants. At present, RIPs have been studied primarily for 

their toxicity and their unique biological activities which can be exploited in medical 

applications, such as the antitumor and antiviral activities. Some questions remain: 

why do some plants produce and accumulate RIPs? Are the RIPs also toxic to plant 

cells?  
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Several evidences demonstrated that RIPs have evolved as plant defense proteins 

against pathogens or predators, such as fungi, bacteria (Tan et al., 2009), viruses and 

insects (Stirpe 2004; Stirpe and Battelli, 2006; Jiang et al., 2008). E.g. the highly toxic 

ricin is responsible to protect the seeds from invading pests and pathogens (Nielsen 

and Boston, 2001; Barnes et al., 2009). Although, most type 2 RIPs show a much 

lower toxicity for animal cells compared to ricin, the accumulation of such less toxic 

type 2 RIPs can also play an important role in plant defense (Peumans et al., 2001). A 

clear distinction should be made between different types of RIPs: only type 2 RIPs 

can interact with cells and get into the cytoplasm by binding to suitable glycan 

receptors on the cell surface (Sandvig and van Deurs, 2000). Theoretically, type 2 

RIPs are toxic to all organisms once they gain entry to the cytoplasm of cells via the 

receptor-lectin-mediated uptake process. However, their action spectrum is 

probably restricted to animal cells because bacteria and fungi are protected by an 

impenetrable cell wall (Van Damme, 2001). It was considered that the inhibition of 

protein synthesis is the primary role for RIPs in plant defense.   

 
In the general introduction, we focus only on the biotic stresses (aphids, viruses and 

fungi) that were also studied in this PhD thesis. More extensive information about 

the effects of biotic and abiotic stresses and RIP expression can be found in some 

reviews and book chapters (Van Damme et al., 2001; Peumans et al., 2001; Nielsen 

and Boston, 2001; de Virgilio et al., 2010; Stirpe and Lappi, 2014; Lord and Hartley, 

2010; Tejero et al., 2015; Dang and Van Damme, 2015). 

1.2.2.1 Pathogens and insects 

Plants have developed a wide variety of constitutive and inducible defenses to 

protect themselves from damage.  Most biotic (living) agents provoking plant disease 

are pathogenic microorganisms such as viruses, fungi and bacteria, and Metazoa 

such as parasitic nematodes and herbivorous insects (Freeman and Beattie, 2008).  

 
Pathogens  
 
Based on their different life styles, pathogens can be divided into biotrophic and 

necrotrophic pathogens. Biotrophic pathogens such as Sphaerotheca pannosa (a 

powdery mildew fungus) need living host tissues to obtain nutrients for growth and 

reproduction, usually through specialized feeding structures. In contrast, 

necrotrophic pathogens such as Botrytis cinerea kill the host tissues at the beginning 

of the infection by secreting phytotoxins and cell wall degrading enzymes, which 

allows them to feed on the dead tissues (Mengiste 2012). Hemi-biotrophic 
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pathogens such as Pseudomonas syringae have both biotrophic and necrotrophic 

stages in their life cycle (Pieterse et al., 2012). In general, viruses need nutrition from 

living tissues, whereas biotrophic and necrotrophic strategies can be observed in 

fungi and bacteria (Berger et al., 2007). Salicylic acid (SA) and Jasmonic acid (JA) are 

considered as major plant defense hormones. SA-dependent responses and signaling 

pathways are more effective against biotrophic pathogens (Glazebrook, 2005), while, 

the JA/ethylene pathway plays an important role in defense against necrotrophic 

pathogens and insect herbivores (Kazan and Manners, 2012) and is often associated 

with the wound response (Seo et al., 2007).   

 
Insects 
 
Insects can be found in almost all terrestrial and freshwater habitats, and are 

considered to represent a vast majority of all animal species on earth. Hemiptera, 

known as true bugs, represent the largest and most heterogeneous order of 

exopterygots. Many species from the Hemiptera such as aphids are definitely pests 

of crops and garden plants. Almost every plant is suffering from one or more aphid 

species, causing crop yield reduction. At the same time, there is a risk for aphids to 

transmit viruses (Hogenhout et al., 2008). The pea aphid, Acyrthosiphon pisum, is a 

parthenogenetic and non-host-alternating aphid, and as a consequence is an 

important migratory pest. This aphid can directly insert the stylet into the phloem 

tissue of host plants and consume the nutritive fluid (Losey and Eubanks, 2000).            

1.2.2.2 Antiviral activity of RIPs 

The first discovery of antiviral proteins came from the observation that transmission 

of tobacco mosaic virus (TMV) in plants can be inhibited by crude extracts of 

pokeweed leaves (Duggar and Armstrong, 1925). Afterwards, the active protein was 

isolated and identified as pokeweed antiviral protein (PAP), a type 1 RIP from 

Phytolacca americana. Although, there is no doubt about the antiviral activity of 

RIPs, the mode of action has not been elucidated and the antiviral activity of RIPs 

does not depend on the ribosomal inactivation. With respect to the RIP activity, 

three mechanisms are hypothesized (Vandenbussche et al., 2004b; Parente et al., 

2014) (Fig. 1.4). (i) The RIPs can directly work on virus nucleic acids by their N-

glycosidase activity or PAG activity (de Benito et al., 1997). Subsequently, the viral 

protein synthesis is inhibited and the production of virus will be decreased. (ii) RIPs 

directly inactivate host ribosomes to limit pathogen spreading by inhibition of 

translation (Taylor et al., 1994; Tumer et al., 1997). The lack of plant ribosomes will 

shut down the virus production. (iii) RIPs act indirectly by triggering activation of the 
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plant defense system.  An overview of published data reporting the in vitro, in vivo 

and in planta antiviral activities of RIPs is summarized in Table 1.1. An overview of 

several isoforms and mutations of pokeweed antiviral protein from Phytolacca 

americana is shown in Table 1.2.    

                        

 
Figure 1.4 Schematic representation of some possible mechanisms for the antiviral activity 
of RIPs. (A) Direct effect of RIPs on viral RNA. Subsequently, the viral protein synthesis was 
inhibited and the virus production was decreased.  (B) Local suicide model: upon entry of the 
virus, the plant cell becomes accessible for the (extracellularly located) RIP. After their entry 
into the cytoplasm the RIPs inactivate the ribosomes and eventually cause cell death. The 
lack of plant ribosomes will shut down the virus production (C) Defense proteins are up-
regulated by RIPs, independent of rRNA depurination (Van Damme et al., 2001; Krivdova et 
al., 2014) 

SNA-I, SNA-I’, Nigrin b (SNA-V) and SNLRP, type 2 RIPs from S. nigra, showed the 

potential to protect transgenic tobacco plants against TMV infection (Chen et al., 

2002a; Vandenbussche et al., 2004b). Furthermore, SNA-I, Nigrin b (SNA-V) and 

SNLRP exhibit a potent N-glycosidase activity on tobacco mosaic virus (TMV) RNA by 

multi depurination of the RNA chain (Vandenbussche et al., 2004b; Tejero et al., 

2015). These antiviral activities possibly rely on direct depurination of the viral 

genomic RNA, since the expression of SNA-V did not induce the production of 

pathogenesis-related (PR) proteins. Similarly, type 1 and type 2 RIPs from Iris showed 

antiviral activity to TMV and tobacco etch mosaic virus, but the experiment also 

showed that PR gene expression was not changed (Vandenbussche et al., 2004a; 

Desmyter et al., 2003).  
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Table 1.1 Overview of antiviral activity of RIPs.  

RIP Species and tissue 
Antiviral activity

 a
 

Reference 
In vitro In vivo

 
 In planta 

Type 1 RIP 

Agrostin Agrostemma githago seeds n.d.
b
 + n.d. Stirpe et al., 1983 

Basella rubra RIP Basella rubra seeds + + n.d. Bolognesi et al., 1997 

Bouganin Bougainvillea spectabilis + + n.d. 

Bryodin-R Bryonia dioica roots - + n.d. Barbieri et al., 1997; Stirpe et al., 1986 

Dianthin  Dianthus caryophyllus leaves - + + Barbieri et al., 1997; Stirpe et al., 1981; 
Hong et al., 1996 

Gelonin  Gelonium multiflorum seeds - + n.d. Barbieri et al., 1997; Stevens et al., 
1981 Momordin Momordica charantia seeds - + n.d. 

Iris type 1 RIP (IRIP) Iris hollandica bulbs + n.d. + Desmyter et al., 2003; Vandenbussche, 
2004a 

      

Mirabilis antiviral protein 
(MAP) 

Mirabilis jalapa root tubers + + n.d. Bolognesi et al., 2002 

Pokeweed antiviral protein 
(PAP) 

Phytolacca americana spring 
leaves 

+ + + Barbieri et al., 1997; Duggar and 
Armstrong, 1925; Lodge et al., 1993 

PAP-II Phytolacca americana early 
summer leaves 

n.d. n.d. + Wang et al., 1998 

PhRIP1 Phytolacca heterotepala + n.d.  + Corrado et al., 2008 

Phytolacca insularis 
antiviral protein (PIP) 

Phytolacca insularis n.d. + + Moon et al., 1997 

Saporin-S Saponaria officinalis seeds + + n.d. Bolognesi et al., 1997 

Saporin-L Saponaria officinalis leaves + n.d. n.d. 

Trichosanthin  Trichosanthes kirilowii roots - + + Bolognesi et al., 1997; Lam et al., 1996 

Alpha-momorcharin (α-
MMC) 

Momordica charantia seeds 

 

n.d. n.d. + Zhu et al., 2013 

Beetin Beta vulgaris leaves + n.d. n.d. Iglesias et al., 2005 

Type 2 RIP 

Abrin Abrus precatorius seeds n.d. + n.d. Stevens et al., 1981 

EHL Eranthis hyemalis tubers n.d. + n.d. Kumar et al., 1993 

Modeccin Modecca digitata roots n.d. + n.d. Stevens et al., 1981 

http://en.wikipedia.org/w/index.php?title=Gelonium_multiflorum&action=edit&redlink=1
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Ricin Ricinus communis seeds - +/- + Barbieri et al., 1997; Stevens et al., 
1981; Taylor et al., 1994 

Sambucus nigra agglutinin I 
(SNA-I) 

Sambucus nigra bark 

+ n.d. +/- Some lines Vandenbussche et al., 2004b 
  

SNA-I’ n.d. n.d. + Chen et al., 2002a 

SNA-V + n.d. +/-  Vandenbussche et al., 2004b 
  SNLRP + n.d. +/- Some lines 

Iris agglutinin b (IRAb) Iris hollandica bulbs + n.d. + Vandenbussche, 2004a 
a In vitro: PAG activity assay on viral genomic RNA; In vivo: bioassay using virus/RIP solution; In planta: bioassay using RIP-expressing transgenic plants  
b n.d.: not determined 
 

 

Table 1.2 Isoforms of pokeweed antiviral protein (Domashevskiy and Goss, 2015).  

Isoform Source Number of amino acid residues MW (kDa), mature protein  Ref 

PAP-I, simple PAP Spring leaves 262 29 Irvin and Uckun, 1992 

PAPx PAP-I, point mutation in the active site 
(Glu176Val)-abolishing the RIP activity  

262 29 Hudak et al., 2000a 

PAP-II Early summer leaves 285 30 Irvin and Uckun, 1992 

PAP-III Late summer leaves 285 30 Kurinov and Uckun et al., 2003 

PAP-S Seeds 262 29 Barbieri et al., 1982; Honjo et 
al., 2002 

PAP-R Roots 271 29.8 Bolognesi et al., 1990 

PAP-H Hairy roots 268 29.5 Park et al., 2002b 

PAP-Culture Tissue culture 262 29 Barbieri et al., 1989 
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Interestingly, alpha-momorcharin (α-MMC), a type 1 RIP isolated from the seeds of 

Momordica charantia shows distinct antiviral activity (Zhu et al., 2013). Quantitative 

real-time PCR analysis revealed that the SA-responsive defense-related genes [non-

expressor of pathogenesis-related genes 1 (NPR1), PR1, PR2] were up-regulated in 

the α-MMC treated plants after inoculation with virus. Detection of Nitro blue 

tetrazolium, extinction of H2O2 and absorbance changes indicated that the activities 

of some antioxidant enzymes [superoxide dismutase, catalase, peroxidase] were 

increased after the α-MMC treatment.   

 
Grafting experiments (both transgenic scions grafted onto wild type rootstocks and 

the reverse) showed that PAP can enhance resistance to TMV infection (Smirnov et 

al., 1997). The levels of SA and PR proteins were up-regulated in transgenic grafts 

expressing PAP, but not in wild type portions. SA, as a plant defense hormone, plays 

an important role in disease resistance signaling pathways (Vlot et al., 2009) against 

biotrophic pathogens (Glazebrook, 2005). It can trigger PR proteins resulting in 

systemic resistance to pathogens. No resistance was observed in transgenic tobacco 

expressing the inactive site mutant PAPx, suggesting that the enzymatic activity is 

required for antiviral activity. Besides depurination of TMV RNA, PAP also programs 

systemic protection in tobacco by triggering other defense signaling pathways. PAP 

expression resulted in basic as well as acidic isoforms of PR proteins and also 

induced the wound-inducible protein kinase (WIPK, a marker of SA-independent 

signal pathogen response), and the proteinase inhibitor PI-II, (a typical maker of 

wound response) (Van Damme et al., 2001).  

1.2.2.3 Antifungal activity of RIPs 

Many fungal ribosomes are highly susceptible to RIPs compared to plant ribosomes 

(Park et al., 2002a; Girbés et al., 2004). There have been many studies describing the 

antifungal activity of RIPs (particularly for type 1 RIPs), although RIPs are less potent 

than other antifungal proteins (Ng, 2004; Nielsen and Boston, 2001). For instance, 

some antifungal proteins such as chitinases and β-1,3-glucanases can easily 

hydrolyze the fungal cell wall consisting of chitin or β-1,3-glucans, but this is not 

possible for RIPs. An overview of published data reporting the in vitro and in planta 

antifungal activities of RIPs is summarized in Table 1.3.  
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Table 1.3 Overview of antifungal activity of RIPs.  
RIPs Species Fungal species in vitro/in planta IC50 Reference 

Type 1 RIP 

Hispin Hairy melon seeds Coprinus comatus  

Fusarium oxysporum 

Physalospora piricola  

Mycosphaerella arachidicola 

NOT: Botrytis cinerea 

In vitro 

(plate assay) 

 Ng and Parkash, 2002 

Luffacylin Luffa cylindrica seeds Mycosphaerella arachidicola 

Fusarium oxysporum 

In vitro 

(plate assay) 

 Parkash et al., 2002 

Panaxagin Panax ginseng (Chinese 

ginseng root) 

Coprinus comatus 

Fusarium oxysporum 

NOT: Rhizoctonia solani 

In vitro 

(plate assay) 

 Ng and Wang, 2001 

Hypsin Hypsizigus marmoreus 

(mushroom) 

Mycosphaerella arachidicola 

Physalospora piricola 

Fusarium oxysporum 

Botrytis cinerea 

In vitro 

(plate assay) 

2.7 μM 

2.5 μM 

14.2 μM 

0.06 μM 

Lam and Ng, 2001a 

Lyophyllin Lyophyllum shimeji 

(mushroom) 

Physalospora piricola 

Coprinus comatus 

In vitro 

(plate assay) 

2.5 μM Lam and Ng, 2001b 

Alpha-momorcharin 

(α-MMC) 

Momordica charantia 

(bitter melon) 

Sclerotinia sclerotiorum 

Fusarium graminearum 

Bipolaris maydis, Aspergillus 

niger, Aspergillus oryzae 

In vitro 

(plate assay) 

 Zhu et al., 2013 

Magnaporthe grisea Transgenic rice Qian et al., 2014 

Mirabilis expansa 

protein (ME)  

Mirabilis expansa Rhizoctonia solani 

Alternaria alternata 

NOT:  Trichoderma reesei 

Candida albicans 

In vitro 

(fungal ribosomes and plate 

assay) 

 

 Park et al., 2002a 

RTA (ricin toxin A 

chain) 

Ricinus communis Rhizoctonia solani  

Alternaria alternata 

Trichoderma reesei  

NOT:  Candida albicans 

In vitro 

(fungal ribosomes) 

 

 Park et al., 2002a 
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Sporin S-6 Saponaria officinalis Rhizoctonia solani 

Alternaria alternata 

Trichoderma reesei 

Candida albicans 

In vitro 

(fungal ribosomes) 

 

 Park et al., 2002a 

C. moschata RIP Cucurbita moschata 

(pumpkin) 

Phytopthora infestans In vitro (microtiter plate 

assay) 

 Barbieri et al., 2006 

b-32 Zea mays (maize) Rhizoctonia solani, Aspergillus 

flavus, Aspergillus nidulans 

In vitro 

(microtiter plate assay) 

 Nielsen et al., 2001 

Lanzanova et al., 2009 

Lanzanova et al., 2011 

 

Fusarium culmorum 

Fusarium verticillioides 

Transgenic wheat 

Transgenic maize 

PAP, PAPII Phytolacca americana 

(pokeweed) 

Rhizoctonia solani Transgenic tobacco  Zoubenko et al., 1997 

Wang et al., 1998 

PAP-H Phytolacca americana 

(pokeweed) 

Trichoderma reesei 

Rhizoctonia solani 

Pokeweed hair root  

In vitro: no activity 

 Park et al., 2002b 

PhPAP I Phytolacca heterotepala 

(Mexico pokeweed) 

Alternaria alternata 

Botrytis cinerea 

Transgenic tobacco  Corrado et al., 2005 

Curcin 2 Jatropha curcas Rhizoctonia solani Transgenic tobacco  Huang et al., 2008 

Trichosanthin Trichosanthes kirilowii Pyricularia oryzae Transgenic rice  Yuan et al., 2002 

Erysiphe graminis Transgenic wheat  Bieri et al., 2000 

Barley type 1 RIP Hordeum vulgare 

(barley) 

 

Blumeria graminis f. sp. tritici 

(powdery mildew) 

Transgenic wheat plants 

(detached leaf) 

 Bieri et al., 2003 

Alternaria brassicae Transgenic Indian mustard   Chhikara, et al., 2012 

Rhizoctonia solani Transgenic tobacco  Longemann et al., 1992 

Dianthin, type 1 RIP Dianthus caryophyllus Rhizoctonia solani Transgenic rice  Shah and Veluthambi, 2010 

Type 2 RIP 

Lyophyllum antifungal 

protein (LAP) 

Lyophyllum shimeji 

(mushroom) 

Physalospora piricola 

NOT: Rhizoctonia solani, 

Colletotrichum gossypii, 

Coprinus comatus. 

In vitro 

(plate assay) 

70 nM Lam and Ng, 2001b 
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(Transgenic) plant models 
 
Most studies reporting the in vivo antifungal activity of RIPs were performed using 

transgenic tobacco plants and infection assays with fungal pathogens (Table 1.3). 

The wound inducible expression of PhPAP I, a type 1 RIP from Phytolacca 

heterotepala in transgenic tobacco plants demonstrated enhanced resistance against 

the fungal pathogens Alternaria alternata and Botrytis cinerea (Corrado et al., 2005). 

Expression of the type 1 RIP from barley in transgenic tobacco under the control of 

wound-inducible promoter revealed a potent antifungal activity against Rhizoctonia 

solani infection (Logemann et al., 1992). Transgenic rice plants expressing 

trichosanthin, a type 1 RIP from Trichosanthes kirilowii, enhanced the resistance to 

the major rice pathogen Pyricularia oryzae (Yuan et al., 2002). The type 1 RIP from 

maize endosperm, b-32, shows in vitro antifungal activities inhibiting the growth of 

Rhizoctonia solani (Lanzanova et al., 2011), Aspergillus nidulans and Aspergillus 

flavus (Nielsen et al., 2001). Transgenic wheat expressing the unprocessed b-32 

displayed reduction of head blight symptoms caused by Fusarium culmorum- one 

major wheat fungal pathogen (Lanzanova et al., 2011). Maize b-32 RIP also increased 

the resistance to Fusarium verticillioides in an in vitro leaf disk assay (Lanzanova et 

al., 2009). These results suggest that b-32 protects fungal invasion.  

 
In vitro models 
 
Next to the transgenic plant models, the antifungal properties of RIPs were also 

demonstrated in many studies using in vitro models. In vitro biological assays are 

useful, but the results are dependent on the purity of the RIPs. Sometimes, the co-

purifying compounds from plant extracts might also show antifungal activities (Leah 

et al., 1991), indicating the necessity of highly purified recombinant proteins for in 

vitro assays. The in vitro antifungal activity has been described for several type 1 

RIPs: luffacylin from Luffa cylindrical seeds (Parkash et al., 2001), panaxagin from the 

roots of Chinese ginseng (Panax ginseng) (Ng and Wang, 2001), hispin from hairy 

melon seeds (Ng and Parkash, 2002) and Hypsin from mushroom fruits (Hypsizigus 

marmoreus) (Lam and Ng, 2001a). Next to antiviral activity (Zhu et al., 2013), alpha-

momorcharin (α-MMC), a type 1 RIP isolated from the seeds of Momordica 

charantia also possesses antifungal activity (Qian et al., 2014). It was observed that 

50–67% of phytopathogenic fungal growth and spore germination were inhibited by 

the α-MMC tested at 500 μg/mL (Zhu et al., 2013). RTA (ricin toxin A chain), saporin 

S-6 and ME (a type 1 RIP from Mirabilis expansa) showed enzymatic activity to the 

ribosomes from Rhizoctonia solani and Alternaria alternata in in vitro depurination 
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assays (Park et al., 2002a). Moreover, ME failed to depurinate Trichoderma reesei 

ribosomes, while both RTA and saporin S-6 possess this activity. Interestingly, 

neither RTA nor saporin S-6 showed antifungal activity in a plate diffusion assays.  In 

contrast, ME effectively inhibited the growth of Rhizoctonia solani, but not of 

Trichoderma reesei. It was also reported that entry of ME in the fungal cells is more 

important than its depurination activity. Microscopic analysis revealed that ME could 

get into fungal hyphae, but this was not shown for saporin S-6.  

Mode of action  
 
(i) Direct inhibition of fungal ribosomes via RIP activities 

  

Antifungal activities of RIPs are enhanced together with defense proteins such as 

chitinases, β-1,3-glucanases or thaumatins. These PR proteins could facilitate the 

entry of RIPs into fungi by lysing the fungal cell walls (Zhu et al., 2013). Once the 

natural fungal defense-cell wall is destroyed, RIPs can depurinate fungal ribosomes 

to cause fungal death. 

 
PAP-H in combination with chitinase, β-1,3-glucanase, and protease inhibited the 

growth of soil-borne fungi (Trichoderma reesei and Rhizoctonia solani), while only 

purified PAP-H did not show in vitro antifungal activity (Park et al., 2002b). The 

depurination of fungal ribosomes by PAP-H in vitro and in vivo suggests that PAP-H is 

able to penetrate fungal cells with the help of other PR proteins.  

 
Transgenic wheat plants expressing an apoplastic type 1 RIP from barley seeds 

exhibited increased resistance to Blumeria graminis f.sp. tritici (powdery mildew) in 

a detached leaf infection assay (Bieri et al., 2003). Transgenic Brassica juncea 

expressing the combination of a barley type 1 RIP and a class II chitinase showed 

resistance to Alternaria brassicae with up to 44% of reduction of hyphal growth in in 

vitro antifungal assays (Chhikara et al., 2012). 

 
(ii) Up-regulated endogenous host defenses against fungi 
 
It was reported that antifungal effect of PAP against Rhizoctonia solani was distinctly 

associated with SA-independent induction of PR genes in transgenic tobacco, instead 

of depurination activity of PAP (Zoubenko et al., 1997). The inhibitory effects of PAP-

II on Rhizoctonia solani infection were concentration dependent. Similar to previous 

studies, the SA-independent induction of PR genes was detected (Wang et al., 1998).  
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1.2.2.4 Insecticidal activity of RIPs  

Plants have evolved a variety of defense mechanisms to protect themselves from 

insect herbivores such as physical barriers (trichomes, thorns and cuticles), 

secondary metabolites (glucosinolates, benzoxazinoids, alkaloids and phenolics), 

defensive proteins and toxic compounds (Howe and Jander, 2008). Ricin and saporin 

were the first RIPs which were shown to be toxic to insect larvae (Gatehouse et al., 

1990). It was suggested that type 1 and type 2 RIPs are possibly involved in defense 

against insect herbivores, as well as herbivorous animals such as rabbits. 

Subsequently, RIPs (in particular type 2 RIPs) received a lot of attention for their 

potential insecticidal activities (Walski et al., 2014).  An overview of the entomotoxic 

activity of RIPs is given in table 1.4.  

Insecticidal activity of type 2 RIPs  

Feeding assays with ricin and cinnamomin (isolated from seeds of Cinnamomum 

camphora tree) first described the insecticidal activity of type 2 RIPs. Ricin 

demonstrated strong toxicity to several insects including cow pea weevil 

(Callosobruchus macultatus), cotton boll weevil (Anthonomus grandis), housefly 

(Musca domestica), and larvae of the silkworm Bombyx mori (Wei et al., 2004; 

Gatehouse et al., 1990). Cinnamomin exhibited toxicity towards insect larvae. 

Cinnamomin (LD50 is 16599 mg/kg) was less toxic than ricin (LD50 is 489 mg/kg) in 

the feeding of the silkworm (Bombyx mori) (Table 1.4). The LC50 to bollworm 

(Helicoverpa armigera) larvae fed on diet containing cinnamomin was 1839 mg/kg 

and the LC50 to mosquito  (Culex pipines pallens) larvae was 168 mg/kg (Zhou et al., 

2000). For comparison, the LC50 for inhibition of protein synthesis by cinnamomin 

was approx. 14 nM when tested in an in vitro translation system of bollworm larvae 

(Zhou et al., 2000).  

Since numerous lectins are also toxic to insects (Carlini and Grossi-de-Sá, 2002), it is 

possible that the insecticidal activity of type 2 RIPs should not be attributed to their 

enzymatic activity but rather could be related to their carbohydrate binding 

properties (Lannoo and Van Damme 2014). SNA-I isolated from the bark of 

elderberry exhibits specific binding to Neu5Acα(2,6)GalNAc/Gal. Shahidi-Noghabi et 

al. (2009) reported that the transgenic tobacco plants overexpressing SNA-I or its 

isoform SNA-I’ enhanced the plants resistance to different insect species such as 

aphids and caterpillars. Mutation of the SNA-I B chain in one carbohydrate binding 

site reduced the insecticidal activity, while mutation of both carbohydrate binding 

sites completely abolished the toxic effect. Therefore, the insecticidal properties of  
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Table 1.4 Overview of published data on the entomotoxic activity of RIPs - updated from Vargas and Carlini, 2014.  

RIP Dose-effect Insect species Order Administration Reference 

Type 1 RIP 

Saporin, from Saponaria 
officinalis seeds  
 

LD50 3X 10
-3

% (dry wt) Callosobruchus maculatus Coleoptera Artificial diet Gatehouse et al., 1990 

LD50 5X 10
-2

% (dry wt) Abies grandis Coleoptera 

No effect Spodoptera littoralis Lepidoptera 

No effect Heliothis virescens Lepidoptera 

Saporin and momordin  
(from Momordica 
charantia seeds) 

20 and 40 μg (reduced weight) Anticarsia gemmatalis Lepidoptera Phaseolus vulgaris 
foliar disks containing 
air-dried RIPs 

Bertholdo-Vargas et al., 
2009 40 μg (induced DNA damage) Spodoptera frugiperda Lepidoptera 

PAP-S 
Lychnin (from Lychnis 
chalcedonica seeds) 
Gelonin (from Gelonium 
multiflorum seeds)  

20 and 40 μg (reduced weight); 40 
μg (induced DNA damage and 
diminished lipid oxidative damages) 

Anticarsia gemmatalis Lepidoptera Phaseolus vulgaris 
foliar disks containing 
air-dried RIPs 

Bertholdo-Vargas et al., 
2009 

20 and 40 μg (reduced weight); 40 
μg (induced DNA damage and 
induced activity) 

Spodoptera frugiperda Lepidoptera 

Restrictocin (produced by 
Aspergillus restrictus) 

1000 mg/kg kill 38.5% Carpophillus freeman Coleoptera Artificial diet Brandhorst et al., 1996 

1000 mg/kg  kill 62.5% Spodoptera frugiperda Lepidoptera 

No effect Helicoverpa zea Lepidoptera 

Unprocessed b-32 
Papain-activated 

10% mortality (pro-RIP) Helicoverpa zea Lepidoptera Dried diet 1mg/g of 
diet 

Dowd et al., 1998 

70% mortality (activated RIP) Trichoplusia ni Lepidoptera 

39% mortality (activated RIP) Spodoptera frugiperda Lepidoptera 

No effect Ostrinia nubalis Lepidoptera 

No effect Plodia interpunctella Lepidoptera 

No effect Carpophillus freeman Coleoptera 

Maize active b-32 20% mortality at day 1 (WT 4.3%) Helicoverpa zea Lepidoptera Transgenic tobacco  Dowd et al., 2003 
Dow et al., 2012 28% mortality at day 4 (WT 18.8%) Lasioderma serricorne Coleoptera Transgenic maize 

Maize RIP2  
- Isoform from b-32 

26% (reduced weight) Spodoptera frugiperda Lepidoptera Dried diet 0. 8ng /mg 
of diet 

Chuang et al., 2014 

IRIP, from bulbs of Iris 
hollandica 

22% mortality at 15 days,  
78% mortality at 23 days 

Myzus nicotianae Hemiptera Transgenic tobacco Shahidi-Noghabi et al., 
2006 

No reduction at 7-8 days Spodoptera exigua Lepidoptera 

http://en.wikipedia.org/w/index.php?title=Gelonium_multiflorum&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Gelonium_multiflorum&action=edit&redlink=1
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Type 2 RIP 

Ricin, from seeds of 
(Ricinius communis) 

LD50 5X 10
-4

% (dry wt) Callosobruchus maculatus Coleoptera Artificial diet Gatehouse et al., 1990 

LD50 5X 10
-3

% (dry wt) Abies grandis Coleoptera 

No effect  Spodoptera littoralis Lepidoptera 

No effect  Heliothis virescens Lepidoptera 

LD50 489 mg/kg Bombyx mori Lepidoptera Air-dried onto 
mulberry leaves 

Wei et al., 2004 

Sambucus nigra agglutinin 
I (SNA-I), from bark of 
Sambucus nigra 

LD50 374 μg/ml Acryrthosiphon pisum Hemiptera Artificial diet Shahidi-Noghabi et al., 
2008 Delayed development and reduced 

adult survival and fertility 
Myzus nicotianae Hemiptera Transgenic tobacco 

12% reduction of larval biomass at 
3 days (DNA damage) 

Spodoptera exigua Lepidoptera Artificial diet- larvae 
5mg/g SNA-I 

Shahidi-Noghabi et al., 
2010a 

LD50 0.5 μg/ml Tribolium castaneum Coleoptera In vitro assay with cells Walski et al., 2014 

20% mortality feeding diet 
containing 2% SNA-I  

Artificial diet- larvae 

SNA-I mutation at 
(Asp231ΔGlu) in B chain 

Reduced the insecticidal activity of 
SNA-I 

Myzus nicotianae Hemiptera Transgenic tobacco Shahidi-Noghabi et al., 
2008 

SNA-I mutation at two 
position (Asn48ΔGlu and 
Asp231ΔGlu) in B chain 

Completely abolished the SNA-I 
effect on tobacco aphids  

Myzus nicotianae Hemiptera Transgenic tobacco 

SNA-I’- isoform SNA-I, 
from bark of Sambucus 
nigra 

Reduction in adult aphid survival  Myzus nicotianae Hemiptera Transgenic tobacco Shahidi-Noghabi et al., 
2009 Reduction in survival and weight of 

larvae and pupae 
Spodoptera exigua Lepidoptera Transgenic tobacco 

Cinnamomin, from seeds 
of (Cinnamomum 
camphora) 

LD50 1839 mg/kg Helicoverpa armigera Lepidoptera Artificial diet Zhou et al., 2000 
 LD50 168 mg/kg Culex pipiens pallens Diptera 

LD50 16,599.4 mg/kg Bombyx mori Lepidoptera Oral feeding Wei et al., 2004 

IRA, from bulbs (Iris 
hollandica) 

33% mortality at 15 days,  
100% mortality at 23 days 

Myzus nicotianae Hemiptera Transgenic tobacco Shahidi-Noghabi et al., 
2006 

Reduced 31%-33% at 7-8 days Spodoptera exigua Lepidoptera 
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SNA-I can be linked to its carbohydrate binding activity (Shahidi-Noghabi et al., 2008).  

So far, few studies investigated the mechanism of RIP toxicity to insects. SNA-I showed 

toxicity to T. castaneum cells as well as larvae (Walski et al., 2014) and caused cell apoptosis 

in the gut tissues of Acyrthosiphon pisum and Spodoptera exigua (Shahidi-Noghabi et al., 

2010a). SNA-I also induced caspase-3 like activity in the midgut cell line of Lepidoptera (CF-

203) (Shahidi-Noghabi et al., 2010b). In 2011, the same group also detected the 

internalization of the fluorescein isothiocyanate-labeled SNA-I into midgut cells CF-203 using 

confocal microscopy. It was also demonstrated that pre-exposure of insect midgut cells with 

specific inhibitors of clathrin- and caveolae-mediated endocytosis inhibited uptake as well as 

caspase-mediated cytotoxicity induced by SNA-I. The uptake mechanism(s) for both lectins 

required phosphoinositide 3-kinases, but did not depend on the actin cytoskeleton (Shahidi-

Noghabi et al., 2011).  

Insecticidal activity of type 1 RIPs  

Due to the lack of carbohydrate binding domain in type 1 RIPs the question arises how type 

1 RIPs exert their toxicity to insects? These RIPs could bind to specific sites/ receptors on the 

cell surfaces, and provoke toxicity to the cells once the RIPs enter in the cytosol.  

Feeding on a diet containing micrograms amounts of the type 1 RIPs saporin, PAP-S, lychnin, 

gelonin and momordin affected the survival and developmental rate of Anticarsia 

gemmatalis and Spodoptera frugiperda (Bertholdo-Vargas et al., 2009). These type 1 RIPs 

also induce DNA damage (Bertholdo-Vargas et al., 2009).  

Dowd and co-workers reported that transgenic tobacco lines (Nicotiana tabacum) expressing 

the active maize (Zea mays) RIP-b-32 exhibit resistance to larvae of corn earworm 

(Helicoverpa zea) (Dowd et al., 2003) resulting in increased mortality and reduced weights. It 

was also found that maize leaves expressing the endogenous maize RIP b-32 enhanced 

resistance to various insect pests (Dowd et al., 2012).  

1.2.2.5 Indirect evidence for the involvement of RIPs in plant defense     

Some plant RIP genes are regulated by biotic stresses, such as viral infections (Iglesias et al., 

2005), insect herbivory (Zhou et al., 2000; Bertholdo-Vargas et al., 2009) and fungal 

infections (Xu et al., 2007), and by abiotic stresses such as heat and osmotic stress (Stirpe et 

al., 1996), senescence (Stirpe et al., 1996), salinity (Rippmann et al., 1997), drought (Bass et 

al., 2004), mechanical injury (Song et al., 2000; Tartarini et al., 2010) and oxidative stress 

(Iglesias et al., 2005, 2008). It was reported that RIP expression patterns can also be 

modulated by plant hormones such as JA (Reinbothe et al., 1994a,b; Xu et al., 2007), abscisic 
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acid (ABA) (Xu et al., 2007; Müller et al., 1997), gibberellic acid (Ishizaki et al., 2002) and 

ethylene (Park et al., 2002b). For example, JIP60 is produced in both methyl JA (MeJA) 

treated and senescent barley leaves and plays a role in the reprogramming of the 

translational machinery (depurination of 28S rRNA or dissociation of ribosome) in response 

to stress (Rustgi et al., 2014). Maize b-32 is induced by methyl jasmonate (Chaudhry et al., 

1994; Müller et al., 1997). Transcript levels of PIP2 from Phytolacca insularis are up-

regulated by both MeJA and ABA treatments (Song et al., 2000). The accumulation of toxic 

unprocessed maize protein RIP2 (73% sequence similarity to unprocessed b-32) is triggered 

by caterpillar attack and wounding in combination with MeSA, MeJA, ethephon as well as 

ABA treatment (Chuang et al., 2014). PAP-II expression is environmentally regulated. 

Enhanced activity of PAP-II was reported in senescent and stressed leaves (Park et al., 2002b; 

Domashevskiy and Goss, 2015). Curcin 2, a type 1 RIP from Jatropha curcas was induced in 

leaves after fungal infections with Pestsalotia funereal, Curvularia ljunata (walk) Boed and 

Gibberella zeae (Schw) Petch, but not by Rhizoctonia solani (Qin et al., 2005). In rice (Oryza 

sativa), 31 genes encoding type 1 RIPs are expressed in various tissues and associated with 

abiotic stress such as cold, salinity and drought, as well as biotic stresses, such as fungal 

(Magnaporthe grisea) and bacterial (Xanthomonas oryzae pv oryzae) infections (Jiang et al., 

2008). Overexpression of one of these RIPs resulted in plants with enhanced resistance to 

drought and salinity (Jiang et al., 2012).  

1.2.3 Animal studies    
 
The toxic effects of different type 2 RIPs on laboratory animals have been tested by Barbieri 

and his colleagues (1993). They reported that the RIPs end up in the gut of the animals, 

when the animal ingests plants containing RIPs. Due to the toxicity of the RIPs, the 

endothelial cells will be damaged and lesions are formed in the gut wall. Eventually, ricin can 

reach the blood system, causing death through damage to major tissues. Rabbit treated with 

a high dose of ricin (100 g) showed blood vessel congestion in most examined organs (e.g. 

eye, liver and kidneys) (Gareth 2014). The lethal doses (LD50s) (μg/kg) for several type 2 RIPs 

tested in mice have been reported: 2.6 (ricin), 0.56 (abrin), 2.3 (modeccin), 1.4 (volkensin) 

and 2.4 (viscumin) (Griffiths 2014). The toxicity of the same RIP for different animals may 

vary. The LD50 of volkensin to rat is 50-60 ng/kg, which is ~20-fold lower than in mice. 

Administering large parenteral doses of RIP per kg of body weight of either nigrins or ebulins 

to mice triggered toxicity when administered in the range of 2–12 mg (Tejero et al. 2015). 

Histological analysis showed that the intestine was highly damaged after injection of nigrin b 

and ebulin f. The CC531-lacZ colorectal cancer rat metastasis model was used to determine 

the in vivo antineoplastic efficacy of the purified riproximin (type 2 RIP from Ximenia 

americana) (Voss et al., 2006; Bayer et al., 2012). It was suggested that riproximin has 
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significant anticancer activity at total dosages of 100 (perorally) and 10 (intraperitoneally) 

pmol riproximin/kg. It is worth to mention that if type 2 RIPs are inhaled and enter the lungs 

or enter the blood stream through damaged skin or by injection, RIPs are extremely toxic. 

For instance, ricin is around 1000-fold more toxic after inhalation compared to uptake by the 

oral route, because in the latter case part of ricin will be degraded in the intestinal tract 

(Alexander et al., 2008).  

1.2.4 Effects of RIPs on mammalian cells  

1.2.4.1 Cytotoxicity of RIPs on mammalian cells  

Hitherto, both type 1 and type 2 RIPs from many plants have been well studied for their 

cytotoxicity towards mammalian cells (Puri et al., 2012). Already in the early days of RIP 

research, it was reported that type 2 RIPs are more toxic to cancer cells than to normal cells 

(Lin et al., 1970; Stirpe, 2014). As a consequence RIPs attracted a lot of attention as potential 

antitumor therapeutic medicines. Some highly toxic type 2 RIPs (such as ricin, abrin and 

volkensin) show potent cytotoxicity towards mammalian cells. Although some type 2 RIPs 

have strong protein synthesis inhibition activity in vitro, they are 103-105 less toxic than ricin 

in animal cells (Ferreras et al., 2011), such as e.g. the type 2 RIPs from Sambucus species 

(Table 1.5). Although not all the mechanisms of cytotoxicity induced by RIPs are entirely 

understood, at least, the well-studied RIPs can provide some ideas about the physiological 

activities of RIPs on mammalian cells.   

 

                                     Table 1.5 Cytotoxicity of interesting type 2 RIPs 

RIPs Tissue 
Sugar  

Specificity 

Rabbit Lysate 

IC50 (nM) 

HeLa Cells 

IC50 (nM) 

Ricin Seeds (Ricinius communis) Gal/GalNAc 0.1 0.67 X 10-3 

Abrin Seeds (Abrus precatorius) Gal 0.5 3.7 X 10-3 

Volkensin Roots (Adenia volkensii) Gal 0.37 0.3 X 10-3 

Ebulin f Fruits (Sambucus ebulus) Gal 0,03 17 

Ebulin I Leaves (Sambucus ebulus) Gal 0.15 64.3 

Nigrin b Bark (Sambucus nigra) Gal/GalNAc 0.1 27.6 

Nigrin f Fruits (Sambucus nigra) Gal 0.03 2.9 

Sieboldin 
Bark  

(Sambucus sieboldiana) 

Neu5Ac-

Gal/GalNAc 
0.9 11.8 

 
IC50: concentration required to inhibit translation for 50%; unless indicated translation was assayed 
with reduced RIPs in rabbit reticulocyte lysates. Gal: D-galactose; GalNAc: N-acetylgalactosamine; 
Neu5Ac: N-acetyl-neuraminic acid (sialic acid) (Tejero et al., 2015; Ferreras et al., 2011). 
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1.2.4.2 Interaction of RIPs with cells: endocytosis and intracellular trafficking  

At present only a few RIPs have been investigated for their binding, uptake, intracellular 

trafficking and processing in cells. These studies of the intracellular pathway of RIPs provided 

very important evidence to explain the different mechanisms of toxicity for different RIPs.   

 
The intracellular pathway of type 2 RIPs 
 
The less toxic RIP nigrin b and the highly toxic RIP ricin are two good examples that provide 

some general ideas about the intracellular journey of type 2 RIPs in a cell (Fig. 1.5). 

Furthermore, the internalization and uptake of these RIPs provide a possible explanation for 

the lower toxicity of nigrin b compared to ricin in HeLa cells. Initially, nigrin b and ricin follow 

a similar pathway to reach the endosomes (Jiménez et al., 2014). The lectin chains of ricin or 

nigrin b recognize and bind to glycoproteins and glycolipids that are present on the surface 

of cells. These glycoproteins and glycolipids can be different for ricin and nigrin b (Ferreras et 

al., 2011). Subsequently, ricin and nigrin b are internalized into the cell and reach the 

endosomes. From this point onwards, a small number of ricin molecules follows the trans-

Golgi network (TGN) to the ER, where the disulphide bridge between A and B chain is 

reduced (Battelli et al., 2004). Afterwards, the RIP domain will be transported to the cytosol 

and will reach the ribosomes via the endoplasmic reticulum-associated degradation (ERAD) 

pathway (Lord et al., 2005; Spooner et al., 2008). Due to the low lysine residue content, the 

RIP domain can escape from the proteolytic degradation after translocation from ER to 

cytosol during this ERAD pathway (Deeks et al., 2002).  In the cytosol, the RIP domain blocks 

the ribosomes causing protein synthesis inhibition and cell death. This pathway is sensitive 

to brefeldin A and low temperature (Mayerhofer et al., 2009). A comparison between ricin 

and nigrin b shows that 79% of ricin and 94% of nigrin b molecules are degraded in the 

lysosomal compartment and the resulting products are expelled from the cell (Battelli, et al., 

1997a; Spooner and Lord, 2012; Sandvig and van Deurs, 2005). The translocation of nigrin b 

to the cytosol is concentration dependent. When the extracellular concentration of nigrin b 

is high, the endosomes saturated with nigrin b will release the nigrin b into the cytosol and 

subsequently cause ribosome inactivation without passing of the RIP via the TGN-ER 

pathway (Citores et al., 2003; Battelli et al., 1997a and 2004a). In contrast to ricin, the 

pathway of nigrin b is insensitive to low temperature and brefeldin A treatment.   

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jim%26%23x000e9%3Bnez%20P%5Bauth%5D
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Figure 1.5 Intracellular trafficking of ricin and nigrin b (Ferreras et al., 2011; Jiménez et al., 2014).  

 
 
Nigrin b and the highly toxic type 2 RIP volkensin (isolated from seeds of Adenia volkensii) 

bind to HeLa cells with the same affinity (approx. 10-10M) and have a similar number of 

binding sites (2 X 10-5/cell), two-log lower than for ricin (Battelli et al., 2004). Nigrin b 

accumulates between cytoplasmic dots and the Golgi compartment, which is in contrast to 

volkensin and ricin stacking in the perinuclear region (Battelli et al., 2004). For the toxicity, 

the amount of RIP that is degraded and excreted is important. E.g. one reason why nigrin b is 

less toxic to cells than ricin is that nigrin b is more rapidly degraded and excreted during the 

endosomal pathway (Ferreras et al., 2011). Nigrin b is completely inactive after excretion to 

the extracellular space, while this is not the case for volkensin and ricin (Battelli et al., 2004). 

The receptors on the cell surface are also important, and probably decide about the 

intracellular pathway for the different type 2 RIPs (Ferreras et al., 2011). E.g. ricin is targeted 

to the ribosomes in the cytosol via the TGN-ER pathway, while the nigrin b enters cytosol 

from endosomes without trafficking to the TGN-ER. Some receptors might carry ricin and the 

related highly toxic type 2 RIPs (e.g., viscumin, abrin, modeccin, and volkensin, but not nigrin 

Extracellular space 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jim%26%23x000e9%3Bnez%20P%5Bauth%5D
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b) to TGN and subsequently are retrogradely transported to the ER (Mayerhofer et al., 

2009). The receptors internalized with nigrin b don’t deliver it to TGN. The number of lysines 

in a protein is another important factor for their toxicity. Volkensin is excreted by cells faster 

than ricin, but, possibly, the lower amount of lysine residues in ricin protects it from protein 

degradation. As a consequence, excreted but non-degraded proteins can be taken up by the 

cells again (Battelli et al., 2004).  

 
The intracellular pathway of type 1 RIPs 
 
Unlike type 2 RIPs, in which the lectin domain facilitates the endocytosis mechanism, type 1 

RIPs enter the cells via different internalization pathways and the efficiency is low. The 

mechanism of uptake followed by type 1 RIPs is not well understood. Some investigations of 

the internalization of type 1 RIPs (e.g. saporin and trichosanthin) suggested different 

mechanisms for cellular uptake (Fig. 1.6). Type 1 RIPs are proposed to gain entry to the cells 

via fluid-phase endocytosis or macro-pynocytosis (Vago et al., 2005). But, some evidence 

also indicated that specific binding to a receptor for the type 1 RIP on the cell surface may 

occur.   

 
Some observed intracellular pathways for type 1 RIPs are shown in Fig. 1.6. Saporin binds to 

low-density lipoprotein receptor-related proteins (LRP)/α2-macroglobulin receptor (α2MG-

R) on the cell surface in a variety cell types. After being endocytosed, the toxin reaches the 

cytosol delivered from the endolysosomal compartment. This delivery pathway has not yet 

been identified, but does not occur via the Golgi apparatus (a different intracellular route 

compared to ricin) (Vago et al., 2005). Recently, it has been reported that saporin locates to 

the nucleus (Bolognesi et al., 2012). However, in some cell types, saporin can enter the cells 

according to a α2MG-R-independent pathway, because the level of this receptor is not in 

agreement with the amount of saporin taken up by the cell (Bagga et al., 2003; Ippoliti and 

Fabbrin, 2014).  

Trichosanthin binding to the cell surface can also be assisted by lipoprotein receptor-related 

protein members (Jiao and Liu, 2010) and can be transported to multivesicular bodies (MVB) 

(de Virgilio et al., 2010) in Jurkatt-T cells. Some trichosanthin can escape from the endosome 

under the condition of low pH. Upon lowering of the pH, trichosanthin is partly incorporated 

into the intraluminal vesicles of this organelle with a semi-denatured state (Fang et al., 

2011). Subsequently, the MVB fuses to the plasma membrane and releases the intraluminal 

vesicles into the extracellular space. There, they diffuse and can reach other syngeneic or 

allogeneic Jurkatt-T cells by unknown mechanism(s).  
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Figure 1.6 Schematic representation of the intoxication pathways followed by Ricin (A), Saporin (B) 
and Trichosanthin (C) (de Virgilio et al., 2010). 

1.2.4.3 Mechanisms of cell death induced by RIPs 

Apoptosis induced by RIPs 
 
Apopotosis, or energy-dependent programmed cell death, is essential for maintaining cell 

populations in tissues (Sevrioukova 2011). The morphological changes of apoptosis like cell 

shrinkage, membrane blebbing, nuclear fragmentation, irreversible chromatin condensation 

(pyknosis), complete dissolution of the chromatin (karyolysis), disruption of the 

cytoskeleton, and formation of small apoptotic bodies have been observed. Apoptosis can 

be induced by: (1) an extrinsic pathway involving an extracellular death receptor (tumor 

necrosis factor), (2) an intrinsic pathway or intracellular mitochondrial-initiated events, and 

(3) the perforin/granzyme pathway: cell–cell interactions that result in delivery of the 

transmembrane pore-forming molecule perforin and serine proteases granzymes into the 

target cell (Elmore, 2007).  

 
It has been reported that RIPs induce apoptotic cell death via different mechanisms: 

downstream of mitochondrial activation, regulation of apoptotic proteins, activation of 

caspases, induction of unfolded protein response and inhibition of antioxidant proteins and 
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others (Fig. 1.7) (Das et al., 2012; Narayanan et al., 2005; Sikriwal and Batra, 2010). A 

comparison of the various pathways of apoptosis that are triggered by RIPs reveals that 

mitochondria play an important role in cellular stress and cell death (Narayanan et al., 2005). 

The loss of mitochondrial membrane potential will damage mitochondria, and will 

irreversibly activate caspases, triggers release of cytochrome c and will increase the 

production of reactive oxygen species (ROS).  Any or all of these events can cause cell death. 

Nevertheless, these processes of programmed cell death induced by RIPs are not entirely 

understood. With the classical mechanism of RIP induced cell death, it is considered that the 

N-glycosidase activity causes apoptosis. However, the mechanism of protein synthesis 

inhibition programming cell death provoked by RIPs is still an enigma. The question is 

whether protein synthesis inhibition is essential for RIP induced apoptosis. Three different 

hypotheses have been pointed out by Das et al. (2012). The translation inhibition activity of 

RIPs is (i) necessary and sufficient, (ii) necessary but not sufficient, (iii) neither necessary, nor 

sufficient.  

First, the translation inhibition activity of RIPs is an essential factor for inducing apoptosis. 

Experiments with protein synthesis inhibitors (such as cycloheximide or anisomycin) inducing 

apoptosis suggest inhibition of protein synthesis is leading to apoptosis (Martin et al., 1990; 

Kageyama et al., 2002). Another evidence showed that the inhibition of protein translation 

by RIPs inhibits the pathway downstream of caspase activation and causes apoptosis (Olmo 

et al., 2001). In addition, Ghosh and Batra (2006) found that an isoform of saporin (with a 

mutation in the active site) has less RIP activity in a cell free system and shows less 

cytotoxicity. Furthermore, the apoptosis induced by ricin in HeLa cells causes DNA 

fragmentation, activation of caspase 3, numbers of apoptotic cells, induction of ROS, 

changes in the mitochondrial membrane potential and reduction of intracellular glutathione 

(Rao et al., 2005; Liao et al., 2012; Tesh, 2012). Protein translation inhibition is considered to 

be associated to mitochondrial stress (Narayanan et al., 2005). For example, abrin was 

reported to trigger the mitochondrial pathway of apoptosis in Jurkat cells. Following protein 

synthesis inhibition, a series of event happened: loss of mitochondrial membrane potential, 

caspase-3 activation and DNA fragmentation.  

 Second, protein synthesis activity is not the sole factor for the induction of apoptosis by 

RIPs. The studies of PAP mutants show that certain RIP mutants lose their ability to induce 

the apoptosis process without possessing N-glycosidase activity (Hur et al., 1995). It was also 

demonstrated that although the depurination activity of PAP mutants was not sufficient, it 

was required for the induction of apoptotic cell death (Hudak et al., 2000b). By inactivating a 

thiol specific antioxidant protein (AOP), an abrin A chain mutant (lack of N-glycosidase 

activity) triggers cell death (Shih et al., 2001). AOP-1 was found to interact with the abrin A 
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chain mutant in a yeast two-hybrid system. Mitochondrial AOP-1 maintains the intracellular 

the level of ROS, and obstructs the release of cytochrome c from the mitochondria to the 

cytosol. The abrin A chain mutant blocks AOP-1 via directly binding to it. Subsequently, 

intracellular cytochrome c levels are increased, which activates the mitochondrial caspase 

pathway, eventually resulting cellular apoptosis. Due to the absence of N-glycosidase 

activity, the apoptosis triggered by the abrin A chain mutant is independent of enzymatic 

activity. Also in bacteria the level of depurination by Shiga toxin was not correlated with the 

level of cytotoxicity, as reported by Di et al. (2011). 

Third, the inhibition of protein translation is neither required, nor sufficient for inducing 

apoptosis. The type 2 RIPs ricin, volkensin, and riproximin are able to induce apoptosis and 

depurinate ribosomes at different concentrations (Horrix et al., 2011). At the same time, the 

unfolded protein response is also induced by type 2 RIPs at concentrations below the level 

triggering the ribosomal inactivation. This accumulation of unfolded proteins in the ER is 

able to trigger apoptosis or autophagy (Malhotra and Kaufman, 2007; Verfaillie et al., 2010; 

Kim et al., 2008). A mutant form of abrin (absence of N-glycosidase activity) can also trigger 

programmed HeLa cell death (Sikriwal et al., 2008). Other studies have reported that 

induction of apoptosis by RIPs is independent of inhibition of protein translation (Das et al., 

2012).  

 

Figure 1.7 Possible mechanisms of RIPs to bypass the translation inhibition step to induce apoptosis 
(Das et al., 2012).  
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Role of type 2 RIP B chains  

Many studies reported that type 2 RIPs are involved in the apoptosis by triggering extrinsic 

pathways or/and intrinsic pathways. Furthermore, proteins consisting only the lectin domain 

are also able to program cell death via apoptotic or/and autophagic pathway (Fu et al., 2011; 

Liu et al., 2010). Although the mechanisms of induction of cell death by lectins are well 

studied, the functions of the B chain apart from the A chain in type 2 RIP are poorly 

understood except for their role in assisting the entry into cells. 

Necrosis induced by RIPs 
 
In contrast to apoptosis (energy-dependent programmed cell death), the cell death of 

necrosis does not require new energy production but requires minimal energy, and is mainly 

induced by mitochondrial stress (Zong and Thompson, 2006). The morphological changes 

observed from necrotic cell death are distinct from that of apoptosis. Necrosis leads to cell 

swelling, membrane rupture and release of intracellular contents, and thus is associated 

with an inflammatory response. The RIPs not only induce apoptosis, but also trigger necrosis. 

However, apoptosis is still the major mechanism for the cell death induced by RIPs. Abrin 

showed inhibition of protein synthesis activity in all tested cell types and displayed different 

forms of cell death. In the human Jurkat cells (T-cell line), abrin induces apoptosis via 

mitochondrial stress resulting in the activation of caspases-3/9 and DNA fragmentation 

(Narayanan et al., 2004).  However, abrin triggers necrosis in U266B1 cells (human B cell line) 

under a similar treatment (Bora et al., 2010). Mirabilis antiviral protein (MAP), a type 1 RIP 

isolated from the leaves of Mirabilis jalapa, causes apoptotic cell death in HeLa cells but 

necrosis in Raji cells (lymphoblasts from a case of Burkitt lymphoms), which also 

demonstrates that it is more toxic to HeLa cells than to Raji cells (Ikawati et al., 2003).        

1.3 Distribution and evolution of RIPs  

1.3.1 Distribution  

1.3.1.1 Plant RIPs 

Although RIPs are widely distributed in the plant kingdom, the N-glycosidase domain is not 

ubiquitous in plants (Peumans and Van Damme, 2010) as shown by the absence of a RIP 

domain from the first completed plant genome of Arabidopsis thaliana. In the meantime 

numerous genomes of species covering all major plant taxa have been completed, which 

now allows getting a better overview of the occurrence and overall structure of genes with 

an N-glycosidase domain by a silico approach that does not depend on the availability of 

“protein data”. 
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What can be learned from analyses of completed plant genomes? 
 
To identify RIP genes in the (nearly) completed plant genomes extensive screenings based 

primarily on BLASTp and tBLASTn searches of genomic (nucleotide) sequences were set up.  

 
The results of this extensive in silico screening covering a total number of 42 plant genomes 

are summarized in Figure 1.8, showing a phylogenetic tree of plant species with indication of 

the RIP gene complement. For most species the RIP genes (if present) could readily be 

identified. However, for the Poaceae species the outcome of the screening is still preliminary 

because of the complexity of the RIP gene complement and the occurrence of (multiple) 

introns in some RIP genes. Apart from the identification of the genes the in silico analysis 

revealed the occurrence of several yet unknown chimeric RIPs (type 3 RIP) as well as type 1 

RIPs. These latter type 1 RIPs, most probably are derived by domain deletion events from the 

type 2 RIPs. At present it is not clear how the multiple type 1 RIPs found in Poaceae species 

have to be classified.  

Several important conclusions can be drawn from Figure 1.8. First, RIP genes are apparently 

absent from 24 out of completed 42 genomes. Even within the group of flowering plants 

more than half of all species investigated (20 out of the 38) lack RIP gene(s). Second, there 

are striking differences between the RIP gene complement of the different species ranging 

from a single gene to a complex set of genes. In addition, the identification of several novel 

chimeric forms implies that the heterogeneity of RIP genes in terms of domain architecture 

is no longer covered by the classical plant type 1, type 2 and type 3 RIPs, and argues for a 

novel classification system. Extended RIP gene families are apparently common in Poaceae 

species but there are striking interspecific differences with respect to both the gene number 

and the domain architecture. Third, in some families (e.g. Euphorbiaceae and Poaceae) RIP 

genes are found in all sequenced genomes whereas in others (e.g. Rosaceae) RIP genes occur 

in some genomes (Malus domestica and Prunus persica) but are absent from others 

(Fragaria vesca). It is interesting to report that RIP sequences are found in the transcriptome 

of several important fruit producing species. Apple (Malus domestica) expresses both type 1 

and type 2 RIPs, whereas Prunus persica (e.g. apricot and peach) expresses a complex set of 

type 1 RIPs. These observations are of great interest for two reasons. (i) The presence of 

ricin-like proteins in common daily consumed fruits like apple and peach/apricot raises 

important questions with respect to food safety. (ii) The available expression data are 

indicative for a specific role of the RIPs. In this PhD project, apple was used as a model 

system for an in-depth study of the physiological role of both type 1 and type 2 RIPs. 
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Figure 1.8 Schematic overview of the presence/absence of RIP genes in the currently completed 
plant genomes. The dendrogram reflects only the overall phylogeny of the species listed. The 
presence or absence of RIP genes is indicated. *Denotes preliminary results. 
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1.3.1.2 Bacterial, fungal and insect RIPs   

RIP genes are widespread in plants. In contrast they are confined to a few bacterial, fungal 

and insect taxonomic groups, as shown by the in silico analysis (Shang et al., 2014). At 

present, RIP genes can be identified in only 16 bacterial species belonging to the families 

Actinobacteria, Gammaproteobacteria, Betaproteobacteria and Bacteroidetes.  The best 

known and until recently the only identified group of bacterial RIPs are the so-called Shiga 

and Shiga-like toxins. Genuine Shiga and Shiga-like toxins and/or their genes have been 

identified in five different bacterial species all of which are classified in the family 

Enterobacteriaceae (Gammaproteobacteria) (Girbés et al., 2004; Stirpe 2004; Reyes et al., 

2012). However, in silico analyses provide evidence for the presence of genes with an N-

glycosidase domain in a few fungi. Type 3 RIP genes of fungi were identified in 8 Ascomycota 

species, all of which belong to the Sordariomycetes. Hitherto, no RIP has been isolated from 

an animal species. However, in silico analyses of the genome and transcriptome databases 

revealed that a RIP gene occurs in the genome of Culex quinquefasciatus (southern house 

mosquito), whereas three paralogs are found in Aedes aegypti (yellow fever mosquito). The 

presence of perfectly matching (partial) EST sequences indicates that all four insect RIP 

genes are expressed. 

1.3.2 Molecular evolution of RIP genes  
 

The novel insights in the taxonomic distribution and overall phylogeny resulted recently in a 

proposed model (Peumans and Van Damme, 2010) of the molecular evolution of the plant 

RIP gene family (Peumans et al., 2014; Lapadula et al., 2013; Di Maro et al., 2014).  

 
At present there is a two-step hypothesis that tries to explain the molecular evolution of RIP 

genes (Fig. 1.9). First, it was suggested that the RIP domain itself developed in plants at least 

300 million years (Myr) ago (Palmer et al., 2004). Type 1 RIPs directly evolved from this 

ancestor, ancestral type 2 RIPs were formed after a fusion of the enzymatic domain with a 

carbohydrate binding (lectin) domain that might be acquired by lateral transfer from a 

bacterium. This hypothesis is supported for two reasons: (i) the B chain of the firstly 

discovered type 2 RIP ricin shows a high similarity with the carbohydrate binding part of a β-

glycosidase-like glycosyl hydrolase and an α-L-arabinofuranosidase B family protein from the 

Actinomycete Catenulispora acidiphila, and (ii) the cysteines (important for the formation of 

disulphide bond function) are also found in the bacterial sequences (Peumans and Van 

Damme, 2010). 

The resulting ancestral type 2 RIP gave rise (through vertical inheritance) to the modern type 

2 RIPs and by B domain deletion/gene truncation events to multiple lines of secondary type 
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1 RIP genes. In addition, deletion of the A domain resulted in the generation of lectin (B 

chain) genes. This hypothesis is based on a phylogenetic analysis suggesting that most type 1 

RIPs found in dicots are derived from type 2 RIPs.  

 

 

 

Fig 1.9 Hypotheses to explain the molecular evolution of RIP genes. The result of fusion of a RIP gene 
and a lectin gene is leading to an ancestral type 2 RIP. The resulting ancestral type 2 RIP gave rise to 
modern type 2 RIPs and by domain deletion/ gene truncation, to multiple lines of secondary type 1 
RIPs and lectins. 
 

The evolutionary link between plant and the non-plant RIPs 
 
The most plausible explanation is that RIP genes in bacteria and fungi were acquired by a 

horizontal gene transfer of a RIP gene from a plant (e.g. RIP from fungi possibly obtained 

from a host-parasite relationship). It was reported that the sequence similarity between the 

fungal and plants RIPs amounts to approximately 50% (at the amino acid level) leaving no 

doubt that they are related evolutionary. This striking sequence similarity as well as the very 

narrow taxonomic distribution of the fungal RIPs are difficult to explain in terms of a classical 

vertical inheritance from a common ancestor that predates the separation of fungi and 

plants approximately 1200 Myr ago (Berbee and Taylor, 2010). A more likely –but still 

speculative- explanation is that the fungal RIP genes were acquired by lateral transfer from a 

plant (within a host-parasite relationship). Such a transfer can explain why RIP genes are 

confined to a dozen or so typical plant parasites. A similar conclusion holds true for the RIP 

genes found in bacteria but in this case the polyphyletic nature of the RIP gene family 

requires multiple independent lateral gene transfers from a plant into a prokaryote. 
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1.4 Applications of RIPs 
 
Ricin was involved in some famous incidents. In the First World War, ricin was first 

investigated as a potential biological weapon. In 1978, the Bulgarian secret police used a 

modified umbrella with a tiny pellet containing ricin to murder the Bulgarian dissident 

Georgi Markov on a London street, which is now referred to as the “umbrella murder”. The 

LD50 of this highly toxic type 2 RIP ricin for an average adult is 1.78 mg. Ricin has been in the 

list of schedule 1 controlled substance since 1972 Biological Weapon Convention and 1997 

Chemical Weapon Convention. Of course, not all the RIPs are as toxic as ricin. Mostly, the 

applications of RIPs are considered in agriculture and in medicine.   

1.4.1 RIPs in agriculture 
 
RIPs can have practical application because of their antiviral, antifungal and insecticidal 

activities. The importance of RIPs in plant defense has been well documented.  RIP genes can 

be transferred to plants with low or no expression of RIPs to enhance the plant resistance to 

predators and/or pathogens. Mostly, the transgenic plants overexpressing RIPs do not show 

any morphological changes. Nevertheless, the expression of some RIPs is toxic to the 

transgenic plants. For example, the expression of IRAb (type 2 RIP from iris bulbs) in tobacco 

plants resulted in the plants that were fertile but with impaired root development and 

stunted growth (Vandenbussche et al., 2004a). These phenotypical changes are controlled 

by the expression level of IRAb. Interestingly, the IRIP (type 1 RIP from iris bulbs) possibly 

evolutionary derived from IRAb (Van Damme et al., 2001), was not toxic for transgenic 

tobacco plants (Desmyter et al., 2003).  

1.4.2 RIPs in medicine  
 
For centuries, RIPs have already been applied for medical application through the use of 

medicinal plants. The most famous application for RIPs concerns its use as an abortifacient 

protein. For example, the trichosanthin, type 1 RIP from Trichosanthes kirilowii) has been 

used to induce abortion in China since ancient time (Chan et al., 2014). An important 

potential application of RIPs in medicine is their use in the battle against human immuno-

deficiency virus (HIV). Some RIPs can inhibit the replication of HIV, such as trichosanthin, PAP 

and Momordica antiviral protein (MAP30) (Krivdova et al., 2014). Trichosanthin was the first 

RIP reported as anti-HIV protein in vitro. Its inhibition of HIV proliferation in cells led to 

Phase I/II clinical trials (Puri et al., 2012). Modified PAP has also been tested on HIV patients 

(Puri et al., 2012). Although not successful, the clinical trials presented the potential of RIPs 

for treating HIV positive patients.   
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So far, the construction and use of immunotoxins (RIPs linked to antibodies or other carriers) 

and other conjugates got a lot of attention. Compared to type 2 RIPs, the immunotoxins 

provide a better way to more specifically target and kill certain cell type, especially cancer 

cells (Kreitman, 2006). Immunotoxins can drive the RIPs in a selective way towards the cells 

to be eliminated. A variety of immunotoxins have been synthesized and tested towards 

several malignancies in cell cultures, animal models or patients. Gilabert-Oriol et al. (2014) 

summarized more than 450 RIP-based immunotoxins in his review. Saporin linked to 

antibody is a good example to show the cell death mechanism triggered by immunotoxins 

(Polito et al., 2013a)(Fig. 1.10). Normally, the targeted toxins are constructed by using type 1 

RIPs or the A chain of type 2 RIPs. Due to the effect of the type 2 RIP B chains on the specific 

delivery of the toxins, whole type 2 RIPs can only be used after modification of the protein 

(Becker and Benhar, 2012). Experiments with the RIP-based toxins yielded promising results 

in vitro and in experimental animals (Fracasso et al., 2010). An immunotoxin based on 

bouganin induced little formation of antibodies in patients (Cizeau et al., 2012). However, 

patients suffered from vascular leak syndrome, fever, fatigue, hepatotoxicity and recurrence 

of the disease. These side effects could possibly be reduced by the use of mutant RIPs 

(Smallshaw et al., 2003). Nevertheless, there are also other hurdles to the use of the 

immunotoxins. For instance, the immunotoxins are recognized as foreign proteins, and thus 

antibodies will be formed, which might trigger an immunological response and prevents 

their repeated use. This phenomenon is an important problem of using immunotoxins. A 

possible way to reduce the immunogenicity of the proteins is to use humanized antibodies, 

rotate immunologically different RIPs, make PEGylation modification or deplete the 

immunodominant epitopes of RIPs (Lorberboum-Galski, 2011; Meng et al., 2012). Other 

obstacles including the expensive production, protein instability, short biological half-life and 

insufficient endosomal escape, can hopefully be solved in the future (Gilabert-Oriol et al., 

2014).  

 
Though there is still some distance between the laboratory studies and applications on the 

market or in clinical trials, all the knowledge of RIPs is necessary and important for the 

development of future applications. We believe that “First rate fundamental research, 

sooner or later, leads to important practical applications” (Krebs 1981; Stirpe 2014).    

 

 



Chapter 1 General introduction 

 

 
 

37 

 
 

Figure 1.10 Multiple cell death pathways induced by saporin-S6 containing immunotoxins (ITs). The 
scheme shows the broad range of cell death mechanisms triggered by ITs. Once Saporin-S6 reaches 
the cytosol or ER or nucleus it can cause apoptosis activation (both caspase-dependent or -
independent apoptosis), autophagy, necroptosis, oxidative stress and the inhibition of protein 
synthesis (in red). Moreover, cell death can also be activated by the antibody (in green) occurring 
through apoptosis or, when full-length antibodies are used through complement-dependent 
cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) (Polito et al., 2013a). 
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2.1 Abstract 
 
The aim of this study was to identify and characterize the type 1 and type 2 RIPs from apple 

(Malus domestica). The RIP sequences from apple were successfully cloned from the apple 

genome, expressed in a heterologous system (in particular Pichia pastoris for type 1 RIP and 

tobacco BY-2 cells for type 2 RIP) and purified by affinity chromatography. SDS-PAGE 

revealed that the recombinant type 1 RIP polypeptide has a molecular mass of 38.8 kDa 

whereas the recombinant type 2 RIP consists of an AB structure of approximately 65.5 kDa. 

The IC50 values for in vitro protein synthesis inhibition by the recombinant apple type 1 and 

type 2 RIPs correspond to 186.6 and 300.7 nM, respectively. Screening of the recombinant 

apple type 2 RIP on a glycan array indicated that this type 2 RIP strongly reacts with terminal 

sialic acid residues. The cytotoxicity of the apple RIPs towards to mammalian cells revealed 

that the type 2 RIP from apple was toxic to human cells, whereas the type 1 RIP did not show 

any effect.     

2.2    Introduction 
 
Ribosome-inactivating proteins are a large family of enzymes comprising an N-glycosidase 

domain that is capable of catalytically inactivating eukaryotic ribosomes through the 

removal of a specific adenine residue from a highly conserved α-sarcin/ricin loop of the large 

rRNA (Peumans et al., 2001; Stirpe and Battelli, 2006). Though RIPs are classically associated 

with plants there is ample evidence now that RIP genes occur also in bacteria as well as in 

some fungi and invertebrates. However, apart from the bacterial shiga and shiga-like toxins 

and a single fungal protein (Reyes et al., 2010) virtually all research was concentrated on 

RIPs from flowering plants (Angiosperms). Due to the occurrence in some plants of large 

quantities of RIPs these proteins could readily be purified and studied in great detail with 

respect to their biochemical properties, biological activities and possible applications in 

medicine (antitumor and antiviral therapy) and agriculture (plant defense against fungi, 

viruses, bacteria and insects) (Stirpe and Lappi, 2014). 

 
Plant RIPs are classically subdivided into two main groups namely type 1 RIPs consisting of an 

N-glycosidase domain and type 2 RIPs, which are chimeric proteins built up of an N-terminal 

N-glycosidase domain fused to a C-terminal carbohydrate binding domain (corresponding to 

a duplicated ricin B domain). However, this classification is too restrictive because genome 

and transcriptome analyses provided ample evidence for the occurrence in numerous plant 

species of RIP sequences with a completely different and often fairly complex domain 

architecture. However, the classification system with type 1 and type 2 RIPs is still practical 

because it allows to classify –apart from a single type 3 RIP from barley (Peumans et al., 
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2001)- all plant RIPs purified thus far. In silico analyses of plant genomes/transcriptomes not 

only allowed identifying novel types of RIPs but yielded also a fairly detailed overview of the 

occurrence of the classical type 1 and type 2 RIPs in flowering plants and generated new 

insights in the molecular evolution of this protein family. Furthermore, it became evident 

that orthologs/homologs of the highly toxic type 2 RIPs are far more widespread in flowering 

plants than was previously documented and also occur in several food plants. Evidently, the 

(unexpected) occurrence of type 2 RIPs in food plants is of a great concern because the idea 

of eating homologs of some extremely toxic proteins like ricin and abrin is certainly not 

reassuring. This issue became a particularly hot item after the release of the apple genome 

sequence and transcriptome data (Velasco et al., 2010) revealed that this major fruit crop 

apparently expresses a ricin homolog (Shang et al., 2014). To answer the critical question 

whether the predicted ricin homolog might be of any concern from the point of view of food 

safety it seemed worthwhile to corroborate the biochemical properties and biological 

activities of the apple type 2 RIP as well as the expression of the corresponding gene. The in 

silico analyses further revealed that the apple genome comprises also a set of genes 

encoding type 1 RIPs. Though type 1 RIPs are usually not considered toxins the possible 

presence of such proteins in an edible fruit justifies a detailed study of their biological 

activities in general and cytotoxicity in particular. To achieve these goals recombinant type 1 

and type 2 RIPs from apple were produced in an eukaryotic expression system and 

characterized for what concerns their biochemical properties and RNA N-glycosidase activity 

in vitro. In addition, the carbohydrate binding properties of the type 2 RIP were analyzed in 

detail using glycan arrays. Cytotoxicity studies with HeLa and NHDF cells further indicated 

that the apple type 2 RIP is moderately toxic whereas the type 1 RIP exhibits a low 

cytotoxicity, at least in vitro. 

2.3    Materials and methods 

2.3.1 Cell culture 
 
Nicotiana. tabacum cv Bright Yellow-2 (BY-2) cells were grown in 250 ml Erlenmeyer flasks 

filled with 40 ml of liquid Murashige and Skoog (MS) medium on an orbital shaker (25°C, 150 

rpm, constant darkness). The MS medium (adjusted to pH 5.7 with 1M KOH) contained 4.3 

g/L MS micro and macro nutrients (Duchefa, Haarlem, The Netherlands), 30 g/L sucrose, 0.2 

g/L KH2PO4 and 40 µl of a 1000-fold concentrated vitamin/hormone stock (containing per ml: 

0.4 mg 2.4-D dissolved in ethanol, 1 mg thiamine and 100 mg myo-inositol). Cells were 

subcultured weekly by pipetting 1 ml of a dense culture into 40 ml fresh MS medium.  

 
HeLa (Cervix carcinoma) and NHDF (human dermal fibroblasts, passage 9) cell cultures were 

grown in advanced DMEM (Life Technologies, Merelbeke, Gent) supplemented with 2% fetal 
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calf serum (Life Technologies) and 1% L-glutamine Penicillin-Streptomycin-Glutamin solution 

(Life Technologies) in an incubator set at 37°C and 5% CO2.  

2.3.2 Expression of type 1 RIP in Pichia pastoris  
 
Expression of the type 1 RIP sequence was conducted following the EasySelect Pichia 

Expression Kit from Invitrogen (Invitrogen, Carlsbad, CA USA). To allow the secretion of the 

recombinant protein into the culture medium, the E. coli/P. pastoris shuttle vector pPICZαA 

containing an upstream α-mating sequence from Sacharomyces cerevisiae and a 

downstream polyhistidine tag was used. Therefore, the coding sequence of the type 1 RIP 

gene was amplified by PCR using genomic DNA extracted from the bark of Malus domestica 

cv ‘Jacques Lebel’ using the Fast DNA SPIN Kit (Qbiogene, USA). PCR was done using the 

specific primers EVD 578 and EVD 580 (Table 2.1) corresponding to the 5’ and 3’ region of 

the coding sequence. The PCR reactions were as follows: 2 min 94°C, 30 cycles (15s 94°C, 30s 

55°C, 1 min 72°C), 5 min 72°C. The amplified type 1 RIP sequence was cloned as a EcoRI/NotI 

fragment in the shuttle vector pPICZαA and transformed into E.coli Top 10 cells via heat 

shock. Transformed clones were grown on LB agar plates with zeocin (25 µg/ml) at 37°C. 

Plasmid DNA was purified using the GeneJET™ Plasmid Miniprep Kit (Fermentas, St Leon-Rot, 

Germany) and sequenced by LGC Genomic (Berlin, Germany) using 5’ and 3’ AOX1 primers 

(EVD 21 and EVD 22, Table 2.1).  

2.3.3 Transformation of Pichia pastoris, selection, and expression analysis  
 
Electrocompetent cells of P. pastoris strain X-33 were prepared according to Invitrogen 

protocols. Before electroporation, the DNA construct was linearized using the restriction 

enzyme Sac I (Fermentas, St Leon-Rot, Germany) and incubated at 37°C overnight. 10 µg of 

linearized expression vector was transformed into P. pastoris strain X-33 using a Bio-Rad 

Gene pulser apparatus (Bio-Rad, Hercules, CA, USA) using the settings as described by Al 

Atalah et al. (2011). The transformants were selected on YPDS agar plates (1% yeast extract, 

2% peptone, 2% dextrose, 1 M sorbitol, 1.5% agar) containing 200 µg/ml zeocin (Invitrogen). 

To analyse the expression, several colonies were inoculated in 5 ml BMGY medium (1% yeast 

extract, 2% peptone, 100 mM phosphate buffer, pH 6.0, 1.34% yeast nitrogen base with 

ammonium sulfate and without amino acids, 4x10-5% biotin, and 1% glycerol) at 30°C in a 

shaker incubator at 200 rpm for 24 h. Afterwards, Pichia cells were washed with sterilized 

water and resuspended in 5 ml of BMMY (BMGY containing 2% methanol instead of 1% 

glycerol). Cultures were treated with 2% methanol for 72 h at 22 °C with shaking at 250 rpm. 

Samples of the medium were analyzed by Western blots after trichloroacetic acid (TCA)

http://zh.wikipedia.org/wiki/X
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Table 2.1 Overview of PCR primer pairs used in this research 

Amplified sequence Primer name 5’-3’ sequence 

Specific gene amplification primers: type 1 RIP EVD 578 

EVD 580 

AATATGGCACTATCCTTCTC 

AGTGGGCCGTCTATTTCTTC 

AOX1-sequencing primer for Pichia vectors EVD 21 

EVD 22 

GACTGGTTCCAATTGACAAGC 

GCAAATGGCATTCTGACATCC 

Adding the non-complete attB sequences: type 

2 RIP 

EVD 607 

EVD 713 

AAAAAGCAGGCTTCACCATGACGAGAGTGTTAGCAATATAC 

AGAAAGCTGGGTGACGACCTTCGATGAAGAACGGCAGCCATTGCTGGTTGGG 

Completing the attB sequences  

 

EVD 2 

EVD 4 

GGGGACAAGTTTGTACAAAAAAGCAGGCT  

ACCACTTTGCTCAAGAAAGCTGGGT 

Sequencing MultiSide LR reaction product from 

type 2 RIP 

EVD 472 

EVD 634 

GAAACCTCCTCGGATTCCAT 

AACGGAGTCTTCAGTAAGTC 

 
 
 

 

 

 

 

 

 

 



Chapter 2 Characterization of a type 1 RIP and a type 2 RIP from Malus domestica 

 44 

precipitation. For medium-scale cultures, P. pastoris X-33 colonies were inoculated into 10 

ml BMGY medium and grown for 24 h at 30°C in a shaker incubator at 200 rpm. Afterwards, 

10 ml preculture was subcultured into 50 ml BMGY medium in 250 ml Erlenmeyer flasks and 

incubated at 200 rpm for 24 h at 30°C. Cells were centrifuged at 3000 g for 10 min at room 

temperature and resuspended in 100 ml BMMY in 500 ml flasks after washing with sterilized 

water. After 24 h, 100% methanol (2% final concentration) was added to the culture twice 

per day. After 3 days, the yeast cell culture was centrifuged at 3000 g for 10 min. Solid 

ammonium sulfate (80% final concentration) was added to the supernatant and the proteins 

were allowed to precipitate at 4°C.  Precipitated proteins were collected by centrifugation 

(14,600 g for 30 min at 4 °C), dissolved in 50 mM sodium acetic acid (pH 5), and dialysed 

against 50 mM sodium acetic acid (pH 5) for 24 h. After dialysis the protein solution was 

cleared by centrifugation (3000 g for 10 min) and the supernatant (adjusted to pH 3) used 

for the purification of the RIP. 

2.3.4 Purification of recombinant type 1 RIP 
 
Purification of recombinant type 1 RIP was achieved in three successive chromatographic 

steps. The proteins recovered from the medium were loaded onto a column (2 cm x 22 cm; 

20 ml bed volume) of S Fast Flow equilibrated with 50 mM sodium acetate (pH 3). After 

washing the column with 50 mM sodium acetate (pH 3), the bound proteins were eluted 

with a solution of 0.5 M NaCl in 100 mM Tris/HCl (pH 8.7). The eluate was brought to a final 

concentration of 25 mM imidazole and loaded onto a column (1 cm x 22 cm; 5 ml bed 

volume) of Ni-Sepharose equilibrated with starting buffer (0.1 M Tris pH 7 containing 0.5 M 

NaCl and 25 mM imidazole). After washing with starting buffer, the proteins were eluted 

using a buffer (0.1 M Tris pH 7 containing 0.5 M NaCl) with increasing concentrations of 

imidazole (50, 175, 250 mM). Pure type 1 RIP eluted at a concentration of 175 mM 

imidazole. Finally, the eluate from the Ni-Sepharose column was diluted five times with 50 

mM sodium acetic acid, adjusted to pH 3 and concentrated on a column (1 cm x 22 cm; 5 ml 

bed volume) of S Fast Flow using the same procedure as during the first chromatography 

step. The purity of the protein in the eluate was assessed by SDS-PAGE. 

2.3.5 Construction of the binary vector for expression of type 2 RIP in BY-2 cells  
 
To construct a binary vector that will allow the 35S Cauliflower Mosaic virus promoter-driven 

expression of the type 2 RIP from Malus domestica, the GatewayTM cloning technology of 

Invitrogen (Carlsbad, CA, USA) was used. The coding sequence of the complete type 2 RIP 

gene from apple was amplified as an attB product by PCR, using genomic DNA extracted 

from the bark of Malus domestica cv ‘Jacques Lebel’ and gene-specific primers EVD 607 and 

EVD 713 (Table 2.1) containing part of the attB sites in the first PCR. The construct was 
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completed with the attB sites using primers EVD2/EVD4 (Table 2.1). Cycling parameters for 

the PCR reactions were: 2min 94°C, 25 X (15s 94°C, 30s 55°C, 1 min 72°C), 5min 72°C. 

Subsequently, all attB PCR products were homogeneously recombined in the entry vector 

pDONR221 (Invitrogen). Using heat shock transformation, the entry clones were 

subsequently transferred into E. coli strain Top10 cells. Transformants were selected by 

colony PCR. The plasmid DNA extracted from the colonies was sent for sequencing 

(performed by LGC Genomics, Berlin, Germany) using the primers Donr-F and Seql-E (Table 

2.1). Tobacco Bright Yellow (BY)-2 cells were transformed using the fusion construct 

containing the type 2 RIP sequence cloned behind the 35S CaMV promoter and C-terminally 

fused to a (His)6 tag. These additional sequences were added by Gateway MultiSite 

recombination cloning techniques (Petersen and Stowers, 2011). Finally, the LR reaction was 

performed with a selected entry clone containing the type 2 RIP sequence, pEN-L4-2-R1, 0 

and pEN-His(6) entry vectors in the pKCTAP destination vector containing the EGFP sequence 

using LR Clonase TM II Plus Enzyme Mix (Invitrogen). The result of the LR reaction was verified 

by sequencing (LGC Genomics) using primers EVD 472 and EVD 634 (Table 2.1). The final 

construct was used for transformation of Agrobacterium tumefaciens strain LBA4404 by tri-

parental mating a described by Hoekema et al., (1983).  

2.3.6 Stable transformation of BY-2 cells and expression analysis 
 
A three day old BY-2 cell culture was cocultivated with A. tumefaciens cells harboring the 

expression vector as previously described (Delporte et al., 2014). After 3 days cocultivation, 

transformed BY-2 cells were selected on MS agar plates containing antibiotics (500 mg/L 

carbenicillin, 100 mg/L kanamycin) and BY-2 vitamins for 3-4 weeks until resistant calli 

became visible. The transgenic calli were detected by the Fujifilm FLA-5100 Fluorescent 

Image Analyzing System (Tokyo, Japan) based on the expression of the EGFP sequence 

located on the vector. Fluorescent calli were used to start a BY-2 liquid cell culture by 

transferring a 1 cm homogenous appearing callus into 20 ml BY-2 cell medium in a 40 ml 

Erlenmeyer flask. For the purification of recombinant proteins the cell cultures were grown 

in 600 ml cultures in large Erlenmeyer flasks. After seven days, the medium was harvested 

using a sintered glass pore filter with a filter disc paper. Afterwards, the medium was 

adjusted to 1.5 M ammonium sulfate (by adding the solid salt) at pH 7.0 for the purification 

of type 2 RIP.   

2.3.7 Purification of recombinant type 2 RIP 
 
Purification of the recombinant type 2 RIP from apple was achieved in three consecutive 

chromatographic steps. The BY-2 medium (pH 7) was cleared by vacuum filtration and 

loaded onto a column (5 cm x 30 cm; 80 ml bed volume) of Phenyl Sepharose (GE 
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Healthcare, Uppsala, Sweden) equilibrated with 1.5 M ammonium sulfate (pH 7). After 

washing the column with 1.5 M ammonium sulfate (pH 7), the bound protein fraction was 

eluted with a solution of 20 mM 1,3 diaminopropane. The eluted fraction was brought at 1.5 

M ammonium sulfate with the solid salt, the pH adjusted to 7 and applied onto a column (2 

cm x 22 cm; 20 ml bed volume) of Fetuin-Sepharose 4B equilibrated with 1.5 M ammonium 

sulfate (pH 7) and washed with 1.5 M ammonium sulfate (pH 7). Bound proteins were eluted 

with a solution of 20 mM 1,3 diaminopropane and concentrated by a second 

chromatography on a small column (1 cm x 22 cm; 5 ml bed volume) of Fetuin-Sepharose 4B 

using the same procedure as for the first affinity chromatography step. Following this 

procedure the type 2 RIP fraction was eluted in a few ml of 20 mM 1,3 diaminopropane.  

2.3.8 N-terminal sequence analysis  
 
Purified type 1 and 2 RIPs were analyzed by SDS-PAGE, electroblotted onto a Problot TM 

polyvinylidene fluoride (PVDF) membrane  (Applied Biosystems, Foster City, CA, USA) and 

the blot stained using 1:1 mix of Coomassie Brilliant Blue and methanol to visualize the 

protein. The bands of interest were cut and used for N-terminal sequencing by Edman 

degradation using a capillary Procise 491cLC protein sequencer without alkylation of 

cysteines (Applied Biosystems). 

2.3.9 Agglutination assay  
 
For testing the lectin activity of the purified recombinant type 2 RIP, trypsin-treated rabbit 

red blood cells (Bio-Mérieux, Marcyl’Etoile, France) were used. Assays were performed as 

described by Al Atalah et al. (2011).  

2.3.10 Carbohydrate inhibition test  
 
To determine the overall carbohydrate binding specificity of the recombinant type 2 RIP, 

hapten inhibition assays were carried out with a series of glycoproteins (thyroglobulin, 

fetuin, ovomucoid, asialomucin and mucin) and carbohydrates (mannose, methyl 

mannopyranoside, and galactose). Aliquots of 5 µl purified type 2 RIP (0.3 mg/mL) were 

mixed with 5 µl of a serially diluted carbohydrate or glycoprotein solution (in glass tubes) 

and incubated for 10 min at room temperature before adding 10 µl 1 M ammonium sulfate 

and 30 µl of a 10% (v/v) suspension of trypsin-treated erythrocytes. Agglutination activity 

was assessed visually after 1 h incubation at room temperature.  
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2.3.11 Glycan microarray screening assay 

Glycan microarrays were printed as described previously (Blixt et al., 2004). The printed 

glycan array contains a library of natural and synthetic glycan sequences representing major 

glycan structures of glycoproteins and glycolipids. Array version 5.0 with 611 glycan targets, 

was used for the analyses with recombinant type 2 RIP (http://www.functionalglycomics 

.org/glycomics/publicdata/selectedScreens.jsp). The purified recombinant type 2 RIP was 

labeled using the Alexa Fluor® 488 Protein Labeling Kit (Invitrogen, California, USA) following 

the manufacturer’s instructions. The labeled proteins were applied to separate microarray 

slides and incubated for 60 min under a cover slip in a dark, humidified chamber at room 

temperature. After incubation, the cover slips were gently removed in a solution of Tris-

buffered saline containing 0.05% Tween 20 and washed by gently dipping the slides 4 times 

in successive washes of Tris-buffered saline containing 0.05% Tween 20, Tris-buffered saline, 

and deionized water. After the last wash, the slides were spun in a slide centrifuge for 

approximately 15s to dry and immediately scanned in a PerkinElmer ProScanArray 

MicroArray Scanner using an excitation wavelength of 488 nm and ImaGene software 

(BioDiscovery, El Segundo, CA, USA) to quantify fluorescence. The data are reported as 

average relative fluorescence units (RFU) of six replicates for each glycan present on the 

array after removing the highest and lowest values.  

2.3.12 Protein deglycosylation  
 
Recombinant proteins (type 1 RIP and type 2 RIP) were digested with N-glycosidase F 

(PNGase F) as described by Al Atalah et al. (2014a). Briefly, 2 µg of recombinant proteins 

were mixed in a volume of 10 µl denaturation buffer (0.5% SDS and 0.04 M dithiothreitol). 

The samples were boiled at 100°C for 10 min and cooled down to room temperature. To the 

denatured samples 2 µl of 10x reaction buffer (0.5 M sodium phosphate pH 7.5), 2 µl 10% 

NP-40 and 5.5 µl distilled water were added to reach a total volume of 20 µl. The samples 

were incubated at 37°C for 4 h after adding 0.5 µl of PNGase F (1000 U/µl) to each sample. 

RNAse B (2 µg) was used as a positive control. Finally, protein samples were analyzed by 

SDS-PAGE. 

2.3.13 Protein synthesis inhibition activity 
 
The protein synthesis inhibition activity of the recombinant proteins (type 1 RIP and type 2 

RIP) and positive and negative controls (SNA-I and BSA, respectively) was determined using 

the TnT® T7 Quick Coupled Transcription/Translation System Kit (Promega, Mannheim, 

Germany) based on a cell-free system derived from rabbit reticulocytes (Voss et al., 2006). 

According to the manufacturer’s instructions, the prepared mixture was incubated at 30°C 
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for 10 min and chilled on ice. Afterwards, 2 µl PBS or PBS containing different concentrations 

of proteins were added to the reaction mixture and incubated for 30 min at 30°C. After 

addition of 35 µl nuclease-free water at room temperature, the reaction samples were 

transferred to a luminometer plate (Greiner Labortechnik, Frickenhausen, Germany) 

containing 5 µl luciferase assay reagent at 25°C. The relative luciferase activities of the 

samples were determined at 562 nm for 10s using a microtiter top plate reader (Infinite 200, 

Tecan, Mannedorf, Switzerland) with an initial delay of 2s. 

2.3.14 Cytotoxicity assay   
 
To study the effect of recombinant RIPs from apple on cell viability and proliferation, a total 

of 3,000 HeLa or NHDF cells were seeded in a 96-well plate (Greiner Labortechnik) and 

incubated at 37 °C and 5% CO2 for 24 h. Subsequently, the medium was exchanged with 

medium supplemented with various concentrations of apple RIPs (ranging from 0.05 to 2 

µM), and incubated at 37°C and 5% CO2 for 2 time points (24 h and 48 h), respectively. 

Phosphate buffered saline (Life Technologies) with/without 2 µM BSA was used in the 

control treatments (Oliveira et al., 2011). Four technical replicates were performed for each 

concentration, and each experiment was repeated three times. 

 
Cell viability was determined by means of (resazurin-based) Presto Blue spectrophotometric 

assays (Life Technologies) according to manufacturer’s instructions. In brief, the culture 

medium of each well was replaced with fresh culture medium containing 10% final 

concentration of Presto blue reagent. After incubation for 20 min in the dark at 37 °C and 5% 

CO2 the fluorescence intensity of reduced resazurin was measured at 560/600 nm in a plate 

reader (Infinite 200, Tecan, Mannedorf, Switzerland).  

 
Cell morphology was assessed using an inverted transmitted light microscope (Ti Eclipse, 

Nikon Instruments, Paris, France), with a 10x dry objective (Numerical aperture 0.5). Cells 

were imaged using the software package NIS-Elements (Nikon) and analyzed using Fiji 

(http://fiji.sc/Fiji).  

2.3.15 Preparation of crude extracts from apple tissue 
 
Crude extracts were prepared from apple (Malus domestica cv ‘Golden delicious’) fruits 10 

days post pollination by homogenizing the tissue in 20 mM 1,3 diaminopropane (0.5 ml 

buffer per gram of fresh weight (FW)) with mortar and pestle. After centrifugation (10 min, 

3000 g), the supernatant was adjusted to 1.5 M ammonium sulfate at pH 7.0 and loaded 

onto a column (1 cm x 10 cm; 4 ml bed volume) of Phenyl Sepharose (GE Healthcare, 

Uppsala, Sweden) equilibrated with 1.5 M ammonium sulfate (pH 7). After washing the 

http://fiji.sc/Fiji
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column with 1.5 M ammonium sulfate (pH 7), the bound protein fraction was eluted with a 

solution of 20 mM 1,3 diaminopropane, and analyzed by SDS-PAGE. The apple type 2 RIP 

was detected by western blot analysis.  

2.3.16 Analytical methods 
 
The total protein content of the extracts from apple tissue was estimated using the 

Coomassie (Bradford) Protein Assay Kit (Thermo Fischer Scientific, Rockford, IL USA). SDS-

PAGE was performed in 15% polyacrylamide gels under reducing/non-reducing conditions 

(with/without betamercaptoethanol treatment). Proteins were visualised by staining with 

Coomassie Brilliant Blue R-250. For western blot analysis, samples were separated by SDS-

PAGE and proteins transferred onto a PVDF membrane (Bio TraceTM PVDF, PALL, Gelman 

Laboratory, Ann Arbor, MI, USA). First, the blots were blocked in blocking buffer, consisting 

of 5% milk powder dissolved in Tris buffered saline (TBS: 10 mM Tris, 150 mM NaCl and 0.1% 

(v/v) Triton X-100, pH 7.6). After blocking, blots were incubated for 1 h in TBS supplemented 

with the following primary antibodies: (i) for recombinant type 1 RIP purified from Pichia 

pastoris medium: mouse monoclonal anti-His (C-terminal) antibody (1:5000, Invitrogen; (ii) 

for recombinant type 2 RIP purified from tobacco cells: rabbit polyclonal anti-type 1 RIP 

antiserum (1:1500, produced by Thermo scientific by injecting two rabbits with recombinant 

type 1 RIP from apple). The secondary antibody was a 1:1000 diluted rabbit anti-mouse IgG 

(Dako Cytomation, Glostrup, Denmark) or a 1:5000 diluted horseradish peroxidase-coupled 

goat anti-rabbit IgG (Sigma-Aldrich, St. Louis Missouri, USA), respectively. Immunodetection 

was achieved by a colorimtric assay using 3,3’-diaminobenzidine tetrhydrochloride (Sigma-

Aldrich) as a substrate. All washes and incubations were conducted at room temperature 

with gentle shaking. For sequence analysis, ClustalW was used for alignment of the apple 

RIPs, elderberry RIP (SNA-I) and A chain of ricin protein sequences. The signal peptide 

sequences were predicted by SignalP (http://www.cbs.dtu.dk/services/SignalP/).  

2.3.17 Statistical analyses 
 
Statistical analyses were performed using Prism version 5 (GraphPad, La Jolla, CA). One-way 

ANOVA (Dunnett’s Multiple Comparison Test) was performed at the level of significance (*: 

p < 0,05; **: p< 0,01; ***: p < 0,001). The 50% lethal concentration (LC50) was determined 

using the non-linear regression analysis. Data are represented as means ± standard error 

(SE).  

http://www.cbs.dtu.dk/services/SignalP/
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2.4     Results  

2.4.1 Identification and sequence analysis of RIP genes in the apple (Malus domestica) 
genome 

A detailed screening of the apple genome revealed the presence of three type 1 RIP genes 

located on different contigs and a single type 2 RIP gene located on still another contig. In 

addition to the genuine RIP genes the apple genome contains several pseudogenes: (i) one 

pseudogene covering most of the B chain of the type 2 RIP (comprises no ORF due to the 

presence of multiple stop codons) and (ii) three type 1 RIP pseudogenes.  

Analysis of the apple type 1 RIP genes indicated that they encode three closely related 

proteins (The Apple Gene Function & Gene Family DataBase v1.0; >MDP0000918923, 

>MDP0000223290, >MDP0000134012 further referred to as type 1 RIP genes A-B-C) (Fig. 

2.1) that share a high sequence similarity with the classical type 1 RIPs from e.g. 

Cucurbitaceae species. However, there is a major difference because the apple type 1 RIPs 

are apparently synthesized without a signal peptide whereas all other type 1 RIPs found in 

dicotyledonous plants are synthesized with a leader sequence. Evidently, the loss of the 

signal peptide has profound consequences because the apple type 1 RIPs are presumably 

synthesized in the cytoplasm, which raises the question how the cells can cope with the 

presence of a type 1 RIP in the cytoplasmic/nuclear compartment.  

Only one of the three type 1 RIP genes was selected for the further study (The Apple Gene 

Function & Gene Family DataBase v1.0; >MDP0000918923, gene A). Of all type 1 RIPs 

identified thus far it shares the highest sequence identity with the Bryonia cretica ssp dioica 

(Cucurbitaceae) type 1 RIP bryodin (57% sequence identity and 67% sequence similarity). 

This apple gene encodes a 301 AA polypeptide and has a calculated molecular weight of 33 

kDa (Fig. 2.2A). The deduced sequence comprises five putative N-glycosylation sites but the 

native protein is unlikely to be N-glycosylated because it is synthesized on free polysomes. 

The sequence of type 1 RIP gene-A is very similar to that of the apple type 1 RIP genes B and 

C (>MDP0000223290 (gene B): 48% sequence identity and 64% sequence similarity; 

>MDP0000134012 (gene C): 48% sequence identity and 63% sequence similarity). Residues 

that built up the core catalytic site of N-glycosidase domain are highly conserved when 

compared to ricin (Fig. 2.2A).     

The apple type 2 RIP (The Apple Gene Function & Gene Family DataBase v1.0; 

>MDP0000711911) resembles the classical type 2 RIPs found in other plant species. Of all 

type 2 RIPs identified thus far it shares the highest sequence identity to the Sambucus nigra 

type 2 RIP SNA-I (48% sequence identity and 62% sequence similarity). An analysis of the 

http://www.applegene.org/genedescription.asp?ID=MDP0000918923
http://www.applegene.org/genedescription.asp?ID=MDP0000223290
http://www.applegene.org/genedescription.asp?ID=MDP0000134012
http://www.applegene.org/genedescription.asp?ID=MDP0000918923
http://www.applegene.org/genedescription.asp?ID=MDP0000223290
http://www.applegene.org/genedescription.asp?ID=MDP0000134012
http://www.applegene.org/genedescription.asp?ID=MDP0000711911
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deduced amino acid sequence indicates that the apple type 2 RIP is synthesized with a 22 AA 

residue signal peptide (Fig. 2.2B). Cotranslational removal of this signal peptide yields a 526 

AA polypeptide with seven putative N-glycosylation sites (Fig. 2.2B). Most amino acid 

residues that built up the catalytic site are conserved (Fig. 2.2A). Sequence alignment with 

ricin revealed a single AA substitution in the active site of the apple type 2 RIP (Tyr80 of ricin 

is replaced by Ser71) (Fig. 2.2A). Alignment with SNA-I further indicates that all four intra-

chain disulfide-bridges that stabilize the B chain (cys24-cys43, cys65- cys77, cys147- cys162, cys198- 

cys205) are conserved in the apple RIP (Fig. 2.2B) and that the AAs that built the two 

carbohydrate binding domains are highly conserved between the apple type 2 RIP on the 

one hand and the SNA-I on the other hand  (Fig. 2.2B) (Van Damme et al., 1996a; Kaku et al., 

2007; Hu et at., 2012).  

 
 
Figure 2.1 Sequence alignments of the three type 1 RIP genes (A-MDP0000918923, B-
MDP0000223290, C-MDP0000134012). ‘*’ Means that the amino acids are identical in all sequences; 
‘:’ means conserved conversions (amino acids with the same shape, charge and other properties), 
and ‘.’ semi-conserved substitutions (properties not the same but still similar).  

 

 

http://www.applegene.org/genedescription.asp?ID=MDP0000918923
http://www.applegene.org/genedescription.asp?ID=MDP0000223290
http://www.applegene.org/genedescription.asp?ID=MDP0000134012
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Figure 2.2A Sequence alignment of the Ricin (acc. no. XP_002534649.1), apple type 1 and type 2 
RIPs. ‘*’ Means that the amino acids are identical in all sequences; ‘:’ means conserved conversions 
(amino acids with the same shape, charge and other properties), and ‘.’ semi-conserved substitutions 
(properties not the same but still similar). N-terminal signal peptide is shown in gray. The amino 
acids known to be important for the catalytic activity of the N glycosidase domain of ricin are 
highlighted in yellow. Amino acid residues known to be important for the carbohydrate binding 
activity in ricin are shown in green. Putative N-glycosylation sites are highlighted in pink. 
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Figure 2.2B Sequence alignment of apple type 2 RIP and SNA-I (acc. no. U27122). ‘*’ Means that the 
amino acids are identical in all sequences; ‘:’ means conserved conversions (amino acids with the 
same shape, charge and other properties), and ‘.’ semi-conserved substitutions (properties not the 
same but still similar). The N-terminal signal peptide is shown in gray. Amino acid residues known to 
be important for the carbohydrate binding activity in ricin are shown in green; Residues reported to 
be critical for the binding to sialic acid in the Neu5Ac(α2-6)Gal/GalNAc sequence of 2-6-sialyllactose 
(according to Kaku et al., 2007 ) are indicated in blue. Basic residues for 6S-Gal binding according to 
Hu et al. (2012) are highlighted in yellow. Cys residues involved in disulfide bridges in SNA-I are 
shown in red. Putative N-glycosylation sites are highlighted in pink. The N-terminal sequence of the 
recombinant type 2 RIP determined by Edman degradation is underlined. 
 

 
The in silico analysis allowed identifying the type 1 and type 2 RIP sequences in the apple 

genome but yielded apart from sequence data no information about the biochemical 
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properties and biological activities of the final protein products. Therefore the RIPs had to be 

purified and characterized. Since screening of the transcriptome database yielded only a few 

transcripts of the type 2 RIP gene and no transcript for the type 1 RIP gene it seemed likely 

that the expression level of these genes is (very) low and that accordingly it would be 

extremely difficult to purify the RIPs from apple tissue. Hence, both the type 1 and the type 

2 RIP had to be produced as recombinant proteins. For the production of the apple type 1 

RIP P. pastoris was chosen as an expression system whereas for the type 2 RIP tobacco BY-2 

cells were used. The latter system was selected because it is known that tobacco cells are 

capable of correctly performing the rather complex co- and post-translational processing of 

the type 2 RIP (Buntru et al., 2014).  

2.4.2 Purification and characterization of recombinant type 1 RIP from P. pastoris  
 
The coding sequence of the apple type 1 RIP gene A (>MDP0000918923) was successfully 

cloned into the E. coli/P. pastoris pPICZαA shuttle vector and expressed into P. pastoris 

strain X-33. Because the expression vector contained the N-terminal α-mating sequence 

from Sacharomyces cerevisiae (for secretion) and C-terminal epitope tags (c-myc and His tag, 

Fig. 2.2C), the extracellular expression was detected by western blot analysis with an anti-His 

antibody. Subsequently, the recombinant type 1 RIP was purified using a combination of 

cation exchange chromatography and metal affinity chromatography. On average 2 mg 

recombinant type 1 RIP was purified from per liter medium of the Pichia culture. 

 

MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPPFSNSTNNGLLFINTTIASIA

AKEEGVSLEKRE86A87EA89EFALSFSIKNATTTTYRTFIEALRAQLTAGGSTSHGIPVLRRRQDVKDDQRFVLVN

LTNYDSYTITVAIDVVNAYVVGYCAGTRSYFLRDPATHPPPLHRLFPGTTRTTLPFAGDYLGLGRAAQEALQQNT

NRNRAAGSRIHENISMRERIPLGPGELDNAISQLRYAESASSQAAAFIVIIQIVSEAARFRYIQGQVRDRIRDGT

SAEPDPAMLSLENSWSNLSEQIQMVPANQLLFINNGSVQIRKADNSIVLVKSVDSDAVRGVAFLLYCGGNPPAPN

SESARTSKVTVQKPTLAKKKKGLQKLISEEDLNSAVDHHHHHH  

 

Figure 2.1C Sequence of apple type 1 RIP construct expressed in Pichia.  Note that the apple 

sequence is preceded by an N-terminal signal peptide from yeast (in bold) necessary for secretion 

and followed by a C-terminal tag containing a c-myc epitope and a (His)6 tag (in bold and italic). The 

cleavage sites for the α-mating signal peptide sequence are indicated (Kex2 protease site at position 

86 and Ste 13 protease sites at position 87 and 89). The N-terminal sequence of the recombinant 

type 1 RIP determined by Edman degradation is underlined. Putative N-glycosylation sites are 

highlighted in gray.     

 
SDS-PAGE analysis revealed that the molecular mass of the recombinant type 1 RIP was 

approximately 38.8 kDa (Fig. 2.3A), which was ~ 2.7 kDa higher than the calculated 

http://www.applegene.org/genedescription.asp?ID=MDP0000918923
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molecular mass of the recombinant type 1 RIP including the c-myc and (His)6  tags (36.1 

kDa). Western blot analysis with a monoclonal antibody directed towards the His tag (Fig. 

2.3B) or antibody specifically directed against the type 1 RIP confirmed that the 38.8 kDa 

band corresponded to the recombinant RIP. Edman degradation of the recombinant type 1 

RIP yielded the sequence EAEAEFALSFSI. Since the EA repeats in this sequence correspond to 

the Pichia α-mating sequence it can be concluded that the signal peptide sequence was not 

correctly cleaved by the Ste13 protease.     

 

 

Figure 2.3 SDS-PAGE and Western blot analysis of recombinant type 1 RIP.  

Panel A and B: SDS-PAGE and Western blot analysis with a monoclonal anti-His antibody, respectively 
of recombinant type 1 RIP; lanes 1 and 4 unreduced type 1 RIP, lanes 3 and lane 6: reduced type 1 
RIP, lanes 3 and lane 6: reduced type 1 RIP treated with betamercaptoethanol, lane 7: positive 
control (S2, Al Atalah et al., 2011). Panels C: SDS-PAGE after PNGase F treatment of the recombinant 
type 1 RIP, lane 8: untreated type 1 RIP, lane 9: type 1 RIP treated with PNGase F, lane 11: untreated 
RNAseB, lane 12: RNAseB treated with PNGase F. Protein ladder (increasing molecular mass: 10, 15, 
25, 35, 45, 55, 70, 100, 130, 170 kDa) (Fermentas) was run in lanes 2, 5 and 10. The position of the 
polypeptide corresponding to PNGase F is indicated with an asterisk. 

 

2.4.3 Purification and characterization of recombinant type 2 RIP from BY-2 cells 
 
Cloning of the coding sequence of the type 2 RIP gene (>MDP0000711911) into the vector 

pKCTAP yielded a fusion construct with a C-terminal (His)6 tag. The protein was expressed 

under the control of the 35S CaMV promoter. The transformed BY-2 cells were selected after 

microscopic detection of expressed EGFP signals. Only the positive colonies were transferred 

into the liquid culture. After growth of the cells for 6 weeks the fusion protein, the type 2 RIP 

http://www.applegene.org/genedescription.asp?ID=MDP0000711911
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was purified from the medium using a combination of hydrophobic interactions 

chromatography and affinity chromatography. Approximately 10 mg of purified recombinant 

type 2 RIP was obtained per liter medium.  

 
SDS-PAGE analysis (Fig. 2.4A) of reduced (with beta-mercaptoethanol) recombinant apple 

type 2 RIP yielded a major polypeptide band of 65.5 kDa and a minor band of ~80kDa while 

the unreduced protein yielded besides the major 65.5 kDa and minor bands of ~80kDa one 

additional minor bands of high molecular weight (~110 kDa). The size of the major 65.5 kDa 

polypeptide bands is approximately 4 kDa higher than the calculated molecular mass of the 

apple type 2 RIP (61. 5 kDa, A and B domain containing a (His)6 tag). Western blot analysis 

using a polyclonal antibody against the apple type 1 RIP confirmed that the 65.5 kDa 

polypeptide reacts with the RIP antibody (Fig. 2.4B). Western blot analysis using a 

monoclonal anti-His antibody yielded no signal indicating that the C-terminal His tag in the 

recombinant type 2 RIP cannot be detected. Edman degradation of the 65.5 kDa polypeptide 

yielded the sequence of GATAXXDIXXL, which implies that besides the signal peptide an 

extra propeptide of 27 AA residues is cleaved at the N-terminus of the recombinant type 2 

RIP secreted to the BY-2 cell medium. 

 
The combined results of the SDS-PAGE and western blot analysis (Fig. 2.4B) indicate that the 

A and B chain are still located on a single polypeptide in the recombinant apple RIP, which 

implies that the processing step whereby the linker between the A and B chain is excised 

from the precursor protein does not take place. This observation was rather surprising 

because it is well known that –at least in transgenic plants- tobacco cells are fully capable of 

carrying out the “canonical” cleavage of the type 2 RIP precursors into the A and the B chain. 

To check whether the lack of processing is due to the incapability of the BY-2 cells to excise 

the linker sequence or is an inherent feature of the apple type 2 RIP a crude extract from 

very young (10 days post-pollination) apple (Malus domestica cv ‘Golden delicious’) fruits 

was analyzed by SDS-PAGE and subsequent western blot analysis. As shown in Fig. 2.4C the 

type 2 RIP present in the fruit tissue also yields a molecular mass of ~66 kDa corresponding 

to a polypeptide that was not cleaved into an A and a B chain. These data suggest that the 

apple type 2 RIP does -unlike all previously studied type 2 RIP not undergo the proteolytic 

removal of the linker between the A and the B chain.        
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Figure 2.4 SDS-PAGE and Western blot analysis of recombinant type 2 RIP.   
Panels A and B: SDS-PAGE and Western blot analysis with a polyclonal anti-type 1 RIP antibody, 
respectively, of recombinant type 2 RIP, lanes 1 and 5: reduced type 2 RIP, lane 3: unreduced type 2 
RIP, lane 4: positive control (type 1 RIP). Panel C: Western blot analysis of a crude extract from apple 
with a polyclonal anti-type 1 RIP antibody. lane 7: reduced crude extract. Panels D: SDS-PAGE after 
PNGase F treatment of the recombinant type 2 RIP, lane 9: type 2 RIP treated with PNGase F, lane 10: 
untreated type 2 RIP. The position of the polypeptide corresponding to PNGase F is indicated with an 
asterisk. Protein ladder (increasing molecular mass: 10, 15, 25, 35, 45, 55, 70, 100, 130, 170 kDa) 
(Fermentas) was run in lanes 2, 5, 6, 8 and 11. 

2.4.4 Glycosylation analysis 
 
Since it could be inferred from the deduced sequences that both the type 1 and type 2 RIP 

sequences comprise multiple putative N-glycosylation sites (Fig. 2.3A and 2.4A) the 

recombinant proteins produced in P. pastoris and tobacco BY-2 cells, respectively, are in 

principle prone to glycosylation. To check the presence of N-glycans the recombinant 

proteins were digested with PNGase F. As shown in Fig. 2.3C and 2.4D PNGase F treatment 

of the type 1 and type 2 RIPs resulted in a shift of approximately 1.7 kDa and 2 kDa, 

respectively, indicating that both recombinant proteins are N-glycosylated.  

2.4.5 Agglutination activity and carbohydrate binding properties of recombinant type 2 
RIP 

 
To check the carbohydrate binding activity, the recombinant apple type 2 RIP was tested for 

agglutination activity towards trypsin treated rabbit erythrocytes. The recombinant protein 

behaved as a genuine lectin, the minimal concentration required for agglutination being 1.55 

µg/ml. Preliminary hapten inhibition assays indicated that galactose and the glycoproteins 
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fetuin and thyroglobulin (Table 2.2) inhibited the agglutination activity of the recombinant 

type 2 RIP. A more detailed analysis of the carbohydrate binding specificity was carried out 

using glycan microarray v5.0 (Fig. 2.5). A summary of the most strongly interacting glycans is 

presented in Table 2.3. The same table also includes a comparison to the sugar-binding 

properties of SNA-I. It appears that the apple type 2 RIP reacts preferentially with Neu5Ac 

(glycan #11) and glycans carrying at least one terminal Neu5Ac residue as well as with 

KDNα2-6Galβ1-4GlcNAc (glycan #357) (Table 2.3). Furthermore, the apple type 2 RIP 

interacted also with Neu5Gc (glycan #286) but less strongly than with Neu5Ac.  

 
Table 2.2 Carbohydrate binding specificity of recombinant type 2 RIP expressed in BY-2 cells. 

 

 Inhibitory activity 

Glycoprotein 

Thyroglobulin 0.06 mg/ml 

Fetuin 0.06 mg/ml 

Ovomucoid 0.5 mg/ml 

Mucine 0.5 mg/ml 

Asialoimucin 1 mg/ml 

Sugar 
Mannose 0.05 M 

Galactose 0.0125 M 

  
 

 
 

Figure 2.5 Glycan array analysis of recombinant type 2 RIP from apple (Malus domestica) at 300 
µg/ml. The Consortium for Functional Glycomics website (http://www.functionalglycomic. org) 
supports the complete raw data for all the proteins. Sugar code used: green circles represent 
mannose residues, yellow circles indicate Gal, blue squares indicate GlcNAc residues, red triangles 
show fucose, purple diamonds indicate NeuAc and green diamonds indicate Kdn. 

http://www.functionalglycomic.org/
http://www.functionalglycomic.org/
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Table 2.3 Overview of the top 30 glycans interacting with the apple type 2 RIP and comparative analysis with SNA-I. The glycan with the highest relative 
fluorescence unit (RFU) is assigned a value of 100. The rank is the percentile ranking. NA: not available in this glycan array version.  

Glycαn 
no Structure 

Αpple type 2 
RIP 300µg/ml 
RFU        Rank 

SNΑ-I 
0.1µg/ml 

RFU     Rank 

11 Neu5Αcβ-Sp8   1421       100   25        0.09 

357 KDNα2-6Galβ1-4GlcNΑc-Sp0   922        64.9   30        0.11    

502 Neu5Αcα2-6GalNΑcβ1-4(6S)GlcNΑcβ-Sp8   746        52.5   NA        NA 

348 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3Manβ1-4GlcNΑcβ1-4GlcNΑc-Sp12   724        51.0 17952   65.01     

466 
Neu5Αcα2-6Galβ1-4GlcNΑcβ1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2)Manα1-6(GlcNΑcβ1-4)(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-
4(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2)Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp21 

  721        50.8   NA        NA 

332 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-3Galβ1-4GlcNΑcβ1-3Galβ1-4GlcNΑcβ-Sp0   719        50.6  24563  88.95 

464 
Neu5Αcα2-6Galβ1-4GlcNΑcβ1-4Manα1-6(GlcNΑcβ1-4)(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-4(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-
2)Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp21 

  683        48.1   NA        NA 

267 Neu5Αcα2-6Galβ1-4(6S)GlcNΑcβ-Sp8   638        44.9  14288   51.74 

576 
GlcNΑcβ1-3Galβ1-4GlcNΑcβ1-3Galβ1-4GlcNΑcβ1-2Manα1-6(GlcNΑcβ1-3Galβ1-4GlcNΑcβ1-3Galβ1-4GlcNΑcβ1-2Manα1-
3)Manβ1-4GlcNΑcβ1-4(Fucα1-6)GlcNΑcβ-Sp24 

  633        44.6   NA        NA 

264 Neu5Αcα2-3Galβ1-4Glcβ-Sp8   582          40.9  18033   26.30 

346 Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑc-Sp12   581          40.9   NA        NA 

319 Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Mαnα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp12   533          37.5  22956   83.13 

463 
Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-6(GlcNΑcβ1-4)(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-
4GlcNΑcβ-Sp21 

  533          37.5   NA        NA 

286 Neu5Gcα2-6Galβ1-4GlcNΑcβ-Sp0   510          35.9  13790   49.94 

270 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-3Galβ1-4(Fucα1-3)GlcNΑcβ1-3Galβ1-4(Fucα1-3)GlcNΑcβ-Sp0   510          35.9  20964   75.91 

482 
Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4(Fucα1-6)GlcNΑcβ-
Sp24 

  504          35.5   NA        NA 

320 GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp12    493         34.7   14464  52.38 

271 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-3Galβ1-4GlcNΑcβ-Sp0    467         32.9   25668  92.95 

266 Neu5Αcα2-6GalNΑcβ1-4GlcNΑcβ-Sp0    466         32.8   29         0.11 

56 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Man-α1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp21    462         32.5   NA        NA 

55 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp12    458         32.3  18898   66.44 

64 Fucα1-2Galβ1-3GalNΑcβ1-4(Neu5Αcα2-3)Galβ1-4Glcβ-Sp9    429         30.2   19         0.07 

465 
Neu5Αcα2-6Galβ1-4GlcNΑcβ1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2)Manα1-6(GlcNΑcβ1-4)(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-
2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp21 

  424         29.8   NA        NA 

326 Neu5Αcα2-3Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp12   406         28.5   10          0.04 
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268 Neu5Αcα2-6Galβ1-4GlcNΑcβ-Sp0   370         28.6   27613   100 

269 Neu5Αcα2-6Galβ1-4GlcNΑcβ-Sp8   355         26.0   14288  51.74 

330 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-3Galβ1-3GlcNΑcβ-Sp0 353         25   21014  76.10 

49 Neu5,9Αc2α2-6Galβ1-4GlcNΑcβ-Sp8   344         24.9   21953  79.50 

57 Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-2Manα1-3)Manβ1-4GlcNΑcβ1-4GlcNΑcβ-Sp24   339         24.2    NA        NA 

481 Neu5Αcα2-6Galβ1-4 GlcNΑcβ1-6(Neu5Αcα2-6Galβ1-4GlcNΑcβ1-3)GalNΑcα-Sp14   334         23.9    NA        NA 
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2.4.6 Apple RIPs inhibit protein synthesis in vitro    
 
To check the N-glycosidase activity a eukaryotic cell free translation system (based on a 

rabbit reticulocyte lysate) was challenged with the recombinant apple RIPs. As shown in Fig. 

2.6 both the type 1 and type 2 RIPs exhibited a concentration-dependent translation-

inhibiting activity, the IC50 value being 186.6 nM and 300.7 nM, respectively. These values 

are 30 to 50-fold higher than the IC50 determined for SNA-I (IC50=5.88 nM) in the same 

experiment (Fig. 2.6C). It can be concluded, therefore, that the apple RIPs possess N-

glycosidase activity but are only moderately active as compared to e.g. SNA-I.  

 

 
 
Figure 2.6 Effect of the apple RIPs on protein synthesis in a cell-free translation assay. Panel A: 
Luciferase activity as a function of the concentration of apple type 1 and type 2 RIPs. BSA was 
included as a negative control. Panel B: Luciferase activity as a function of the concentration of SNA-I 
(type 2 RIP, positive control).  
 

2.4.7 Cytotoxicity of apple RIPs to mammalian cells 
 
To assess the cytotoxicity/antiproliferative activity of the apple RIPs HeLa and NHDF cells 

were challenged with increasing concentrations (0.05-2 µM) of the recombinant apple RIPs 

and cell viability was followed by spectrophotometric assays. As shown in Fig. 2.7A the type 

1 RIP had no effect at all on HeLa and NHDF cell viability and proliferation after incubation of 

the cells and the RIP for 24 h and 48 h. Surprisingly, the value for the NHDF cells incubated 

with type 1 RIP for 48 h was much higher than that of the control (1x PBS), suggesting that 

the type 1 RIP might stimulate cell growth. In contrast, the apple type 2 RIP caused a 

significant (p<0.05) cytotoxicity towards both cell lines. There was a clear dose- and time-

dependent effect, indeed, for the type 2 RIP on HeLa and NHDF cell lines. After 24 h and 48 h 

incubation, a significant effect on cell viability was observed for the type 2 RIP (p<0.05) at a 

concentration of 0.6 µM. The cytotoxic effect on HeLa cells was accompanied by clear 
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morphological changes such as cell rounding and blebbing (Fig. 2.7C). The LC50 values for 

the type 2 RIP on HeLa cells were 1.13 µM and 0.84 µM after 24h and 48h incubation, 

respectively. For comparison, the LC50 values for the type 2 RIP on NHDF cells were 0.86 µM 

and 0.66 µM after 24h and 48h incubation, respectively. As evidenced by the marginally 

increased LC50 values, NHDF cells were slightly more susceptible to the recombinant type 2 

RIP than HeLa cells.  

 

 

 

Figure 2.7 Effect of recombinant apple RIPs on HeLa cervix carcinoma and NHDF cell viability after 
incubation for 24 and 48 h. Panels A and B: Viability of HeLa and NHDF cells upon incubation for 24 
and 48h in the presence of increasing concentrations of apple type 1 and type 2 RIPs, respectively.  
Results are expressed as % ctrl (treated/control X 100) = ratio of surviving treated cells/ surviving 
cells percent in control. All data are expressed as means ± SE of 3 biological replicates in 4 technical 
replicates (n=12).  Panel C: Transmission light microscopy images of HeLa cells grown in the absence 
(control) and presence of 2 µM type 2 RIP for 24h. Scale bars represent 100 µm. 

 
2.5 Discussion 
 
This present chapter deals with a biochemical/functional study of the proteins encoded by 

the type 1 and type 2 RIP genes identified in the apple (Malus domestica) genome. Due to 

the very low expression levels the purification of mg quantities of the native type 1 and type 

2 RIPs starting from apple tissues was impractical. Therefore the RIP genes were expressed 

in a heterologous system and the recombinant proteins purified by conventional protein 

purification techniques. Recombinant type 1 RIP was successfully expressed in the cell 

medium of P. pastoris (strain X-33) cells. The yield was approximately 2 mg per liter medium, 

which is rather low as compared to the yields reported for other proteins in the same 

expression system (6-8 mg/L) (Al Atalah et al., 2011). P. pastoris was not retained as an 
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expression system for the apple type 2 RIP since this organism is most likely not capable of 

properly performing the complex co- and translational processing required to convert the 

primary translation product of a type 2 RIP sequence into the mature biologically active 

protein. Therefore tobacco BY-2 cells were chosen as an expression system because as can 

be concluded from previously reported experiments with transgenic plants tobacco cells are 

capable of producing correctly processed recombinant type 2 RIP (Chen et al., 2002a). As 

was expected BY-2 cells express and secrete the apple type 2 RIP in the BY-2 medium, the 

final concentration exceeding 10 mg per liter.  

  
SDS-PAGE and Western blot analysis allowed determining the molecular structure of the 

recombinant RIPs. The type 1 RIP purified from P. pastoris behaves as a single polypeptide of 

approximately 38.8 kDa on SDA-PAGE. Enzymatic deglycosylation reduces the apparent Mr 

by 1.7 kDa suggesting that 1 out of 4 potential N-glycosylation sites carry an N-glycan. 

Though the protein is secreted by the P. pastoris cells Edman degradation of the 

recombinant type 1 RIP revealed that the processing of the α-mating sequence from 

Saccharomyces cerevisiae was not correctly performed by the Ste13 protease. Problems with 

correct processing of this α-mating sequence have been reported before at several occasions 

(Al Atalah et al., 2011; Oliveria et al., 2008; Lannoo et al., 2007). Despite the 

incorrect/incomplete processing of the N-terminal α-mating sequence and the presence of a 

His tag at the C-terminus the recombinant type 1 RIP is catalytically active (see below). It 

should be emphasized here that the native type 1 RIP produced by the apple cells is 

synthesized without a signal peptide and accordingly is presumably not N-glycosylated since 

it does not enter the secretory pathway. 

 
Recombinant type 2 RIP produced by BY-2 cells yielded a major polypeptide band of ~65.5 

kDa upon SDS-PAGE both in its reduced and unreduced form. This implies that unlike all 

other type 2 RIPs studied thus far the processing step whereby the linker between the A and 

B chain is excised does not take place in the recombinant apple type 2 RIP. Since the latter 

processing step does also not take place in the apple tissue itself, one can only conclude that 

there is some particularity in the sequence of the apple type 2 RIP that renders it insensitive 

to the “canonical” proteolytic cleavage of the linker sequence between the A and B chain. N-

terminal sequence analysis of recombinant apple type 2 RIP suggests that not only the signal 

peptide but also a 27 AA propeptide is cleaved at the N-terminus. Moreover, the His tag 

artificially added at the C-terminus of the coding sequence of the type 2 RIP sequence was 

never detected by a monoclonal antibody directed towards the polyhistidine tag (data not 

shown). These findings suggest that some undefined proteases present in the medium of the 

BY-2 cells do modify the secreted type 2 RIP, which is not surprising since several reports 
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describe similar proteolytic modifications of other proteins expressed in this system (Yang et 

al., 2012; Magy et al., 2014; Mandal et al., 2014). Most probably, the proteolytic 

modifications in the medium do not affect the biological activity of the recombinant type RIP 

since it exhibits both N-glycosidase and carbohydrate binding activity (see below).  

 
The apparent Mr of the recombinant apple type 2 RIP (Fig. 2.4A) is considerably higher than 

the Mr calculated from the deduced AA sequence. Taking into account that the AA sequence 

comprises seven putative N-glycosylation sites the recombinant protein was treated with 

PNGase F SDS-PAGE indicated that there was 2 kDa was shift after PNGase treatment, 

suggesting that one N-glycosylation site was probably glycosylated.   

 
Translation inhibition experiments with a cell-free system derived from rabbit reticulocytes 

confirmed that both recombinant apple RIPs possess N-glycosidase activity. However, the 

catalytic activity of the type 1 RIP (IC50= 186.6 nM) and the type 2 RIP (IC50= 300.7 nM) is 

much lower than that of SNA-I (included in the same experiment as a positive control) and 

four orders of magnitude inferior to the values reported for ricin (IC50= 100 pM, Ferreras et 

al., 2011). According to previous work (Kim and Robertus, 1992) the replacement of Tyr80 of 

ricin by Ser71 accounts for a 160-fold reduction in the catalytic activity. Hence this AA 

substitution in the apple type 2 RIP sequence can explain the higher IC50 value. However 

this reasoning does not hold true for the apple type 1 RIP in which the Tyr80 of ricin is 

conserved. Therefore, it is likely that residues other than those involved in the canonical 

active site also influence the catalytic properties of the apple RIPs. The value of BSA 

(negative control) is 50% higher than we expected (Fig 2.7A), suggesting BSA does not inhibit 

protein synthesis and even enhances cell viability. This is consistent with the reports of BSA 

increasing transcription and translation (Li et al., 2014) and luminescence intensity (He and 

Ma, 2013). 

 

The apple type 2 RIP not only exhibits N-glycosidase activity but also behaves as a genuine 

lectin with a well-defined carbohydrate binding activity and specificity. Glycan microarray 

assays revealed that the recombinant type 2 RIP preferentially interacts with Neu5Ac and 

glycans carrying at least one terminal Neu5Ac(α2-6)Gal/GalNAc residue, and also strongly 

interacts with 2-keto-3-deoxy-D-glycero-D-galactononic acid (KDN). In addition, the type 2 

RIP reacted with a non sialylated complex glycan. Though the preferential interaction with 

Neu5Ac and glycans carrying terminal Neu5Ac(α2-6)Gal/GalNAc residue is reminiscent of the 

carbohydrate binding specificity of SNA-I the results summarized in Table 2.3 leave no doubt 

that there are major differences between both lectins. For example the apple RIP has a much 

higher affinity for Neu5Ac than for Neu5Ac(α2-6)Galβ1-4GlcNAc whereas for SNA-I this is the 
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reverse. Though still speculative the latter observation might indicate that the binding site of 

the apple type 2 RIP is less extended compared to that of SNA-I. 

 
Viability assays with HeLa and NHDF cells indicated that the apple type 1 RIP is virtually 

devoid of cytotoxicity. In contrast, the type 2 RIP reduced the viability of both HeLa and 

NHDF cells in a dose- and time-dependent manner, and also provoked morphological 

changes such as cell rounding and shrinking. It should be emphasized, however, that the 

cytotoxicity of the apple type 2 RIP is several orders of magnitude lower than that of a 

genuine toxin like ricin. The latter observation is rather trivial within the context of a 

comparative study of the toxicity of type 2 RIPs but is of paramount interest for what 

concerns the possible food safety related issues raised by the predicted occurrence of a ricin 

homolog in apple.  
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3.1     Abstract 
 
Sequence analysis indicated that the apple type 1 RIP sequence does not contain a signal 

peptide sequence, and revealed the presence of a nuclear localization targeting signal (NLS) 
298KKKK301. In contrast, the type 2 RIP sequence possesses a 22 amino acid N-terminal 

hydrophobic signal peptide (SP). These differences in their sequences suggested that these 

two proteins will be synthesized in different cellular compartments, resulting in a different 

subcellular localization for the two RIPs. In this study, three transient transformation 

systems as well as stable transformation in Arabidopsis plants have been performed to 

investigate the subcellular localization of fusion proteins for (part of) the RIP sequences 

coupled to enhanced green fluorescent protein (EGFP). Confocal microscopy revealed that 

the type 1 RIP fusion with N- and C-terminal EGFP located to the nucleus and the cytoplasm. 

All fusion proteins containing the SP from the type 2 RIP coding sequence followed the 

secretory pathway. The construct of SP::EGFP was targeted to the vacuole and fluorescence 

also appeared in some vesicles. Furthermore, fusion proteins for the type 2 RIP were 

secreted into intercellular space without any evidence that these fluorescent proteins also 

pass by the vacuole. Quantitative analysis of the transcript levels demonstrated that the type 

2 RIP is present during the early stages of development, being abundant especially in young 

tissues. Unfortunately no transcripts were detected for the type 1 RIP in any of the tissues 

tested. These data on the subcellular and tissue specific localization of the RIPs will 

contribute to a better understanding of the physiological role of these RIPs in the plant cell.          

3.2    Introduction   
 
Ribosome-inactivating proteins accumulate in different plant organs of many plant species 

(Marshall et al., 2011; de Virgilio et al., 2010). Some RIPs are highly abundant in a single 

tissue, while others have been identified in different plant tissues (roots, leaves, stems, bark, 

flowers, fruits, seeds, latex) (Stirpe, 2004). In some cases there is also evidence for 

developmental regulation of RIP expression, or even stress inducible expression of RIPs 

(Chaudhry et al., 1994; Rustgi et al., 2014, Xu et al., 2007; Song et al., 2000; Reinbothe et al., 

1994a,b; Müller et al., 1997). 

Previous molecular and biochemical studies indicated that RIPs can be divided into two 

major groups. One group comprises the type 1 RIPs, consisting of one single enzymatic chain 

(Van Damme et al., 2001) and the second group contains all type 2 RIPs, composed of an A 

chain and a B chain, linked by a disulfide bridge (de Virgilio et al., 2010). Most type 2 RIP 

sequences contain a N-terminal signal peptide. These proteins are synthesized following the 

secretory pathway (including biosynthesis and sorting) starting with protein synthesis on ER 
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associated ribosomes, transport through the Golgi complex, and eventually targeting to the 

vacuole/protein bodies or secretion to the intercellular space (Rojo and Denecke, 2008; De 

Marcos et al., 2012). In recent years the biosynthesis of type 2 RIPs was studied in great 

detail, with special focus on ricin. It was shown that targeting of the ricin precursor to its 

final destination in the cell is associated with processing of the RIP precursor polypeptide, in 

particular the processing of the linker peptide located between the A and B chain, the latter 

processing step being important for generating a fully functional and toxic ricin (Frigerio and 

Roberts, 1998).  

 
Compared to type 2 RIPs, the biosynthesis of type 1 RIP got much less attention. Similar to 

type 2 RIPs most type 1 RIPs are also synthesized as precursors containing a signal peptide, 

and hence they are translocated to the ER and follow the secretory route, with final 

targeting to the vacuole or the intercellular space, as demonstrated for saporin and 

pokeweed antiviral protein, respectively (Marshall et al., 2011). However, some cereal type 1 

RIPs are also known as cytosolic proteins (Nielsen and Boston, 2001; Frigerio and Roberts, 

1998), such as the maize kernel RIP (b-32) (Walsh et al., 1991) and the barley RIP (RIP 30) 

(Leah et al., 1991). In particular the type 1 RIPs from Poaceae are synthesized without a 

signal peptide and hence are translated on free ribosomes in the cytoplasm, and finally 

presumably locate to the cytoplasm and nucleus. At present, there are no microscopical data 

for the nuclear localization of type 1 RIPs. 

 
The subcellular localization of eukaryotic proteins is crucial for the proteins to execute their 

biological functions (Xiang et al., 2013). Proteins must be targeted to or retained in the 

correct subcellular compartment(s) or organelle(s) at the right time during plant 

development. To obtain some first indications on the subcellular localization of the apple 

RIPs, we used sequence analysis tools to check for the presence of signal peptides and 

possible targeting peptides. In addition, transient transformation assays (N. benthamiana 

plants, Arabidopsis protoplasts and Arabidopsis cells) combined with stable transformation 

of Arabidopsis plants allowed to investigate the subcellular localization of the apple RIP 

sequences fused to EGFP. To gain better insights in the tissue-specific expression of RIPs, a 

quantitative analyses was performed to study the transcript levels of apple RIPs in different 

tissues from three different varieties of apple, in particular ‘Golden Delicious’, ‘Jonagold’ and 

‘James Grieve’, throughout development.  
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3.3     Materials and methods 
 
3.3.1 In silico analysis 
 
The tools Phobius (http://www.ebi.ac.uk/Tools/pfa/phobius/, Käll et al., 2007) and target P 

(http://www.cbs.dtu.dk/services/TargetP/, Emanuelsson et al., 2000) were used to predict 

whether the RIP sequences are synthesized with a SP. A transcriptome analysis was 

performed by searching type 1 or type 2 RIP sequences from apple in the translated 

Expressed Sequence Tags (EST) database (tBLASTn) from the National Center for 

Biotechnology Information (NCBI). 

3.3.2 Plant materials  
 
Seeds of N. benthamiana and A. thaliana ecotype Columbia (Col-O) were supplied by Dr. 

Verne A. Sisson (Oxford Tobacco Research Station, Oxford, NC USA) and Lehle Seeds (Round 

Rock, Texas, USA), respectively. To establish an in vitro culture, dry seeds were surface 

sterilized with 70% ethanol (v/v) for 2 min and then with 7% NaOCl (v/v) for 10 min. After 

thorough rinsing with sterile distilled water, the sterilized seeds were sown on Murashige 

and Skoog (MS) medium (4.3 g/L MS micro and macro nutrients containing vitamins 

(Duchefa, Haarlem, The Netherlands), 30 g/L sucrose, pH 5.7 (adjusted with 0.5 M NaOH), 

and 8 g/L plant agar (Duchefa) in glass jars (Murashige et al., 1962). Arabidopsis seeds were 

imbibed for 2 days at 4°C in the dark before they were transferred to a growth chamber at 

21°C with a 16/8 h (floral dip) or 12/12 h (protoplasts isolation) light/dark photoperiod. 

Arabidopsis plantlets were transferred to artificial soil (Jiffy-7, columnar diameter 44 mm, AS 

Jiffy Products, Drobak, Norway) to grow adult plants. Tobacco seeds were incubated directly 

in a growth chamber at 25°C with a 16/8 h light/ dark photoperiod.  

 
A. thaliana cell suspension cultures were cultured as described in Van Hove et al. (2011). 

Apple (Malus domestica) trees from the cultivars ‘Golden Delicious’, ‘Jonagold’ as well as 

‘James Grieve’, and pear (Pyrus sp.) trees from ‘Conference’ are grown on the campus of the 

Faculty of Bioscience Engineering (Ghent University) under natural conditions. Samples were 

collected from April to September 2013: leaf buds, young leaves (1 cm), old leaves, 

unopened flower buds, unopened flowers, opened flowers, fruits 10 day after anthesis 

(DAA) (fruits 10 DAA), fruits 35 days after anthesis (fruits 35 DAA), seeds, spring bark 

(collected in May). Flower buds were stripped of petals and petioles. Whole 10 day old fruits 

were sampled with only the stalk removed. Only the fruit part was taken for the fruit 

samples collected at 35 DAA. Seeds were collected from mature fruits. For each sample 

http://www.ebi.ac.uk/Tools/pfa/phobius/
http://www.cbs.dtu.dk/services/TargetP/
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material was pooled from at least 10 tissues from at least 5 individual trees. All samples 

were frozen in liquid nitrogen at the time of harvest and stored at -80°C until use. 

3.3.3 EGFP fusion constructs  
 
To construct a binary EGFP fusion vector that will allow the 35S Cauliflower Mosaic Virus 

promoter-driven expression of the type 1 RIP and type 2 RIP from Malus domestica, the 

GatewayTM cloning technology of Invitrogen (Carlsbad, CA, USA) was used. An overview of all 

expression constructs is shown in Figure 3.1. The coding sequences for the type 1 RIP and 

type 2 RIP sequences from apple were amplified as attB products by PCR, using genomic 

DNA extracted from the bark of Malus domestica cv ‘Jacques Lebel’ and gene-specific 

primers [EVD 697/EVD 606 (with stop codon) and EVD 605/EVD 695 (without stop codon) for 

type 1 RIP, EVD 607/EVD 696 (without stop codon) for type 2 RIP, Table 3.1]. The coding 

sequence of EGFP was coupled to the C-terminus of the SP of the type 2 RIP using overlap 

PCR as described in Vallejo et al., (1994). Specific primers (EVD 607/EVD 704, EVD 705/ EVD 

806, Table 1) were used to amplify SP and EGFP fragments for overlapping extension PCR, 

respectively.   The SP-type 1 RIP fusion was constructed by overlap PCR using primers (EVD 

607/EVD 633, EVD 632/EVD 695, Table 3.1). Control constructs contained the EGFP sequence 

alone. All constructs were completed with the attB sites using primers EVD2/EVD4 (Table 1). 

Cycling parameters for the PCR reactions were: 2 min 94°C, 25 X (15s 94°C, 30s 55 °C, 1 min 

72°C), 5 min 72°C for all PCR reactions. Subsequently, all attB PCR products were 

homogeneously recombined in the entry vector pDONR221 (Invitrogen). Using heat shock 

transformation, the entry clones were subsequently transferred into E. coli strain Top10 

cells. Transformants were selected by colony PCR. The plasmid DNA extracted from the 

colonies was sent for sequencing (performed by LGC Genomics, Berlin, Germany) using the 

primers Donr-F and Seql-E (Table 3.1). Finally, the LR reaction was done with the plasmids 

pK7FWG2, pK7WGF2 (Karimi et al., 2002) and pK7WG2.0. The results of the LR reaction were 

verified by sequencing (LGC Genomics) using gene specific primers EVD 605/EVD 606/EVD 

607 and EGFP primers EVD 594/EVD 595.   
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      Table 3.1 PCR primer pairs used in this research. 

Amplified sequence Name 5’-3’ sequence 

Forward primer to add the non-complete attB sequences:  
type 1 RIP 

EVD 605 AAAAAGCAGGCTTC ACCATGGCACTATCCTTCTCCATTAAG 

Adding the non-complete attB sequences for type 1 RIP fused with 

N-terminal EGFP  

EVD 697 

EVD 606 

AAAAAGCAGGCTTCACCGCACTATCCTTCTCCATTAAG  

AGAAAGCTGGGTGCTATTTCTTCTTCTTGGCGAGGGTTGG 

Adding the non-complete attB sequences for type 1 RIP fused with 

C-terminal EGFP  

EVD 606 

EVD 695 

AAAAAGCAGGCTTCACCATGGCACTATCCTTCTCCATTAAG 

AGAAAGCTGGGTGTTTCTTCTTCTTGGCGAGGGTTGG 

Adding the non-complete attB sequences for type 2 RIP fused with 

C-terminal EGFP  

EVD 607 

EVD 696 

AAAAAGCAGGCTTCACCATGACGAGAGTGTTAGCAATATAC  

AGAAAGCTGGGTGGAAGAACGGCAGCCATTGCTGGTTGGG 

Primer for overlapping extension PCR: fusion of EGFP part to SP  EVD 704 TCCTCGCCCTTGCTCACCATGCACTCGGTGCCACAGAGAA 

Forward primer for overlapping extension; fusion of SP to type 1 

RIP 

EVD 632 CTCTGTGGCACCGAGTGCATGGCACTATCCTTCTCCATT  

 

Reverse primer for overlapping extension; fusion of type 1 RIP to SP EVD 633 GGAGAAGGATAGTGCCATGCACTCGGTGCCACAGAGAA  

Primer for overlapping extension; fusion of SP part to EGFP EVD 806 AGAAAGCTGGGTGTTACTTGTACAGCTCGTCCATGCC 

Completing the attB sequences: forward and reverse primer EVD 2 

EVD 4 

GGGGACAAGTTTGTACAAAAAAGCAGGCT  

ACCACTTTGCTCAAGAAAGCTGGGT 

Reverse primer to amplify EGFP EVD 594 CTTGTACAGCTCGTCCATGC 

Forward primer to amplify EGFP EVD 595 CTCGTGACCACCCTGACCTA 

qPCR reference gene: 18S ribosomal RNA gene from apple: forward 

and reverse primer  

P 35 

P 36 

AGAGGGAGCCTGAGAAACGG 

CAGACTCATAGAGCCCGGTATTG 

qPCR reference gene: Glyceraldehyde 3-Phosphate Dehydrogenase 

from apple: forward and reverse primer 

P 52 

P 53 

CCAGGGGAGCAAGACAGTTGGT 

TCATTCTCTGCCCCCAGTAAGGATG 

qPCR target gene: type 1 RIP: forward and reverse primer 

 

P 66 

P 67 

TGTCGCGTTCCTGCTTTACT 

CGAGGGTTGGCTTCTGAACA 

qPCR target gene: type 2 RIP: forward and reverse primer 

 

P 57 

P 58 

AAAGCACTGCGAGCCCAA 

AGAGGAAGCGTTGTGAGTCC 
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Figure 3.1 Schematic overview of different EGFP fusion constructs used in this study. All 
coding sequences were cloned under the control of the 35S CaMV promoter. 
 

3.3.4 Transient expression of EGFP fusion proteins  
 
All expression constructs were transferred to A. tumefaciens strain C58C1PMP90 by 

triparental mating. For transient expression of RIPs in leaf epidermal cells, suspensions of 

A. tumefaciens strain C58C1PMP90 at a bacterial optical density (OD600) of 0.1 were 

infiltrated into 6 week-old leaves of N. benthamiana as previously described by Delporte et 

al. (2014). Transient transformation of a two-day old Arabidopsis cell culture was achieved 

by cocultivation of the cells with suspensions of A. tumefaciens C58C1PMP90 as described by 

Van Leene et al., (2007). The fluorescence of transformed cells was analyzed after 3 days 

incubation on a rotary shaker. The expression constructs were also transiently transformed 

into Arabidopsis protoplasts as described by Yoo et al., (2007) and Xiang et al., (2011). 

Subsequently, after 16 h incubation under low light, the fluorescence of the transformed 

protoplasts was captured by confocal microscopy (Nikon instruments, Paris, France). 

3.3.5 Stable expression of EGFP fusion proteins 

The binary vectors containing EGFP fusion constructs were transformed into A. tumefaciens 

GV3101 by electroporation. Subsequently, these agrobacteria were used to transform A. 

thaliana ecotype Columbia plants using the floral dip method described by Clough et al., 
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(1998). T0 seeds were selected on MS medium containing kanamycin (50 µg/ml) following 

the procedure described by Harrison et al., (2006) and afterwards several independent lines 

were tested by confocal microscopy (Nikon). To allow a better visualization of the 

localization of the type 2 RIP, protoplasts from stably transformed A. thaliana were isolated 

as described by Yoo et al. (2007).  

3.3.6 RNA extraction and cDNA synthesis 
 
Total RNA was extracted from all apple and pear samples using the RNeasy Plant Mini Kit 

(Qiagen, Valencia, CA USA) following the manufacturer’s instructions, with an additional 

sonication step after addition of buffer RLT/RLC (Qiagen). Subsequently, the remaining DNA 

was removed by DNase I treatment (ThermoScientific, Erembodegem, Belgium). cDNA 

synthesis was performed using the M-MLV Reverse Transcripase Kit (Invitrogen). cDNA 

quality was checked using two pairs of reference gene primers P 35/P 36 and P 51/P 52 

(Table 1) to amplify the sequence encoding the 18S ribosomal RNA gene (18S rRNA, Schaffer 

et al., 2007) and Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH, Foster et al., 2006. In 

total 40 ng cDNA was used as the template for the reverse transcription-PCR (RT-PCR) 

reaction, which was performed using the following parameters: 45X (2 min 95°C, 25s 58°C, 

20s at 72°C), 5 min 72°C. The PCR products were visualized on a 2.5% agarose gel 

(Invitrogen).    

3.3.7 Analysis of RIP expression in apple tissues by quantitative real-time PCR  
 

qRT-PCR was performed on a CFX96™ Real-Time PCR Detection system using the iQ™ SYBR® 

Green Supermix kit (Bio-Rad, California, USA). The amplification specificity of the primers 

was checked by sequencing of RT-PCR products and analysis of the dissociation curve after 

qRT-PCR. To determine the efficiency of corresponding primer amplification, a serial dilution 

of cDNA mixed from different tissues was used to obtain standard curves. In each reaction, 

10 l of 2X supermix, 2 l cDNA (40 ng/l), 1 l of 10 M from each primer and 6 l water 

were mixed in a total volume of 20 l. The thermal profile consisted of 10 min at 95°C as a 

pre-denaturation step, followed by 45X (25s 96°C, 25s 60 °C, 20s at 72°C). The stability M 

values for the different reference genes were calculated by GeNorm Plus (Hellemans et al., 

2007), after the quantification cycle (Cq) values processed into qBasePLUS. The relative 

expression level of the target genes was normalized against the reference genes Malus 

domestica 18S ribosomal RNA gene (18S rRNA) (Schaffer et al., 2007) and GAPDH (Foster et 

al., 2006) (Table 1) using qBasePLUS. Target primers (P 66/P 67 for type 1 RIP, P 57/P 58 for 

type 2 RIP, Table 1) for qRT-PCR were designed by primer 3.0 software 
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http://frodo.wi.mit.edu/ to amplify <120 bp amplicons. Each reaction was performed in 

triplicate. One biological replicate was performed in this expression analysis experiment. 

3.3.8 Confocal microscopy 
 
Confocal images were acquired with a Nikon A1R confocal system, mounted on a Nikon Ti 

microscope body using a 40× Plan Apo objective lens (Numerical aperture 0.75) or 60× oil 

immersion lens (NA 1.4) appropriate filters. Images were analyzed with Fiji (http://fiji.sc/Fiji). 

3.4    Results 

3.4.1 Sequence analysis  
 
To obtain a primary indication of the subcellular localization, the tools Phobius (Käll et al., 

2007) and TargetP (Emanuelsson et al., 2000) were used to predict whether the RIP 

sequences are synthesized with a signal peptide (SP). According to the tool Phobius, both 

type 1 and type 2 RIPs are predicted as non-cytoplasmic proteins. Both bioinformatics tools 

agree that the amino acid sequence of the type 2 RIP precursor contains a 22 amino acid 

signal peptide (MTRVLAIYITLAFSLFLCGTEC) at its N terminus. According to TargetP the 

probability for a SP in the type 2 RIP sequence is estimated as 0.946 (close to 1), indicating 

that the presence of a SP is very likely. Most probably this SP is important for targeting of 

the polypeptide to the secretory pathway and protein synthesis on ER associated ribosomes. 

Since the probability for the occurrence of a SP sequence in the type 1 RIP sequence is close 

to 0 (0.058), a signal peptide is probably absent from this sequence. Interestingly, the 

presence of a typical nuclear localization signal (NLS) (298KKKK301) at the C- terminus of in the 

type 1 RIP sequence demonstrated that the type 1 RIP may be located in the nucleus. 

Analysis of the apple type 2 RIP sequences for the presence of vacuolar targeting sequences, 

such as the sequence LLIRP reported for ricin (Jolliffe, et al., 2003) and the sequence NPIRL 

found in saporin (Matsuoka and Nakamura, 1991) did not yield any such protein motifs.  

3.4.2 Transient expression and localization of the RIP-EGFP fusion proteins in N. 
benthamiana epidermal leaf cells  

 
To study the subcellular localization of apple RIPs in living cells, EGFP was used as a reporter 

tag. Several fusion constructs between (part of) RIP sequences and EGFP were generated 

according to Figure 3.1 (A-E). Subsequently, these constructs were transiently expressed in 

N. benthamiana epidermal leaf cells. The EGFP fluorescence in the cells was captured by a 

confocal laser scanning microscope. A construct for free EGFP was used as a control, and 

yielded fluorescence in the cytoplasm and the nucleus (Fig. 3.2A). 

 

http://frodo.wi.mit.edu/
http://fiji.sc/Fiji
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Using Agrobacterium mediated transformation fusion constructs for the type 1 RIP sequence 

either N-terminally or C-terminally linked to EGFP (Fig. 3.1A and B) were introduced in N. 

benthamiana. Confocal microscopy of leaf samples at two days after transformation 

revealed fluorescence in the nucleus and cytosolic compartment of tobacco epidermal cells 

(Fig. 3.2B and C). Z-stack analysis confirmed the presence of the EGFP fluorescence signal 

throughout the nucleus. 

 
The construct for type 2 RIP composed of the complete type 2 RIP sequence (including the 

SP) C-terminally fused to EGFP (Fig. 3.1C) yielded fluorescence around the nucleus and at the 

edge of the cells (Fig. 3.2E). Very similar fluorescence patterns were observed for the fusion 

construct consisting of the SP (from the type 2 RIP) linked to the type 1 RIP sequence and the 

fusion between SP and the EGFP sequence (Fig. 3.2D and F).   

 

 

 
Figure 3.2 Confocal microscopy images of RIP fusion constructs with EGFP expressed in N. 
benthamiana epidermal leaf cells. (A) EGFP control (B) EGFP::Type 1 RIP (C) Type 1 RIP::EGFP (D) 
SP::EGFP (E) Type 2 RIP::EGFP (SP-A chain-linker-B chain-EGFP) (F) SP-Type 1 RIP::EGFP (SP-Type 1 
RIP-EGFP). Scale bars represent 25 µm.    
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3.4.3 Transient expression and localization of the RIP-EGFP fusion proteins in Arabidopsis 
protoplasts 

 
To confirm the localization results obtained from the tobacco leaf infiltration and further 

determine in which organelles and subcellular compartments the RIPs were localized, we 

transiently transformed the RIP constructs in Arabidopsis protoplasts. Due to lack of cell 

wall, the protoplasts are unstable and vulnerable. All the protoplast cells expressing type 2 

RIPs or SP were observed as undergoing morphological changes. For instance all cell 

organelles are located on one side of the protoplast (Fig. 3.3F, Fig. 3.5 E), the cells are 

shrinking (Fig. 3.3D, Fig. 3.5F), the cell membrane is not sharp (Fig. 3.5 D and E). Both the N-

terminal and C-terminal EGFP fusion to the type 1 RIP sequence (Fig. 3.1A and B) clearly 

accumulated in the cytoplasm and the nucleus (Fig. 3.3A, B and C). All constructs containing 

the SP sequence of the type 2 RIP (Fig. 3.1D and E) revealed expression in the vacuole (Fig. 

3.3D and G) and some small punctate structures at the edge of protoplast or in between the 

chloroplasts (Fig. 3.3E, F and G). In addition, the SP::EGFP fusion protein also clearly marked 

the ER network (Fig. 3.3F). Despite several repetitions of the experiment, no fluorescence 

was detected for the constructs of type 2 RIP::EGFP (Fig. 3.1C) in this transient expression 

system.  

 

3.4.4 Transient expression and localization of the RIP-EGFP fusion proteins in Arabidopsis 
suspension cell cultures  

 

Neither the transient transformation of tobacco leaf tissue nor the transient transformation 

in Arabidopsis protoplasts allowed to unambiguously show the localization of the type 2 RIP 

in the cell. Therefore, we also transiently expressed the RIP-EGFP fusion proteins in 

Arabidopsis suspension cell cultures. Free EGFP was used as a control and yielded 

fluorescence in the cytoplasm and the nucleus of the plant cells/protoplasts, including the 

nucleolus (Fig. 3.4A). Fluorescence for both N- and C-terminal EGFP fusions to the type 1 RIP 

was detected in the cytoplasm and the nucleus (Fig. 3.4B and C). The fusion construct 

encoded by SP-EGFP and SP-type 1 RIP::EGFP yielded fluorescence in the vacuolar 

compartment as well as some bright fluorescent vesicles at the edge of the cell (Fig. 3.4D 

and F). Fluorescence from the construct with the type 2 RIP fused C-terminally to EGFP was 

visualized in clear vesicles or punctate bodies surrounding the cells (Fig. 3.4E), but was never 

detected inside the vacuole.   
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Figure 3.3 Confocal images of transiently transformed Arabidopsis protoplasts expressing fusion 
proteins. (A) EGFP fluorescence and bright field (BF). (B) EGFP fluorescence and BF of EGFP::type 1 
RIP fusion protein. (C) EGFP fluorescence and BF of type 1 RIP::EGFP fusion protein. (D, E, F) EGFP 
fluorescence and BF of SP::EGFP fusion protein. (G) EGFP fluorescence and BF of SP-type 1 RIP::EGFP 
fusion protein. Scale bars represent 10 µm. Cell compartment: n, nucleus; c, cytoplasm; v, vacuole    
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Figure 3.4 Confocal images showing transient expression of fusion proteins in Arabidopsis 
suspension cells. (A) EGFP fluorescence and bright field (BF). (B) EGFP fluorescence and BF of 
EGFP::type 1 RIP fusion protein. (C) EGFP fluorescence and BF of type 1 RIP::EGFP fusion protein. (D) 
EGFP fluorescence and BF of SP::EGFP fusion protein. (E) EGFP fluorescence and BF of type 2 
RIP::EGFP fusion protein. (F) EGFP fluorescence and BF of SP-type 1 RIP::EGFP fusion protein. Scale 
bars represent 10 µm. Cell compartment: N, nucleolus; n, nucleus; c, cytoplasm; v, vacuole 
 

3.4.5 Stable expression and localization of the RIP-EGFP fusion proteins in Arabidopsis 
plants 

 
To prove the results obtained from the transient transformation experiments in the tobacco 

leaf, Arabidopsis protoplasts and cells, the RIP constructs were also used for stable 

transformation of Arabidopsis plants. Microscopic analysis of Arabidopsis leaves stably 

transformed with a construct expressing a fusion protein of the type 1 RIP and EGFP 

indicated that the type 1 RIP located to the nucleus and the cytoplasm (Fig. 3.5A and B). In 

contrast, a dotted fluorescent pattern was detected at the edge of the leaf cells for the 

construct type 2 RIP::EGFP (Fig. 3.5C). To gain better insight into the localization pattern 

observed for the type 2 RIP, protoplasts were prepared from leaf tissue with stable 

expression of the type 2 RIP. Within the protoplasts the fluorescence signal was clearly 
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visualized in the ER network (Fig. 3.5E), in small punctate structures in between chloroplasts 

(Fig. 3.5F) and in larger punctate spots/vesicles in the cells (Fig. 3.5D), but fluorescence was 

never detected in the vacuole.  

 

 

 

Figure 3.5 Confocal images showing stable expression of fusion proteins in Arabidopsis plants (A, B, 
C) and protoplasts isolated from stably transformed Arabidopsis leaves. (A, B) EGFP fluorescence of 
type 1 RIP fused with N- and C- terminal EGFP, respectively. (C) Fluorescence of EGFP coupled with 
type 2 RIP. (D, E, F) EGFP fluorescence and BF of protoplasts obtained from stably transformed type 2 
RIP::EGFP fusion protein. Scale bars represent 25 µm and 10 µm in images of plant leaf cells and 
protoplasts, respectively.   
 

3.4.6 Analysis of apple RIP gene expression in different tissues  
 
Transcriptome analyses of EST obtained for different apple cultivars revealed that ESTs 

encoding the type 2 RIP are most abundant in the young tissues, including ESTs for spur buds 

(cv Pacific Rose), young shoots, pre-opened flower buds and 10 DAA fruits (cv Royal Gala). 

No EST sequences were retrieved for the type 1 RIP sequence from apple.  

To investigate the tissue-specific expression of the apple RIPs we analyzed the transcript 

levels for type 1 and type 2 RIPs from apple in different tissues from a tree and throughout 
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development of the fruit. Analyses were done for three different cultivars of apple, in 

particular ‘Golden Delicious’, ‘Jonagold’ and ‘James Grieve’. For comparison the same 

analysis was also performed for one pear tree (cv ‘Conference’). In total ten different tissues 

(leaf buds, young leaves, old leaves, unopened flower buds, unopened flowers, opened 

flowers, fruits 10 DAA, fruits 35 DAA, seeds, spring bark) were sampled (Fig. 3.6). RNA was 

extracted and analyzed by qRT-PCR.  

 
Quantitative analysis of the type 2 RIP transcript levels in the different apple cultivars and 

tissues showed that the type 2 RIP was expressed, albeit with strongly varying mRNA levels 

depending on the tissues under study (Fig. 3.7). All relative expression levels were 

normalized to the expression of two reference genes (18S rRNA and GAPDH). The relative 

expression level for the type 2 RIP was high in leaf buds and unopened flower buds for all 

different cultivars. Furthermore, the accumulation of the type 2 RIP mRNAs in young apple 

leaves is also high, except for ‘James Grieve’. Furthermore, the relative expression level of 

the type 2 RIP decreased considerably during development, e.g. during maturation from 

young leaves to old leaves. It is worthy to note that the relative expression level for the type 

2 RIP was also high in bark from ‘Golden Delicious’. Unfortunately, no data are available for 

the bark samples from ‘James Grieve’ and ‘Jonagold’ because analyses on these tissues 

failed probably due to the bad RNA quality. Type 2 RIP transcripts were detected in 

unopened flowers and opened flowers, though transcript levels were considerably lower 

than in young leaves. The lowest expression levels for the type 2 RIP were observed in fruits 

(10 DAA and 35 DAA) and seeds for all three apple cultivars, with decreasing levels during 

fruit maturation. 

 
Similar as for apple, quantitative analysis of the type 2 RIP expression in pear revealed that 

the relative expression levels for the type 2 RIP are high in leaf buds, young leaves and 

unopened flower buds. Moreover, the type 2 RIP expression levels were clearly down 

regulated during flower and fruit development (unopened flower buds compared to 

unopened flowers and opened flowers / fruit 10 DAA compared to fruit 35 DAA) as well as 

during leaf development (young leaves compared to old leaves). Interestingly type 2 RIP 

transcript levels were higher in the seeds compared to those in the fruit samples.   

 

Transcripts for the type 1 RIP could not be detected in any of the apple and pear tissues 

under study, suggesting that the type 1 RIPs are expressed at a very low level (data not 

shown). 
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Figure 3.6 Overview of the timing for the collection of the different tissues from apple cv ‘Golden 
Delicious’ (A) and pear cv ‘Conference’ (B). Arrows indicate the sampled tissue. Scale bars represent 
1 cm. 
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Figure 3.7 Quantitative RT-PCR analysis of the expression of the type 2 RIP genes in different tissues 
from three apple cultivars: ‘Golden Delicious’, ‘Jonagold’ and ‘James Grieve’ and one pear cultivars: 
‘Conference’. Transcript levels were normalized to the expression of 18S rRNA and GAPDH.  

3.5    Discussion  
 

The subcellular localization of apple RIPs was investigated using confocal microscopy of 

fusion proteins tagged by EGFP (Brandizzi et al., 2004) and expressed in different cell 

systems, namely transient transformations (tobacco epidermal cells, Arabidopsis 

protoplasts, Arabidopsis suspension cells) and a stable transformation (Arabidopsis plants). 

The transient transformation of N. benthamiana plants is widely accepted due to its ease, 

high efficacy and consistency of operation (Yang et al., 2000). However, it is difficult to 

distinguish some compartments (e.g. plasma membrane, cell wall, cytoplasm and 

tonoplast…), therefore this method is not optimal to investigate the localization of a protein 

that follows the secretory pathway to be secreted outside the cell. Denecke et al. (2012) 

suggested to use a variety of experimental systems to investigate the subcellular localization 

of secretory proteins. Recently, protoplast transformation has been suggested as a versatile 
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cellular system that allows rapid transient gene expression (Yoo et al., 2007, Xiang et al., 

2011). Nevertheless, it is important to realize the limitations of this expression system. After 

transformation of the construct into the protoplast, expression can be observed only up to 

30 h (Denecke et al., 2012). Although stable transformation in Arabidopsis plants is labor-

intensive and time-consuming being a major disadvantage of the method, the EGFP signal 

detection is not time-dependent. Furthermore, protoplast isolation from stably transformed 

Arabidopsis leaves can yield additional information on protein synthesis and trafficking in 

the cell.      

 
All the transient transformation assays with tissues and protoplasts as well as the stable 

transformation of plant cells, revealed that the type 1 RIP sequence fused to EGFP located to 

the nucleus and the cytoplasm. These data are in agreement with the observation that the 

RIP sequence lacks a SP –resulting in the synthesis of the protein on free ribosomes in the 

cytoplasm. Furthermore the presence of a basic NLS (298KKKK301) at the C-terminus of the 

type 1 RIP sequence supports targeting of the protein to the nuclear compartment. These 

data provide evidence that the apple type 1 RIP is a cytosolic protein, similar to cereal type 1 

RIPs (Frigerio and Roberts, 1998).   

 

Confocal microscopy revealed that the expression patterns detected for the fusion proteins 

with the type 2 RIP sequence were very different compared to the data obtained for the 

type 1 RIP. Fluorescence of type 2 RIP was observed in the cytoplasm in the N. benthamiana 

transient transformation system (Fig. 3.2 DEF). Probably, some type 2 proteins are remaining 

in the cytoplasm due to the high expression under 35S promotor. In the expression system 

of protoplasts and Arabidopsis cells, all fusion proteins containing the SP sequence from the 

type 2 RIP followed the secretory pathway. Fusion of the signal peptide taken from the type 

2 RIP sequence to EGFP or type 1 RIP::EGFP clearly yielded expression of these constructs in 

the vacuole. In contrast C-terminal fusion of EGFP to the type 2 RIP sequence (also 

containing the SP) resulted in targeting of the fusion protein directly to the intercellular 

space. No evidence was obtained for transport of the fusion protein through the vacuole. It 

is unclear at present why the type 2 RIP constructs and the constructs containing the SP 

coupled with other proteins (type 1 RIP/EGFP) follow a different route.  

 
It was reported that type 2 RIP sequences such as ricin contain an internal vacuolar targeting 

signal sequence containing a LLIRP motif (Frigerio et al., 2001; Jolliffe, et al., 2003), 

resembling the vacuolar target sequence NPIRL necessary for sorting of sporamin (Matsuoka 

and Nakamura, 1991). The conserved Ile residue within this motif is essential for the 

vacuolar targeting of proricin, since modification of Ile271 into Gly resulted in secretion of 
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proricin into the medium (Frigerio et al., 2001). The isoleucine residue was also found in the 

sequence 274IKMPV278 present in the linker sequence between the A and B chain of SNA-I 

(Chapter 2, Fig. 2.2B), suggesting SNA-I can behave as vacuolar storage protein. 

Furthermore, immunofluoresce microscopy confirmed that SNA-I is located in protein bodies 

in the phloem parenchyma of S. nigra bark (Van Damme et al., 1996a, Greenwood et al., 

1986). Previous reports indicated that most type 2 RIPs accumulate in the storage vacuole 

due to the presence of sequence-specific vacuolar sorting signals (ssVSS)-mainly located at N 

terminus, C-terminal signals (ctVSS) and protein structure dependent signal (psVss; Frigerio 

et al., 2001) (Xiang et al., 2013). Without these propeptides, the vacuolar proteins are 

secreted (Vitale and Raikhel, 1999). Although the apple type 2 RIP sequence contains the 

same vacuolar targeting sequence (250IKMPV254) as in SNA-I, our data provide no evidence 

that this sequence serves as a vacuolar targeting signal.   

 
Expression of a ricin mutant lacking the lectin chain in tobacco protoplasts revealed that the 

construct consisting of SP and A chain was synthesized on the ER and translocated into 

cytosol. Since the A chain contains a low amount of lysine residues, the protein can escape 

proteasomal degradation (Ceriotti and Roberts, 2006, Di Cola et al., 2001, 2005). Within the 

cytoplasm the ricin A chain will inactivate the host cell ribosomes (Nicholas et al., 2003, Di 

Cola et al., 2001, 2005). In contrast, the final destination of the protoplast-synthesised 

saporin completely differs from that of ricin A chain: the protein is synthesized on the ER, is 

transported from ER to the Golgi and is finally secreted into the protoplast culture medium 

(Marshall et al., 2011). Unlike the A chain of ricin, the fusion construct SP-type 1 RIP::EGFP 

followed the secretory pathway from the ER to the Golgi, and ended up in the vacuole. Most 

probably, part of the protein was also secreted into the medium/intercellular space similar 

to saporin.  

 

Analysis of the expressed sequence tags (ESTs) available for apple RIPs revealed that type 2 

RIP sequences are expressed in spur buds, young shoots, young flower buds and young 

immature fruits, but yielded no information for the expression of type 1 RIP sequences from 

apple.  Considering this result the apple type 2 RIP is most abundant during the early growth 

stages. These data were confirmed by qPCR analyses on different tissues sampled during 

development of apple and indicated that type 2 RIP expression is decreasing during growth 

of leaves and flowers, as well as during fruit development, since almost no RIP expression 

was detected in fruits sampled 35-days after anthesis. Surprisingly, the expression of the 

type 2 RIP in seeds from mature apple fruit is quite low. This is unlike many other type 2 RIPs 

(e.g. ricin) which are highly expressed in the developing seeds, especially in the stages when 
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the endosperm is fully expanded (Loss-Morais et al., 2013).  

 

The expression of type 2 RIP showed some variability between different apple cultivars. (i) 

Plausibly, this is due to some major differences between the cultivars (Table 3.2). ‘Jonagold’ 

and ‘Golden Delicious’ are belonging to group of ‘Jonagold’, whereas ‘James Grieve’ belongs 

to group of ‘Delikates’. ‘Golden Delicious’ and ‘James Grieve’ are diploid, whilst ‘Jonagold’ is 

triploid (a cross of ‘Golden Delicious’ and ‘Jonathan’). In addition, the timing of fruit harvest 

and bloom is also different among these apple cultivars. (ii) For practical reasons all tissues 

were collected at specific time points which were identical for all trees, whilst, the different 

apple cultivars were not always in the same developmental stage. To reduce the differences 

among different trees (with slight differences in their developmental stage), tissue samples 

from several trees were mixed. Since the timing for the collection of the different tissues 

was not optimal, this could also be the cause of some variability with RIP expression 

between different cultivars.  

 
In this study, the subcellular localization of apple RIPs was investigated using confocal 

microscopic analysis of EGFP fusion constructs with the RIP sequences expressed in different 

cell systems. Taken together all the data from these transient and stable gene expressions, it 

was demonstrated that the apple type 2 RIP is synthesized in the ER and secreted into the 

intercellular space. In contrast, all the evidence showed that the apple type 1 RIP is 

synthesized on free ribosomes and is targeted to the nucleus and the cytoplasm. 

Furthermore, the results of transcriptome analysis and the qPCR analysis provided evidence 

for differential transcript accumulation of apple type 2 RIPs in different tissues from apple. 

The results of the subcellular localization study, taken together with the fact that type 2 RIP 

transcript levels reach the highest levels in young tissues might be relevant from the point of 

view of the physiological importance of the RIP, e.g. a role in (crop) plant protection as part 

of plant defense. 

Table 3.2 Some important differences between apple cultivars (Smolik and Krzysztoszek, 2010; 

Pereira-Lorenzo et al., 2009).  

James Grieve Jonagold Golden Delicious 

Cluster I Cluster II 

Diploid (2n=34) Triploid (2n=51) a cross of non-
reduction diploid Golden 

Delicious x diploid Jonathan 

Diploid (2n=34 
chromosomes) 

Early apples, harvested at the 
end of July and available until 

the end of September 

Winter apples, harvested at the beginning of October 
and available until the end of May. 

 

Midseason bloom Late bloom 
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3.6    Supplemental data  

 

Type 1 RIP deduced AA sequence: 

 
MALSFSIKNATTTTYRTFIEALRAQLTAGGSTSHGIPVLRRRQDVKDDQRFVLVNLTNYDSY

TITVAIDVVNAYVVGYCAGTRSYFLRDPATHPPPLHRLFPGTTRTTLPFAGDYLGLGRAAQE

ALQQNTNRNRAAGSRIHENISMRERIPLGPGELDNAISQLRYAESASSQAAAFIVIIQIVSE

AARFRYIQGQVRDRIRDGTSAEPDPAMLSLENSWSNLSEQIQMVPANQLLFINNGSVQIRKA

DNSIVLVKSVDSDAVRGVAFLLYCGGNPPAPNSESARTSKVTVQKPTLAKKKK 

 

Type 2 RIP deduced AA sequence: 

 
MTRVLAIYITLAFSLFLCGTECNISFSTSGATSNSYNTFIKALRAQLTNGATAIYDIPVLNP

SVPDSQRFLLVDLSNNGNNTITVAIDVVNASVVAYRARAARPYFLADAPDEALDILFNDTRG

FFLPFTSNYVDLEKAAEKSRDKIPLGLTPLHNAITSLWNQESEEAAVSLLVIIQTVFEAARF

RVIEQRVRNSISSKANFIPDPAMLSLENNWLAISWETQHALNGVFSKSIQLRSTNNNLFLVD

SVSSSIMAGVAFLFYNCVTFPNIIKMPVNVVMGKEIDNEICAVQNRTTHISGLEGLCVDVKN

GLDSDGNLVQIWPCGQQRNQKWTFQPDETIRSMEKCMTAYSTSSPENYVMIYNCTTAVPEAT

KWALSTDGTITHRRSGLVLTAHEATRGTTLTIATNSHSPKQGWRVADDVEPTVTSIIGYNDM

EYCVPSKNQQQWALYSEGTIRVNSDRTLCVTSNGHNSSNVIIIKCELKRGDQRWVFKTDGSI

LNPNAELVMDVKNSDVYLRQIILYPYYGTPNQQWLPFF 

 

Figure S3.1 The RIP sequences cloned from pear (Pyrus sp.) cv ‘conference’     
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4.1    Abstract 
 
Genes encoding ribosome-inactivating proteins have been identified in the 

genome/transcriptome of several edible fruits. In this study the involvement of type 

1 RIP and type 2 RIP from apple (Malus domestica) in plant defense was investigated. 

The antiviral and antifungal activities of RIPs from apple were studied in planta using 

transgenic tobacco (Nicotiana tabacum L. cv Samsun NN) plants. Although the 

expression of apple RIPs under the control of the 35S cauliflower mosaic virus 

promoter causes morphological changes in some plants the majority of the 

transgenic lines exhibited a normal phenotype. Bioassays with a series of transgenic 

lines demonstrated that both type 1 and type 2 RIPs offer the plants an enhanced 

resistance against Botrytis cinerea and tobacco mosaic virus. In addition, feeding 

trials with an artificial diet supplemented with purified recombinant proteins 

revealed that the RIPs are toxic to the aphid Acyrthosiphon pisum. These findings 

indicate that the apple RIPs exhibit an unusually broad spectrum of defense activities 

and accordingly might be involved in defense related processes. 

4.2    Introduction 
 
Plants are continuously threatened by diseases and infection by plant viruses, 

phytopathogenic fungi and bacteria, as well as by damage caused by phytophagous 

insects (Dangl et al., 2013; Dodds and Rathjen, 2010). To resist pathogen infections 

and insect herbivory, plants developed a number of sophisticated mechanisms to 

cope with these biotic stress factors. More specifically, plants are capable of rapidly 

recognizing harmful pathogens and trigger an efficient defense response 

(Muthamilarasan and Prasad, 2013; Wirthmueller et al., 2013; Lannoo and Van 

Damme, 2014). Furthermore DNA recombinant technology now enables the 

engineering and/or introduction into crop species of plant defense genes that confer 

disease resistance in plants or direct the synthesis of compounds exhibiting toxicity 

towards e.g. fungi, bacteria, insects or herbivores, which eventually yields transgenic 

lines with enhanced plant growth and performance (Galvez et al., 2014). 

 
Ribosome-inactivating proteins are a family of enzymes with a unique N-glycosidase 

activity that enables them to remove a specific adenine from the highly conserved 

sarcin-ricin loop of the large ribosomal RNA resulting in the catalytic inactivation of 

the ribosomes and a rapid arrest of cellular protein synthesis (Peumans et al., 2001; 

Stirpe and Battelli, 2006). The (super)family of RIPs is classically divided into type 1 

RIPs consisting of an N-glycosidase domain of approximately 30 kDa, and type 2 RIPs, 
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which are in fact chimeric proteins built up of an N-terminal N-glycosidase domain 

fused to a C-terminal carbohydrate binding domain of approximately 30 kDa 

corresponding to a duplicated ricin-B domain. Though most research efforts have 

been concentrated on the classical type 1 and type 2 RIPs the wealth of sequence 

data generated by genome and transcriptome analyses demonstrated that the RIP 

superfamily is far more complex than previously believed and comprises a broad 

range of chimeric forms with an unusually broad range of domain architectures. In 

addition the genome/transcriptome analyses revealed that RIPs are far more 

widespread among higher plants than was previously inferred from the research 

with the proteins themselves. Interestingly, the genome/transcriptome based 

approach also allowed identifying the presence and expression of RIP genes in 

numerous crop plants, fruits and vegetables that until now were not suspected to 

contain RIPs such as sugar beet (Beta vulgaris), cannabis (Cannabis sativa), spinach 

(Spinacia oleracea), peach (Prunus persica), plum (Prunus domestica), apple (Malus 

domestica), strawberry (Fragaria × ananassa), and pumpkin (Cucurbita moschata) 

(Barbieri et al., 2006; Polito et al., 2013b; Peumans et al., 2014). Despite the 

tremendous amount of research devoted to a multidisciplinary study of numerous 

RIPs no clear answers can be given yet to the question why at least some plants 

synthesize and accumulate proteins with N-glycosidase activity.  

During an in-depth in silico screening of the genome/transcriptome of different 

edible plant species our attention was drawn to the presence of both type 1 and 

type 2 RIP genes in the apple (Malus sp.) genome (see chapter 2). Since apple is a 

major fruit crop it seemed worthwhile to corroborate the biological activities and 

physiological importance of apple RIPs. To gain better insight into the physiological 

role of the apple RIPs, transgenic tobacco plants were constructed expressing the 

apple RIP sequences under the control of the 35S cauliflower mosaic virus promoter. 

Expression of the RIP sequences in transgenic tobacco plants was analyzed by 

quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), 

activity assays and western blots. Subsequently the transgenic tobacco plants were 

tested for disease resistance to tobacco mosaic virus (TMV) and infection by the 

fungus Botrytis cinerea. In addition, the recombinant proteins were added to an 

artificial diet to determine the insecticidal activity of apple RIPs against pea aphids 

(Acyrthosiphon pisum). Our results showed that the apple RIPs exert a pronounced 

effect on disease development and therefore can be involved in plant defense 

against viruses, fungi and insects.  
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4.3     Materials and methods 

4.3.1 Plant materials  
 
To establish an in vitro culture of tobacco (Nicotiana tabacum L. cv Samsun NN) 

seeds were first surface sterilized with 80% ethanol (v/v) for 5 min and then with 5% 

NaOCl (v/v) for 15 min. After thorough rinsing with sterile distilled water, the 

sterilized seeds were sown in glass jars containing Murashige and Skoog (MS) 

medium (4.3 g/L MS micro and macro nutrients containing vitamins (Duchefa, 

Haarlem, The Netherlands), 30 g/L sucrose, pH 5.7 (adjusted with 0.5 M NaOH), and 

8 g/L plant agar (Duchefa)) (Murashige et al., 1962). Four to five week old plants 

were used for the leaf disc transformation.  

 
For the Botrytis cinerea and TMV bioassays sterilized seeds of wild type plants or 

transgenic tobacco lines (T1 generation) were germinated on MS medium 

(containing 100 mg/L kanamycin for the selection of the transgenic lines). Two-week 

old seedlings were transferred into pot soil and grown for another four weeks under 

a photoperiod regime of 16/8 h light/dark at 25°C. For each line, 12 plants were used 

for the bioassays. All bioassays were performed in three independent replicates.  

4.3.2 Construction of binary vectors  
 
To construct a binary vector that will allow the 35S promoter-driven expression of 

the type 1 RIP and type 2 RIP from Malus domestica, the GatewayTM cloning 

technology of Invitrogen (Carlsbad, CA, USA) was used. The coding sequences for the 

type 1 RIP and type 2 RIP from apple were amplified as attB products by PCR, using 

genomic DNA extracted from the bark of Malus domestica cv ‘Jacques Lebel’ and 

gene-specific primers (EVD 605/EVD 606 for type 1 RIP, EVD 607/ EVD 608 for type 2 

RIP) containing part of the attB sites in the first PCR and primers EVD2/EVD 4 for the 

second PCR (Table 4.1). Tobacco Bright Yellow (BY)-2 cells were transformed using 

the type 2 RIP sequence as well as fusion constructs for the type 1 RIP and the B 

chain of type 2 RIP linked with the signal peptide 

(5’ATGACGAGAGTGTTAGCAATATACATTACTCTCGCATTTAGCCTCTTTCTCTGTGGCACCG

AGTGC3’) from the type 2 RIP sequence and a His tag (6 x histidine) at the N- and C- 

terminus, respectively. These additional sequences were added by PCR using specific 

primers. Finally, the constructs were completed with the attB sites using primers  
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       Table 4.1 List of PCR primer pairs used in this research 

 

 
 
 

Amplified sequence Primer name 5’-3’ sequence 

Adding the non-complete attB sequences :  
type 1 RIP 

EVD 605 
EVD 606 

AAAAAGCAGGCTTC ACCATGGCACTATCCTTCTCCATTAAG 
AGAAAGCTGGGTGCTATTTCTTCTTCTTGGCGAGGGTTGG 

Adding the non-complete attB sequences : 
 type 2 RIP 

EVD 607 
EVD 608 

AAAAAGCAGGCTTCACCATGACGAGAGTGTTAGCAATATAC 
AGAAAGCTGGGTGTTAGAAGAACGGCAGCCATTGCTGGTT GGG 

Completing the attB sequences  EVD 2 
EVD 4 

GGGGACAAGTTTGTACAAAAAAGCAGGCT 
ACCACTTTGCTCAAGAAAGCTGGGT  

Sequencing Donr-F 
Seql-E 

TCGCGTTAACGCTAGCATG  
GTTGAATATGGCTCATAACAC  

Nictaba sequence, quality check of genomic DNA  EVD 1  
EVD 3  

AAAAAGCAGGCTTCACCATGCAAGGCCAGTGGATAGCCGC 
AGAAAGCTGGGTGTTAGTTTGGACGAATGTCGAAGCC  

Tobacco ribosomal protein L25 (L18908) EVD 282 
EVD 283 

TGCAATGAAGAAGATTGAGGACAACA 
CCATTCAAGTGTATCTAGTAACTCAAATCCAAG 

qPCR reference gene: elongation factor 1α gene 
(EF1α)  

P85 
P86 

GATTGGTGG AATTGGTACTGTC 
AGCTTCGTGGTGCATCTC 

qPCR reference gene: Beta actin P91 
P92 

ATGCCTATGTGGGTGACGAAG 
TCTGTTGGCCTTAGGGTTGAG 

qPCR target gene: type 1 RIP P55 
P56 

AATCTGCATCCTCCCAAGCC 
GCGGACTTGTCCCTGAATGT 

qPCR target gene: type 2 RIP P57 
P58 

AAAGCACTGCGAGCCCAA 
AGAGGAAGCGTTGTGAGTCC 
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EVD2/EVD4. Cycling parameters for the PCR reactions were: 2min 94°C, 25 X (15s 

94°C, 30s 55 °C, 1 min 72°C), 5 min 72°C. Subsequently, all attB PCR products were 

homogeneously recombined in the entry vector pDONR221 (Invitrogen). Using heat 

shock transformation, the entry clones were subsequently transferred into E. coli 

strain Top10 cells. Transformants were selected by colony PCR. The plasmid DNA 

extracted from the colonies was sent for sequencing (performed by LGC Genomics, 

Berlin, Germany) using the primers Donr-F and Seql-E (Table 4.1). Finally, the LR 

reactions were performed with selected entry clones and enabled the cloning of the 

coding sequence for the type 1 RIP and the type 2 RIP in the pK7WG2.0 destination 

vector for tobacco plant transformation. Similarly the sequences encoding type 1 

RIP, type 2 RIP and type 2 RIP B-chain were transferred into the pK7WG2D 

destination vector for BY-2 cell transformation.  

4.3.3 Transformation of Nicotiana tabacum L. cv Samsun NN  
 
The binary vectors carrying the type 1 or type 2 RIP sequence from M. domestica 

were introduced into Agrobacterium tumefaciens strain LBA4404 by tri-parental 

mating as described by Hoekema et al., (1983). Transformed cells were selected on 

YEB medium (consisting of 5 g/L beef extract, 5 g/L peptone, 5 g/L sucrose, 1 g/L 

yeast extract, and 15 g/L bacteriological agar) containing 50 mg/L spectinomycin and 

20 mg/L gentamycin, and used for the transformation of Nicotiana tabacum L. cv 

Samsun NN following the leaf disc co-cultivation transformation procedure (Horsch 

et al., 1985). The transgenic plantlets were selected on MS medium containing 

kanamycin (300 mg/L) and carbenicillin (100 mg/L). The transformed tobacco plants 

were grown and seeds were harvested. The seeds were selected on MS agar plates 

containing 100 mg/L kanamycin. These plants from the T1 generation were used for 

the different experiments.  

4.3.4 PCR analysis and RT-PCR 
 
The integration of the T-DNA into the plant genome was checked by PCR on DNA 

extracted from tobacco leaves from plantlets of generation 0 and 1 (T0 and T1 

generation). The cetyl trimethyl ammonium bromide (CTAB) method was used to 

extract the genomic DNA from tobacco leaves. The Nictaba (Nicotiana tabacum 

agglutinin; Chen et al., 2002b) sequence was amplified using the primers EVD 1 and 

EVD 3 (Table 4.1) to verify the quality of the genomic DNA. To check the presence of 

the type 1 and type 2 RIP sequences in the genomic DNA, PCR was performed using 

specific primers (EVD 605/EVD 606 for type 1 RIP, EVD 607/ EVD 608 for type 2 RIP, 
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Table 4.1). Cycling parameters for the PCR reactions were: 2 min 94°C, 25X (15s 94°C, 

30s 55 °C, 1 min 72°C), 5 min 72°C. PCR analysis was used for the initial screening. 

Only the PCR positive plants were selected for further growing and collection of 

seeds.  

 
Total RNA was isolated from transgenic tobacco leaves using Tri Reagent (Sigma-

Aldrich, Bornem, Belgium) and the remaining DNA was removed by DNase I 

treatment (ThermoScientific, Erembodegem, Belgium). cDNA synthesis was 

performed using the M-MLV Reverse Transcripase Kit (Invitrogen). In total 40ng 

cDNA was used as the template for the RT-PCR reaction, which was performed using 

the same parameters as for the PCR amplification of genomic DNA. cDNA quality was 

checked using specific primers EVD 282 and EVD 283 (Table 4.1) to amplify the 

sequence encoding ribosomal protein L25.  

4.3.5 Analysis of RIP expression in the transgenic plants by qRT-PCR  
 
qRT-PCR was performed on a CFX96™ Real-Time PCR Detection system using the iQ™ 

SYBR® Green Supermix kit (Bio-Rad, California, USA). The amplification specificity of 

the primers was checked by sequencing of the RT-PCR products and analysis of the 

dissociation curve after qRT-PCR. To determine the efficiency of corresponding 

primer amplification, a serial dilution of cDNA was used to obtain standard curves. In 

each reaction, 10 l of 2X supermix, 2 l cDNA (40 ng/l), 1 l of 10 M from each 

primer and 6 l water were mixed in a total volume of 20 l. The thermal profile 

consisted of 10 min at 95°C as a pre-denaturation step, followed by 45X (25s 96°C, 

25s 60 °C, 20s at 72°C). The stability M values for the different reference genes were 

calculated by GeNorm Plus (Hellemans et al., 2007), after the quantification cycle 

(Cq) values processed into qBasePLUS. The relative expression level of the target 

genes was normalized against the reference genes elongation factor 1α gene (EF1α) 

(Genebank Acc No. AF120093, Schaart et al., 2010) and beta actin (Genebank Acc 

No. U60495, Zhang et al., 2011) (Table 4.1) using qBasePLUS. Target primers for qRT-

PCR were designed by primer 3.0 software http://frodo.wi.mit.edu/ (Table 4.1) to 

amplify <120 bp amplicons. Each reaction was performed in triplicate.  

4.3.6 Preparation of crude extracts and western blot analysis 
 
Total protein from tobacco leaves was extracted in phosphate buffered saline (1X 

PBS: 17.1 mM NaCl, 3.31 mM Na2HPO4.2H20, 0.58 mM Na2HPO4.12H20, 13.4 mM KCl, 

7.35 mM KH2PO4) using 0.5 ml buffer per gram of fresh weight (FW) leaf material. 

http://frodo.wi.mit.edu/
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Afterwards, the protein concentration was determined by the Coomassie (Bradford) 

Protein Assay Kit (Thermo Fischer Scientific, Rockford, IL, USA) according to the 

Bradford dye-binding procedure (Bradford et al., 1976).  

 
Crude extracts from transgenic lines and wild type plants were immunodetected by 

western blot analysis. Therefore, the samples were separated by SDS-PAGE on a 15% 

polyacrylamide gel and proteins were transferred onto a polyvinylidene fluoride 

(PVDF) membrane (Bio TraceTM PVDF, PALL, Gelman Laboratory, Ann Arbor, MI, 

USA). First, the blots were blocked in blocking buffer, consisting of 5% milk powder 

dissolved in Tris buffered saline (TBS: 10 mM Tris, 150 mM NaCl and 0.1% (v/v) 

Triton X-100, pH 7.6). After blocking, blots were incubated for 1 h in TBS 

supplemented with a 1/1500 dilution rabbit anti-SNA-I (Chen et al., 2002a) 

antiserum as primary antibody. The secondary antibody was a 1/5000 diluted 

horseradish peroxidase-coupled goat anti-rabbit IgG (Sigma-Aldrich). 

Immunodetection was achieved by adding a sufficient amount of enhanced 

chemiluminescence detection substrate (ClarityTM Western ECL Substrate, Bio-Rad). 

The ChemiDoc MP imaging system (Bio-Rad) was used for the visualization of the 

signals from the blots. All washes and incubations were conducted at room 

temperature with gentle shaking.  

4.3.7 Semi-quantitative analysis of the type 2 RIP content in transgenic lines  
 
To compare the expression level between the different transgenic lines, a semi-

quantitative analysis of the type 2 RIP content was performed by agglutination 

assays using rabbit erythrocytes (BioMérieux, Marcy I’Etoile, France). Agglutination 

assays were done in small glass tubes by mixing 10 l total protein extract from each 

transgenic line (or the wild type plant), 10 l of 1 M ammonium sulfate and 30 l of 

a 10% suspension of trypsin-treated rabbit erythrocytes. After 30 min at room 

temperature, the agglutination was assessed visually. During these assays, similar 

amounts of total protein were compared for different transgenic lines or wild type 

plants. The whole experiment was repeated twice with different batches of plants.  

4.3.8 Stable transformation of BY-2 cells and expression analysis 
 
A three day old BY-2 cell culture was cocultivated with A. tumefaciens cells harboring 

the expression vector as previously described (Delporte et al., 2014). After 3 days 

cocultivation, transformed BY-2 cells were selected on MS agar plates containing 

antibiotics (500 mg/L carbenicillin, 100 mg/L kanamycin) and BY-2 vitamins for 3-4 
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weeks until resistant calli became visible. The transgenic cell colonies were detected 

by the Fujifilm FLA-5100 Fluorescent Image Analyzing System (Tokyo, Japan) based 

on the expression of the EGFP sequence located on the vector. Fluorescent calli were 

used to start a BY-2 liquid cell culture by transferring a 1 cm homogenous appearing 

callus into 20 ml BY-2 cell medium in a 40 ml Erlenmeyer. For the purification of 

recombinant proteins the cell cultures were grown into large-scale (600 ml) cultures. 

After seven days, the medium was harvested using a sintered glass pore filter with a 

filter disc paper. Afterwards, the medium was adjusted to 1.5 M ammonium sulfate 

at pH 7.0 for the purification of type 2 RIP and type 2 RIP B-chain. For purification of 

type 1 RIP, the medium was adjusted to pH 3.0.  

4.3.9 Purification of recombinant RIPs and lectin  
 
Purification of the recombinant type 2 RIP was achieved in three consecutive 

chromatographic steps. The BY-2 medium (pH 7) was obtained by vacuum filtration 

and loaded onto a column (5 cm x 30 cm; 80 ml bed volume) of Phenyl Sepharose 

(GE Healthcare, Uppsala, Sweden) equilibrated with 1.5 M ammonium sulfate (pH 7). 

After washing the column with 1.5 M ammonium sulfate (pH 7), the bound protein 

fraction was eluted with a solution of 20 mM 1,3 diaminopropane. The eluted 

fraction was brought to 1 M ammonium sulfate with the solid salt, the pH adjusted 

to 7 and applied onto a column (2 cm x 22 cm; 20 ml bed volume) of Fetuin-

Sepharose equilibrated and washed with 1.5 M ammonium sulfate (pH 7). Bound 

proteins were eluted with a solution of 20 mM 1,3 diaminopropane and 

concentrated by a second chromatography on a small column (1 cm x 22 cm; 5 ml 

bed volume) of Fetuin-Sepharose using the same procedure as for the first affinity 

chromatography step. Following this procedure the type 2 RIP fraction was eluted in 

a few ml of 20 mM 1,3 diaminopropane. The lectin B chain from the type 2 RIP was 

purified essentially as described for the type 2 RIP using hydrophobic interaction 

chromatography (HIC) combined with affinity chromatography. 

 
To isolate the recombinant type 1 RIP a purification scheme was developed that 

included two consecutive chromatographic steps. First the cleared BY-2 medium 

(adjusted to pH 3) was loaded on a column (2 cm x 22 cm; 20 ml bed volume) of S 

Fast Flow equilibrated with 50 mM sodium acetate (pH 3). After washing the column 

with 50 mM sodium acetate (pH 3), the type 1 RIP fraction was eluted with a solution 

of 1 M NaCl in 20 mM 1,3 diaminopropane (pH 8.7). The eluted fraction was adjusted 

to pH 3.0 with 1 M HCl and concentrated on a small column (1 cm x 22 cm; 5 ml bed 
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volume) of S Fast Flow using the same procedure as during the first chromatography 

step. The purity of the protein in the second eluate was assessed by SDS-PAGE 

analysis. 

4.3.10 Pathogens and infection method  
 
The fungal and virus infection experiments were done in collaboration with the lab 

of Prof. Monica Höfte (Department of Crop Protection, Ghent University, Belgium). 

 
Botrytis cinerea strain R16 (Faretra & Pollastro, 1991) was grown on PDA (Potato 

Dextrose agar, Lab M, Lancashire, UK) for 5 days in the dark at 18°C and 10 days 

under a light regime of UV/dark of 12h/12h at 21°C. The conidial inoculation 

suspension was prepared as follows: spores were washed from the plates with 

distilled water containing 0.01% (v/v) Tween 20. After removal of mycelial debris, 

the conidial suspension was centrifuged for 10 min at 4500 rpm at 14°C. The 

supernatant was removed and the conidia were resuspended in sterilized distilled 

water. The inoculation suspension containing 2 X 105 spores/ml was prepared in ¼ 

strength PDB (potato dextrose broth, Duchefa) (Audenaert et al., 2002; Asselbergh 

et al., 2007; Seifi et al., 2013). 

Infection experiments with B. cinerea were performed as described by Audenaert et 

al., (2002). The petioles of detached tertiary leaves from 6-week-old tobacco plants 

were wrapped in wet cotton and placed on a plastic tray containing four layers of 

absorbent paper. A total of 12 leaves per line were inoculated by putting 6 droplets 

of 10 l conidial inoculation suspension on each leaf surface. The trays were 

moisturized with approximately 400 ml of distilled water and closed with plastic 

folium to keep a relative humidity of 100% and incubated at 22 °C under dark 

condition. After two days, disease symptoms were evaluated by quantification of the 

lesion diameter by Image Analysis Software for Plant Disease Quantification: Assess 

2.0 (https://www.apsnet.org/apsstore/shopapspress/Pages/43696m5.aspx). 

Inoculation droplets were classified as non-spreading (the lesion area was not larger 

than the inoculation droplets), spreading (pale-brown, round-shaped dots; lesion 

area was much larger than inoculation droplets) or necrotrophic (dark-brown, 

irregularly- shaped dots) lesions (Supplementary Fig. S4.1).  

 

 

https://www.apsnet.org/apsstore/shopapspress/Pages/43696m5.aspx
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4.3.11 Visualization of defense responses 
 
In vivo assay 
 
To observe the differences in defense responses between wild type and transgenic 

tobacco plants, leaf discs were inoculated with B. cinerea as described above and 

fungal growth analyzed after 16 h and 24 h. Infected leaf discs were fixed in 100% 

ethanol overnight. Fungal structures were stained with 0.1% trypan blue in 10% 

acetic acid for 60s followed by three rinsing steps in distilled water, using the trypan 

blue staining technique (Seifi et al., 2013). Afterwards, samples were mounted in 

50% glycerol before microscopic observation. Images of the stained fungal structures 

were digitally acquired with an Olympus BX51 microscope equipped with an 

Olympus ColorView III camera (Tokyo, Japan).  

In vitro assay 

The in vitro microtiter-plate antifungal activity test was performed as described by 

Broekaert et al. (1990). Each well of a 96-well polypropylene U bottom plate (Bibby 

Sterilin Ltd. Stone, Staffs, U.K.) was filled with 20 l of filter-sterilized recombinant 

purified protein (5 mg/L of type 1 RIP, type 2 RIP or type 2 RIP B-chain) and mixed 

with 80 l ½ strength PDB containing 1.6 X 104 spores of B. cinerea. After 20 h 

incubation at 21°C, the images were digitally acquired with an Olympus BX51 

microscope equipped with an Olympus ColorView III camera (Tokyo, Japan).  

4.3.12 Virus material and infection method  
 
Tobacco mosaic virus strain vulgare (TMV-vulgare) was purchased from Leibniz-

Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, (DSMZ, 

Braunschweig, Germany). Inoculation of the tobacco plants with TMV was 

performed using the standard mechanical rubbing method (Vandenbussche et al., 

2004a). To perform the inoculation, 0.05 g tobacco leaves fully infected with TMV 

were extracted in 1 ml of cooled 50 mM potassium phosphate buffer (pH 7.0). Fully 

expanded leaves of N. tabacum cv Samsun NN (6-week-old) were dusted with silicon 

carbide (mesh size 400, Sigma-Aldrich) and inoculated by gently rubbing the upper 

leaf surface with 200 l of the viral suspension inoculum, followed immediately by 

rinsing with deionized water. Following inoculation, plants were maintained in a 

growth room at 25°C under a 16/8 h light/dark regime. The lesion diameter and the 

disease index of the infected leaves were examined three days after inoculation.  
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The TMV infection lesions were evaluated by scoring the infected leaves into six 

different groups according to the lesion symptoms as defined in supplementary Fig. 

S4.2 (Kanzaki et al., 2004, Seifi et al., 2013).  

4.3.13   Insect bioassays on artificial diet  
 
The insect bioassays were done in collaboration with the lab of Prof. Guy Smagghe 

(Department of Crop Protection, Ghent University, Belgium). 

 
Pea aphids (Acyrthosiphon pisum) were maintained on young broad bean plants 

(Vicia faba L) (Sadeghi et al., 2009a). To synchronize the age of the nymphs, mature 

aphids were put on a bean plant. After 24 h, all neonate nymphs were used in the 

bioassay. Before and during the bioassays, all insects were maintained in growth 

chambers at 25 ± 2°C with 65 ± 5% relative humidity and a 16/8 h light/ dark 

photoperiod.  

 
The basal food used for the aphids was developed from a standard diet for A. pisum 

(Febvay et al., 1998) as described in Sadeghi et al., (2009b) and Al Atalah et al., 

(2014b). A feeding sachet was constructed by putting 150 l artificial diet in between 

two layers of parafilm under sterile conditions. To determine the effects of the 

proteins (type 1 RIP, type 2 RIP or type 2 RIP B-chain) on the neonate nymphs, 

several concentrations of the recombinant proteins (type 1 RIP: 80, 160, 320, 640, 

960 mg/L; type 2 RIP: 17, 34, 68, 136, 204 mg/L; type 2 RIP B-chain: 30, 60, 120, 240, 

360 mg/L) were tested. Since a solution of 20 mM un-buffered diaminopropane was 

used to dissolve the recombinant proteins, an artificial diet supplemented with equal 

volumes of this solution was used as a control. A total number of ten neonate 

nymphs was transferred onto the artificial diet containing the recombinant proteins. 

The mortality was determined and the dead insects were removed daily for three 

consecutive days. For each protein concentration, three replicates were carried out.  

4.3.14    Statistics  
 
Data were expressed as means ± standard error (SE). For the quantitative RT-PCR, 

three technical replicates were performed. In the agglutination activity assay, data 

from two biological replicates were averaged. All decimal percentages and numbers 

were rounded to the nearest integer. In the classification of the fungal infection 

lesion evaluation experiment, different letters represent significant differences 

(Duncan; P < 0.05) between different tobacco lines analyzed by IBM Statistical 
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Package for the Social Sciences Statistics (IBM SPSS Statistics, IBM, New York, US). In 

the Disease Index analysis, the infection differences between transgenic lines and 

wild type plants were statistically analysed using SPSS (Tuckey’s b). Lesion diameters 

were compared between the transgenic lines and the wild type plants, using the 

one-way ANOVA (Dunnett’s Multiple Comparison Test) test for the statistical 

analysis. The 50% lethal concentration (LC50) together with the 95% confidence 

limits and the R2 of the sigmoid curve fitting were determined using the non-linear 

regression analysis in Prism version 5 (GraphPad, La Jolla, CA).  

4.4. Results 

4.4.1 Ectopic expression of type 1 and type 2 RIP sequences from apple in 
transgenic tobacco plants  

 
The coding sequences of type 1 RIP or type 2 RIP from apple were cloned into a 

binary vector using the Gateway technology. Therefore, the RIP sequences were 

amplified from genomic DNA from apple (Malus domestica cv ‘Jacques Lebel’) and 

cloned behind the 35S cauliflower mosaic virus promoter sequence. Tobacco 

(Nicotiana tabacum L. cv Samsun NN) leaf discs were transformed with 

Agrobacterium tumefaciens LBA4404 harboring the destination vector pK7WG2.0 

with the type 1 or type 2 RIP sequence. A total of 50 independent transgenic lines 

per construct were obtained after shoots and roots emerged from the transformed 

calli. After screening, only independent T0 lines (28 per construct) presenting the RIP 

sequence at DNA level were allowed to grow into adult plants and produce seeds. 

Once plantlets of the T1 generation were obtained, the expression of the type 1 or 

type 2 RIP gene was checked at the DNA, RNA and protein level by PCR analysis, 

quantitative RT-PCR and Western blot analysis, respectively. A total number of 16 

plants were tested for each construct. Finally, five lines with the type 1 RIP gene and 

seven lines with the type 2 RIP gene were selected for the biotic stress experiments.  

PCR analysis of both genomic DNA and RNA/cDNA yielded amplification products of 

900 bp and 1641 bp, respectively, which demonstrated that the type 1 and the type 

2 RIP sequences are (i) present in the tobacco and (ii) transcribed (Fig. 4.1A and B). 

Western blot analysis further demonstrated that both the type 1 RIP and the type 2 

RIP are present in crude leaf extracts (Fig. 4.1C). Quantitative RT-PCR was applied for 

a more detailed analysis of the ectopic expression of the type 1 and type 2 RIP 

sequences in the transgenic tobacco plants. Thereby the expression of type 1 and 

type 2 RIP transcripts in each line was normalized against the reference genes (EF1α 
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and beta actin). This approach indicated that line 7 of the type 1 RIP series exhibited 

the highest type 1 RIP expression. Within the type 2 RIP series lines 11, 18, 27 and 44 

exhibited the highest expression levels (Fig. 4.1D). For these lines the high 

expression of the type 2 RIP was confirmed by –on a biological activity based- semi-

quantitative agglutination assays with rabbit erythrocytes. As shown in Table 4.2 

crude extracts from leaves of lines 27 and 44 exhibited the highest agglutination 

activity followed by these from lines 11 and 18. Extracts from plants of lines 22, 25 

and 28 were clearly less active in the agglutination assays. 

A comparison of the quantitative RT-PCR results further indicated that the 

expression level of the type 2 RIP gene in tobacco plants was approximately ten-fold 

higher than that of the type 1 RIP gene (Fig. 4.1D).  

Table 4.2 Agglutination activity of crude leaf extracts from transgenic tobacco plants 
expressing type 2 RIP and wild type plants. A, B and C refer to extracts prepared from three 
different batches of plants of each line. The protein concentration in the extracts of the 
series A, B and C amounted to 0.86, 1.72 and 3.44 µg, respectively. A type 2 RIP from 
elderberry (SNA-I) was used as a positive control. The buffer 1xPBS was used as negative 
control.  
 

Transgenic line 
Agglutination activity of protein extract*  
         A                      B                       C 

T2-11 + + ++ 

T2-18 + + ++ 

T2-22 - - - 

T2-25 + + + 

T2-27 ++ ++ +++ 

T2-28 - - - 

T2-44 ++ ++ +++ 

WT - - - 

PC (SNA-I) ++++ ++++ ++++ 

NC (1XPBS) - - - 

 

*: ++++, +++, ++ and + indicate very strong, strong, good and weak agglutination activity of 
rabbit red blood cells; −, designates lack of activity.  
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Figure 4.1 Overview of the analysis of the transgenic lines at DNA, RNA and protein level.  
Panel (A): Gel electrophoresis of PCR fragments amplified from genomic DNA extracted from 
the wild type and transgenic tobacco plants using RIP specific primers; panel (B): Gel 
electrophoresis of PCR fragments amplified from RNA extracted from the wild type and 
transgenic tobacco plants using RIP specific primers; panel (C): Western blot analysis of 

protein samples by ECL detection. Equal amounts (20 g) of crude extracts were loaded on 
gel; panel (D): Quantitative RT-PCR analysis of the expression of the RIP genes. Transcript 
levels were normalized to the expression of EF1α and beta-actin. Numbers refer to the 
numbering of the transgenic lines.  
 

4.4.2 Phenotypic changes in tobacco plants overexpressing RIP genes 
 
Upon monitoring of the 56 transgenic lines of the T0 generation it was observed that 

approximately 3.6% of all the tobacco plants expressing the type 2 RIP gene 

developed abnormal flowers (characterized by double layers of incomplete flowers) 

(Supplementary Fig. S4.3). Since the yield of seeds for these flowers was very low, 

these plants were discarded from the selection of plants to be studied. Furthermore, 

approximately one third of the plants in the T1 generation displayed abnormal 

morphological phenotypes (Fig. 4.2A and B) and/or a reduced root system (Fig. 

4.2D). Some plants from the T1 generation overexpressing the type 2 RIP had two 

shoots (8.03%) or a reduced amount of roots (41.1%). Similar observations were 

made for the T1 generation of type 1 RIP overexpressing plants in that approximately 

one third of the plants suffered an impaired root system (Fig. 4.2C and 

Supplementary Fig. S4.4). These observations indicate that (over)expression of either 

the type 1 or type 2 RIP genes from apple affects normal development in at least 
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part of the transgenic tobacco plants.  

 

 

Figure 4.2 Pictures showing abnormal morphological phenotypes in the T1 generation of the 
transgenic tobacco plants overexpressing apple RIP sequences. Panel (A): Tobacco plant 
expressing type 2 RIP with two shoots; panel (B): Comparison of a wild type plant and a 
tobacco plant expressing type 2 RIP; panel (C and D): Comparison of root development in 
wild type and transgenic tobacco plants expressing type 1 and type 2 RIPs, respectively. 
 
 

4.4.3 Antifungal activity of apple RIPs on B. cinerea with/without plant defense 
system  

 
To investigate whether overexpression of the type 1 or type 2 RIP gene from apple 

possibly enhances the resistance of transgenic tobacco plants against fungi a series 

of bioassays was set up with B. cinerea strain R16, which is virulent to tobacco 

(Achuo et al., 2004). Plants generated from five and seven independent 

transformants expressing the type 1 RIP and the type 2 RIP, respectively, were 

inoculated with B. cinerea conidial spores. The first symptoms of fungal infection 

appeared between 24 h and 48 h after artificial inoculation of the leaves. 

Macroscopic disease symptoms were evaluated at 48 h post-inoculation (hpi) by 

classification of the lesion types and quantitative measurement of the spot diameter. 

The percentage of non-spreading lesions was higher in all transgenic lines when 
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compared to the wild type leaf tissue (Fig. 4.3A, B and C), suggesting that most wild 

type plants were more susceptible to B. cinerea than the transgenic lines. The graph 

showing the percentage of non-spreading lesions (Fig. 4.3D) suggests a difference 

between tobacco plants overexpressing the type 1 RIP and the type 2 RIP, 

respectively, indicating a higher antifungal activity for the type 2 RIP. It is also worth 

noting that the germination and development of the fungus on leaves of plants of 

lines 11, 18, 27 and 44 of the type 2 RIP series is slowed down significantly. 

Moreover, all the transgenic lines apparently exhibited a decreased spreading of B. 

cinerea as can be concluded from the reduction of the diameter of the lesions (Fig. 

4.3 E, F and G). The inhibition of fungal germination at the early stage of leaf 

infection was further corroborated by microscopic analysis. Observations at 16 and 

24 hpi clearly demonstrated that the fungus already infected the tobacco plants. 

However, the length of the fungal hyphae on the leaves of the transgenic lines was 

much shorter than in the wild type plants, which indicates that expression of type 1 

and type 2 RIPs from M. domestica results in a clearly visible reduction of the 

development of Botrytis (Fig. 4.4).  

To assess direct effects of the recombinant proteins on fungal growth, B. cinerea 

spores were germinated in the presence or absence of 100 ng purified recombinant 

type 1 and type 2 RIPs. As shown in Fig. 4.5 addition of both type 1 and type 2 RIPs 

resulted in a clear reduction of the germination of the fungal spores and 

development of the hyphae after 20 h. In contrast, addition of the recombinant 

protein corresponding to the B chain of the type 2 RIP did not affect spore 

germination and fungal growth.  



Chapter 4 Ribosome inactivating proteins from apple (Malus domestica) possess 
antifungal, antiviral and insecticidal activities 

 106 

 

A B 

ê 100 A .. I 
* • * * • 
B B A A,B B AB B <fl, 100 A A A A A,BA 

~ 
0 
ïii 80 
.s! 

.2! 60 -0 
t5 40 

:0::: 
IQ 

~ 20 
VI 
VI s 
(.) 

c 

0 

.1:-

'<fl. 100 A 
7i) 

.~ 
VI 80 
.s! 
~ 60 -0 
t5 40 

:0::: 
IQ 

~ 20 
ïii 
VI 
IQ 

u 

Transgenie tobaeeo lines . . . . 
B A,B B A ,BA,B i B A A B 

A B 

.<,."~"~"~!'~!"\-";) n!'~!'~!"\-~!"1-~~!"\-~~ 
~ ~ ~"~"~"~"~"~"~" 

Transgenie tobaeeo lines 

c Necrotrophic lesion 
• Spreading lesion 
o Non·spreading lesion 

E 

-E 1.0 
~ .... 
.S! 
C1) 

E 
IQ 
'ë 0.5 
c: 
.2 
VI 

~ 
0.0 

••• *** 
~ 
E - -· ~ ~ ; E 
E ·- ~ ~ 
E ~- ~ -~ ~ E ~ ~ "' E ~ ~ "' E ~ ~ "' E ~ ~ 

~ .<,."~"~"~!'~!"\-";) n!'~!'~!"\-~~~~!"1-~~ 
-<.; -<.; -<.;"-<.;"-<.;"-<.;"-<.;"-<.;"'-<.;"' 

Transgenie tobaeeo lines 

G 

~ !0 ~ .._fo !"\-";) ........ .._'b !1-"-~ ~ ~'b ~ 
.<,. .... .<,. .... .<,. ":.... ..... .<,. ..... .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V.<,.'"\: 

Transgenie tobaeeo lines 

VI 
c: 
·~ 80 
.s! 
~ 60 ... 
0 
6 40 

:0::: 
IQ 

~ 20 
VI 
VI 
IQ 

ö 
0 

D 
-1 
~ 
~ 
VI c: 
0 
ïii 
.s! 
Cl c: 
'ë 
IQ 

~ 
'{) 
c: 
0 
z 

F 

-E 

0.8 

~0.6 .... 
C1) -C1) 

~ 0 .4 
'ë 
c: 
0 
ïii 0.2 
~ 

0.0 

.1:-

~ 

è ê: B B CB 
. ..... . 
BBBBBBB I. I li I 

~ !0 ~ .._fo~";) ........ .._'b~~~ ~'b ~ 
.<,. .... .<,. .... .<,. ":.... ..... .<,. ..... .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V.<,.'"\: 

Transgenie tobaeeo lines 

~ !0 ~ .._fo!V ........ .._'b~'\,~~ ~'b ~ 
.<,. .... .<,. .... .<,. ":.... ..... .<,. ..... .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V .<,.'V.<,.'"\: 

Transgenie tobaeeo lines 

-· -· -· ~ ·- - ·-
E ·-... ~ - z 
E ~ ~ ~ -

~ ~ -
~ ~ ~ -~ ~ -

~ !0 ~ .._fo!V ........ .._'b~'l-~'>~ ~ ~ 
.<,. .... .<,. .... .<,. ":.... ..... '\ ..... A". 'V A"_ 'V A"_ 'V A"_ 'V A"_ 'V A". 'V A"_'\: 

Transgenie tobaeeo lines 



Chapter 4 Ribosome inactivating proteins from apple (Malus domestica) possess 
antifungal, antiviral and insecticidal activities 

 107 

Figure 4.3 Effect of B. cinerea infection on tobacco plants expressing type 1 and type 2 RIPs 
from apple. Panels (A, B and C): Distribution of the three classes of infection lesions 
(spreading lesion, necrotrophic lesion and non-spreading lesion) in wild type and transgenic 
tobacco lines. The three different panels show the results of three independent infection 
experiments. Panel (D): Percentage of non-spreading lesions in wild type and transgenic 
tobacco lines. Panels (E, F and G): Lesion diameter in wild type and transgenic tobacco lines. 
Twelve plants of each line were used in three independent replicate infection experiments. 
Data are means ±SE of at least twelve different plants (leaves). Numbers refer to numbering 
of transgenic lines. Asterisks denote values significantly different from the wild type (WT) (*: 
p < 0.05; **: p< 0.01; ***: p < 0.001).  
 
 

 
 
Figure 4.4 Microscopic analysis B. cinerea infection in wild type plants and tobacco plants 
expressing apple RIPs. Images show trypan blue staining of B. cinerea infecting the wild type 
and transgenic tobacco (type 1 RIP line 7 and type 2 RIP line 44) leaf tissue. Fungal growth 
was monitored 16h and 24h post-inoculation. Scale bars represent 0.2 mm.  
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Figure 4.5 Microscopic visualization of the inhibitory effect of recombinant type 1 RIP, type 2 
RIP and type 2 RIP B-chain on the in vitro growth and morphology of B. cinerea. Panel (A): B. 
cinerea grown in the control medium (1/2 strength PDB); panels (B, C and D): B. cinerea 
grown in 1/2 strength PDB supplemented with 1µg/ml recombinant type 1 RIP, type 2 RIP 
and type 2 RIP B-chain, respectively. Pictures were taken 20h after incubation. Scale bars 
represent 0.15 mm. Note the stunted growth and hyperbranching of the fungus grown in 
the presence of the recombinant proteins.  
 

4.4.4 Antiviral activity of the apple RIPs 
 
To assess the in planta antiviral activity of the apple type 1 and type 2 RIPs 

transgenic tobacco plants were constructed and challenged with TMV. For these 

experiments Nicotiana tabacum cv. Samsun NN was chosen because this genotype 

exhibits -due to the presence of the N gene- a hypersensitive necrotic reaction upon 

infection with TMV. As shown in Fig. 4.6 both the number of lesions and the lesion 

size were reduced in the transgenic lines as compared to the wild type plants, (Fig. 

4.6). In wild type plants, lesions were more abundant and appeared as larger, dry, 

pale-brown, irregularly shaped dots, whereas in the transgenic lines, infection spots 

were small round-shaped, dark-brown dots. These observations clearly indicated 

that the expression of type 1 and type 2 RIPs slowed down the development of the 

viral infection symptoms.  
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Figure 4.6 Photographs of the development of lesions on the leaves of wild type and 
transgenic tobacco plants upon infection with TMV. Pictures were taken 3 days post-
infection and show a dramatic decrease in the appearance of symptoms in the transgenic 
plants expressing type 1 and type 2 RIPs from apple.  

 
 
To quantify the antiviral activity in the transgenic lines, each infected leaf of the 

transgenic and wild type control plants was scored and evaluated as described in 

Materials and Methods. Compared to the wild type plants, all transgenic lines 

exhibited a clear reduction of both the disease index and the lesion diameter. 

Transgenic lines 16 and 23 of the type 1 RIP series and lines 27 and 44 of the type 2 

RIP series displayed a statistically significant decrease, indeed, of the disease index in 

three biological replicates (Fig. 4.7A, B and C). Moreover, the lesion diameter in the 

leaves of the RIP overexpression lines was also significantly reduced as compared to 

that of the wild type plants (Fig. 4.7 A’, B’ and C’), which indicates that the 

ectopically expressed apple RIPs reduce spreading of the lesions. Though both type 1 

and type 2 RIPs definitely affect spreading of the virus the type 2 RIP apparently 

performed better than the type 1 RIP.  
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Figure 4.7 Quantitative analysis of the effect of ectopically expressed apple RIPs on the 
resistance of transgenic tobacco plants to TMV infection. Panels (A, B and C): comparison of 
the disease index in wild type and transgenic tobacco plants expressing apple type 1 and 
type 2 RIPs. Each panel represents the results of three independent infection experiments. 
The disease index was calculated from the number of lesions and the lesion size on the leaf 
according to the procedure described in Supplementary Fig. S4.2. Panels (A’, B’ and C’): 
comparison of the viral lesion diameter in wild type and transgenic tobacco plants 
expressing apple type 1 and type 2 RIPs. Each panel represents the results of three 
independent infection experiments. Data are means ±SE of at least twelve different plants 
(leaves). Asterisks denote values significantly different from the wild type (WT) (*: p < 0.05; 
**: p< 0.01; ***: p < 0.001).  
 

4.4.5 Insecticidal activiy of recombinant apple proteins (type 1 RIP, type 2 RIP 
and type 2 B-chain) on Acyrtosiphon pisum 

 
To assess the entomotoxic/insecticidal activity of the apple RIPs a series of feeding 

trials were set up. An artificial diet containing increasing concentrations of 

recombinant proteins (type1 RIP, type 2 RIP and type 2 RIP B-chain) was fed to 

neonate (<24h) nymphs of A. pisum to test the insecticidal activity and determine 

the 50% lethal concentration of the different proteins. The mortality of the neonate 

nymphs was determined 2 and 3 days after feeding, respectively (Fig. 4.8). Two days 

after feeding calculated LC50 values for the type 1 RIP, the type 2 RIP and the type 2 

RIP B-chain were 566.1 mg/L (95% confidence limits: 468.5 to 684.0 mg/L and 

R2=0.89), 84.09 mg/L (95% confidence limits: 69.77 to 101.4 mg/L and R2=0.89) and 

159.02 mg/L (95% confidence limits: 130.1 to 194.7 mg/L and R2=0.90), respectively. 

After 3 days, the aphid mortality reached 100% at the highest concentration of the 

proteins tested and the LC50 value decreased to 340.5 mg/L (95% confidence limits: 

270.6 to 428.5 mg/L and R2=0.87) for type 1 RIP, 33.42 mg/L (95% confidence limits: 

28.95 to 38.57 mg/L and R2=0.97) for type 2 RIP and 105.9 mg/L (95% confidence 

limits: 94.02 to 119.3 mg/L and R2=0.95) of type 2 RIP B-chain. It should be noted 

that the average mortality for nymphs in the control was 0% and 0.11% at day 2 and 

day 3, respectively.  
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Figure 4.8 Effect of recombinant apple RIP on A. pisum in feeding trials with an artificial diet. 
Panels A and B show the dose response curves for apple type 1 RIP, type 2 RIP and type 2 RIP 
B-chain on the nymphal mortality of A. pisum after two and three days, respectively. Data 
are expressed as means ±SE based on three replicates with a total of 30 nymphs tested for 
each protein concentration.  

 

4.5 Discussion 
 
At present the physiological role of RIPs in plants is still poorly understood. Since 

genome sequencing programs leave no doubt that many plant species do not 

possess a RIP gene one can reasonably conclude that RIPs are not essential for 

normal growth and development of plants and accordingly can be considered as 

accessory proteins. However, this does not preclude that at least some RIPs 

contribute to some extent to the survival of plants in their natural environment. 

Experimental evidence is accumulating, indeed, for a defense-related role of several 

RIPs. For example, the extremely high toxicity of ricin, abrin and other type 2 RIPs 

certainly offers an efficient protection against herbivorous animals and invertebrates 

(Krivdova et al., 2014). Other less toxic type 2 RIPs as well as type 1 RIPs are believed 

to enhance the plant’s defense potential against viruses and fungi (Chen et al, 2002a; 

Vandenbussche et al., 2004a,b, Corrado et al., 2005). However, since only a limited 

number of RIPs were involved in studies of defense-related processes no general 

conclusions can be drawn with respect to the contribution of RIPs to the plant’s 

survival under natural conditions. 

 
To broaden our insight in the biological defense-related activities it seemed 

worthwhile to make a detailed study of some “novel” RIPs that distinguish 

themselves in one way or another from the RIPs used in previous studies. During an 

in silico search for such a novel system our attention was drawn to apple. The 

genome of this fruit species comprises a gene for a type 2 RIP and several genes for a 
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type 1 RIP (see chapter 2). Interestingly, the type 2 RIP lacks (unlike the classical type 

2 RIPs) an internal vacuolar targeting signal sequence containing a LLIRP motif 

(Frigerio et al., 2001) and accordingly is predicted to be secreted. Moreover, the type 

1 RIPs are (unlike all other type 1 RIPs from dicots described thus far) apparently 

synthesized without a signal peptide and hence presumed to be retained in the 

cytoplasmic/nuclear cell compartment (see chapter 3). This particular feature of the 

apple type 1 RIP results from an evolutionary event whereby the lectin domain was 

deleted from a typical type 2 RIP gene and, in addition, the signal peptide was lost 

due a frame shift resulting from a single nucleotide deletion (Peumans et al., 2014). 

These considerations, taken together with the fact that the hitherto unsuspected 

occurrence of RIPs in apple might be of some concern from the point of view of food 

safety, justified to choose apple as a novel system to study the physiological role of 

RIPs. 

 
To corroborate the protective activities of the apple RIPs a series of experiments 

were set up with both the purified recombinant proteins and transgenic tobacco 

plants overexpressing the RIP genes. Recombinant proteins were isolated by 

standard techniques from BY-2 cell cultures. Transgenic tobacco plants were 

constructed to express the type 1 and type 2 RIP genes under the control of the 35S 

cauliflower mosaic virus promoter and the actual expression of the transgenes was 

analyzed at the DNA, RNA and protein level. Fig. 4.1 reveals that the expression on 

mRNA level does not match with the detected protein level for several transgenic 

lines (Fig. 4.1), which is possibly due to differences on the transcriptional and 

translational level. Based on table 4.2, the transgenic type 2 RIP tobacco lines could 

be ordered by the degree of their agglutination activity as follows: line 27  line 44 > 

line 11 line 18 > line 25 > line 22 line 28. The agglutination activity of most 

tobacco lines expressing type 2 RIP correlates fairly well with the expression level of 

the RIP at transcript level (Fig. 4.1).  

 
Visual inspection revealed that some transgenes exhibit a phenotype characterized 

by the occurrence of twin shoots and a reduced root development but in no case a 

dramatic growth inhibition was observed. Similar observations have been reported 

previously for tobacco plants expressing RIPs from Iris (Desmyter et al., 2003; 

Vandenbussche et al., 2004a). This suggests that RIPs have an indirect effect that 

results in the phenotypes described. Reduced capacity of translation may lead to 

side effects in disease development. 
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To check the antifungal activity leaves of transgenic tobacco plants were challenged 

with spores of Botrytis cinerea, a necrotrophic fungus that causes important losses in 

many crop plants and fruits, such as apple, strawberry, grape and tomato (Choquer 

et al., 2007), and is also a major threat in apple post-harvest storage. Ectopic 

expression of both type 1 and type 2 apple RIPs definitely resulted in a reduction of 

the growth rate and spreading of B. cinerea (Fig. 3 and 4). In vitro experiments 

confirmed that the purified proteins also slowed down spore germination and 

hyphal growth. A comparative analysis of the different transgenic lines further 

indicated that the antifungal activity is correlated with the expression level of the 

RIP. The differences between independent biological replicates are possibly due to 

the differences in environmental conditions during the infection experiment. At 

present it is still unclear how RIPs act on fungi. Fungal ribosomes are very susceptible 

to RIPs but in order to provoke an effect the RIP must enter the cytoplasm of the 

fungal cells (Krivdova et al., 2014). The type 2 apple RIP eventually ends up in the 

extracellular space (see Chapter 3), whereas the type 1 RIP accumulates in the 

nucleus and cytoplasm (see Chapter 3). When B. cinerea breaches the cell wall and 

infects the host cells both type 1 and type 2 RIPs can come in contact with the 

growing hyphae. The type 2 RIP might enter the fungal cell after binding of the B 

chain to the glycoconjugates in membrane and endocytosis but the type 1 RIP –if 

taken up at all- must enter by another mechanism (direct endocytosis?). Irrespective 

of the exact mode of action of the apple RIPs their antifungal activity is hardly 

comparable to that of genuine antifungal proteins (Selitrennikoff, 2001).  

 
RIPs are often considered as antiviral proteins. Several type 1 RIPs (e.g. pokeweed 

antiviral protein) were demonstrated, indeed, to increase the plant’s resistance to 

viruses. It is believed that upon infection with a virus the RIPs inactivate the host cell 

ribosomes, which results in cell death and stops further spread of the virus (Tumer et 

al., 1997). Type 2 RIPs were less intensively studied for what concerns their antiviral 

activity but experiments with transgenic plants revealed that also some type 2 RIPs 

offer protection against viruses (Chen et al., 2002a). The fortuitous occurrence of 

both type 1 and type 2 RIPs in apple offered a unique opportunity to corroborate 

and compare the antiviral activity of the two different types of RIPs within a single 

species. Bioassays with transgenic tobacco plants demonstrated that both 

ectopically expressed apple type 1 and type 2 RIPs reduce – in a statistically 

significant way- spreading of the lesions and lesion diameter upon infection with 

TMV. Quantitation of the antiviral activity revealed that the apple type 2 RIP 
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apparently performed better than the type 1 RIP. The latter observation is 

somewhat surprising because it is generally believed that type 1 RIPs are more 

potent antiviral proteins than type 2 RIPs (Krivdova et al., 2014). 

 
Besides antifungal and antiviral activities some RIPs have been reported to exert 

toxic effects on insects both in planta and in artificial diets. Hitherto insecticidal 

activities have been reported almost exclusively for type 2 RIPs, which due to the 

presence of a lectin B chain are capable of entering the cells on the surface of the 

gastro-intestinal tract and fully exert their cytotoxicity (Vargas and Carlini, 2014). 

Thereby the insecticidal activity of the protein is not directly determined by the 

intrinsic cytotoxicity of the protein but depends for a great deal on the match 

between the carbohydrate binding activity and specificity of the lectin part of the 

type 2 RIP and the structure of the glycans exposed on the surface cells along the 

gastrointestinal tract (Shahidi-Noghabi et al., 2008; Mondal et al., 2011). Feeding 

trials with recombinant apple proteins revealed that both the type 1 and type 2 RIPs 

as well as the B chain of the latter exhibit toxicity towards A. pisum when added to 

an artificial medium. However, the type 2 RIP is approximately 10-fold more toxic 

than the type 1 RIP. Moreover, the B chain of the type 2 RIP alone is approximately 5 

times more toxic than the type 1 RIP. These observations suggest that lectin-

carbohydrate interactions contribute to the toxicity of the type 2 RIP.  

 
Summarizing, the results presented in this chapter demonstrate that the apple RIPs 

exhibit a markedly broad range of defense-related activities, at least when tested in 

planta and/or in vitro. The observed combination of antifungal, antiviral and 

insecticidal activities is quite unique and might offer interesting perspectives for 

further research and practical applications in (crop) plant protection. 
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4.6 Supplemental data  
 

 
 

Figure S4.1 Photographic illustration of the different types of lesions occurring on tobacco 
leaves after infection with B. cinerea. The three classes of lesions distinguished are: (1) non-
spreading lesion, (2) necrotrophic lesion and (3) spreading lesion.   
 

 

 

 

 

 
 

Figure S4.2 Photographic illustration of the method used to determine the disease index of 
tobacco leaves after infection with TMV. Evaluation of the infection lesions was based on a 
rating system consisting of the following six different scores (Kanzaki et al., 2004, Seifi et al., 
2013): 0, Non-disease symptoms; 1, few small lesions with the lesion area covering less than 
2% of the total leaf area; 2, either many small lesions, or a few larger lesions, with the lesion 
area accounting for 2%–5% of the total leaf area; 3, larger and more numerous lesions, with 
the lesion area accounting for 5%-10% of the total leaf area; 4, high amount of large lesions 
starting to fuse with each other, lesion area accounts for around 10-50% of the total leaf 
area; 5, large lesions linked to each other, the lesion area covering over 50% of the total leaf 
area, and the leaf was dying off.  
 
Disease index (DI) =: [(0 x a) + (1 x b) + (2 x c) + (3 x d) + (4 x e) + (5 x f) / (a + b + c + d + e + f)] 
x 100/5, where a-f are the number of leaves examined with scores 0-5, respectively. Each 
transgenic line and wild type plant was evaluated and the disease level was used to calculate 
the disease index. 
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Figure S4.3 Pictures showing abnormal morphological phenotypes in the T0 generation of 
the transgenic tobacco plants overexpressing apple type 2 RIP sequences. Panel (A): 
Comparison of a wild type plant and a tobacco plant expressing type 2 RIP; panel (B): Wild 
type tobacco plant flowers; panel (C): Tobacco plant expressing type 2 RIP with abnormal 
flowers (double layers of incomplete flowers).  
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Figure S4.4 Pictures showing abnormal morphological phenotypes in the T1 generation of the transgenic tobacco plants overexpressing apple RIP 

sequences. Comparison of root development in wild type and transgenic tobacco plants expressing type 1 and type 2 RIPs, respectively. 
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5.1     Abstract 

In the past three decades a lot of research has been done on the extended family of 

carbohydrate binding proteins from Sambucus nigra, including several so-called type 

2 RIPs as well as hololectins. Although all these proteins have been studied for their 

carbohydrate binding properties using hapten inhibition assays, detailed 

carbohydrate specificity studies have only been performed for a few Sambucus 

proteins. In particular SNA-I, has been studied extensively. Because of its unique 

binding characteristics this lectin was developed as an important tool in 

glycoconjugate research to detect sialic acid containing glycoconjugates.  

At present much less information is available with respect to the detailed 

carbohydrate binding specificity of other S. nigra lectins and RIPs, and as a 

consequence their applications remain limited. In this paper we report a 

comparative analysis of several lectins from S. nigra using the glycan microarray 

technology. Ultimately a better understanding of the ligands for each lectin can 

contribute to new/more applications for these lectins in glycoconjugate research. 

Furthermore, the data from glycan microarray analyses combined with the 

previously obtained sequence information can help to explain how evolution within 

a single lectin family eventually yielded a set of carbohydrate binding proteins with a 

very broad specificity range. 

5.2     Introduction 

Elderberry species played an important role in studies related to the biochemistry, 

molecular biology and physiology of both plant lectins and ribosome-inactivating 

proteins (RIPs). The first report of an elderberry lectin describing the isolation and 

partial characterization of a lectin from bark tissue of Sambucus nigra dates back to 

1984 (Broekaert et al., 1984). A few years later it turned out that this lectin (now 

referred to as SNA-I) exhibits a unique specificity towards NeuAc(α2-6)Gal/GalNAc 

(Shibuya et al., 1987) and accordingly can be used as a powerful tool in 

glycoconjugate research. Despite detailed biochemical studies the structure of SNA-I 

remained unclear until cloning of the corresponding cDNA revealed that the lectin is 

in fact a type 2 RIP structurally en evolutionary related to ricin (Van Damme et al., 

1996). 

In the meantime ample evidence has been presented for the occurrence of a fairly 

extended lectin/RIP family not only in Sambucus nigra but also in other elderberry 
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species like Sambucus ebulus L., Sambucus sieboldiana Blume ex Graebn., and 

Sambucus racemosa L. (Girbés et al., 2003). Of all elderberry species, the lectin/RIP 

family from S. nigra is the best characterized. It includes several so-called type 2 RIPs 

as well as hololectins. For historical reasons the lectins are usually referred to by the 

abbreviation SNA (from S. nigra agglutinin) followed by Roman numbers attributed 

in chronological order of their discovery. Hitherto, SNA-I, SNA-II, SNA-III, SNA-IV and 

SNA-V have been described (Broekaert et al., 1984; Van Damme et al., 1996a, b and 

1997a; Peumans et al., 1991 and 1998; Kaku et al., 1990; Mach et al., 1991). In 

addition to the genuine (i.e. agglutinating) lectins/RIP, a closely related type 2 RIP 

was identified in 1997 that exhibited no agglutination activity and did not bind to any 

immobilized carbohydrate or glycoprotein and accordingly was named SNLRP, which 

stands for S. nigra lectin related protein (Van Damme et al., 1997b). Lectins/RIPs 

occur in all tissues of elderberry but are particularly abundant in bark tissue, in which 

they represent >95% of the total protein content and are believed to play a role in 

defense against herbivores. 

Analysis of the purified proteins revealed marked differences in the molecular 

structure of the different lectins. Some lectins (SNA-II, SNA-III and SNA-IV) are 

homodimeric proteins composed of identical subunits, whereas others (SNA-I, SNA-V 

and SNLRP) are built up of two different subunits (Table 5.1). Molecular cloning and 

sequence analyses eventually revealed the relationships between the different 

lectins at the genetic level, and allowed classifying the different lectins into the 

family of ricin-related lectins or type 2 RIPs. SNA-I, SNA-V and SNLRP are type 2 RIPs, 

which are basically chimeric proteins built up of an enzymatically active A chain and 

a lectinic B chain held together by an inter-chain disulfide bound. Both chains are 

derived from a single precursor by a complex post-translational processing involving 

several proteolytic events (Van Damme et al., 1996a, b and 1997b). In the case of the 

precursor of SNA-V an alternative processing takes place whereby not only the linker 

between the A and B chain but a sequence of 272 amino acid residues covering the 

complete A chain, the linker and the first 8 amino acids of the B chain are excised 

giving rise to a protein consisting solely of a slightly truncated B chain. SNA-V and 

SNA-II are a rare example of two plant proteins with a totally different molecular 

structure that are derived from the very same precursor through a differential post-

translational processing (Van Damme et al., 1996b). SNA-IV closely resembles SNA-II 

for what concerns its molecular structure. However, the origin of the SNA-IV 

subunits is completely different because it is not derived from a type 2 RIP precursor 
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 Table 5.1 Overview of type 2 RIPs and lectins (underline) from Sambucus nigra 

Name Source Structure 
Molecular 

weight 

Reported carbohydrate 
binding specificity 

Protein  synthesis 

inhibition 

Agglutination 

activity 
Reference 

SNA-I Bark 
Tetramer 

[A-s-s-B]4 

240 kDa 

(4 X 60 kDa) 
Neu5Ac(α2-6)Gal/GalNAc + +++ Broekaert et al., 1984 

SNA-I’ Bark 
Dimer 

[A-s-s-B]2 

120 kDa 

(2 X 60 kDa) 
Neu5Ac(α2-6)Gal/GalNAc + ++ Kadirvelraj et al., 2011 

SNA-V Bark 
Dimer 

[A-s-s-B]2 

120 kDa 

(2 X 60 kDa) 
GalNAc >Gal + + Van Damme et al., 1996b 

SNLRP Bark 
Monomer 

[A-s-s-B] 
62 kDa  + - Van Damme et al., 1997b 

SNA-II Bark 
Dimer 

[B]2 

60 kDa 

(2 X 30 kDa) 
GalNAc >Gal - + Van Damme et al., 1996b 

SNA-III Seeds 
Dimer 

[B]2 

60 kDa 

(2 X 30 kDa) 
GalNAc >Gal - +++ Peumans et al., 1991 

SNA-IV Fruit 
Dimer 

[B]2 

64 kDa 

(2 X 32 kDa) 
Gal/GalNAc - +++ 

Mach et al., 1991 

Van Damme et al., 1997a 

 
*, results based on hapten inhibition assays 
**, +++, ++ and + indicate very strong, strong and weak agglutination activity of rabbit red blood cells; -, designates lack of agglutination activity. 
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but from the primary translation product of a gene in which the complete A chain, 

the linker sequence and the first 8 amino acid residues of the B chain are deleted 

(Van Damme et al., 1997a). The final quaternary structure of the elderberry RIPs and 

lectins depends on the degree of oligomerization of the protomers. Like in all other 

plant lectins and type 2 RIPs non-covalent interactions mediate the oligomerization 

of the elderberry proteins except for SNA-I. In the latter type 2 RIP an extra Cys 

residue at position 47 of the B chain allows the formation of inter-protomer disulfide 

bonds (Van Damme et al., 1996a). 

The availability of the purified proteins also allowed studying the biological activities 

of the elderberry type 2 RIPs (SNA-I, SNA-V and SNLRP) and lectins (SNA-II and SNA-

IV). All three type 2 RIPs exhibit a high N-glycosidase activity in vitro demonstrating 

that they possess a catalytically active A chain. However, their cytotoxicity towards 

animal and human cells is rather low and can in no way be compared with that of 

the genuine toxic type 2 RIPs, like ricin (Girbés et al., 2003). Most probably the low 

cytotoxicity of the type 2 RIP from S. nigra (as well as these from other elderberry 

species) results from a low uptake/internalization, which itself might be linked to the 

cell-binding properties and eventually to the sugar-binding specificity. Apart from 

SNLRP all elderberry type 2 RIPs and lectins agglutinate human erythrocytes and can 

be purified by affinity chromatography on an immobilized carbohydrate or 

glycoprotein (Peumans et al., 1991). Hapten inhibition assays revealed the gross-

specificity and allowed classifying the different Sambucus lectins according to their 

carbohydrate binding specificity. The hololectins SNA-IV and SNA-II, and the type 2 

RIP SNA-V exhibited specificity towards Gal/GalNAc and Gal/GalNAc containing 

glycan structures (Kaku et al., 1990; Van Damme et al., 1996b; Mach et al., 1996) 

whereas binding assays with SNA-I revealed specificity for NeuAc(α2-6)Gal/GalNAc 

(Shibuya et al., 1987). Since until now SNA-I (and the nearly identical orthologs from 

S. canadensis and S. sieboldiana, Shibuya et al., 1989) is the only documented lectin 

that interacts exclusively with glycoconjugates carrying the Neu5Acα2-6Gal/GalNAc 

linkage SNA-I was developed into an efficient analytical reagent to detect sialic acid 

containing glycans. Much less information is available with respect to the detailed 

carbohydrate binding specificity of other S. nigra lectins and RIPs, and as a 

consequence their applications remain limited. It was reported that the Gal/GalNAc 

binding lectin SNA-II can recognize the carcinoma Tn epitope (Ser-O-GalNAc) 

(Maveyraud et al., 2009). Since galactose-containing glycans on the cell surface are 

important molecules e.g. for the interaction between cells, or between cells and 
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pathogens (Rhodes et al., 2008; Boscher et al., 2011), it is important to have some 

more detailed knowledge on the carbohydrate binding properties of the lectins. 

Therefore a comparative analysis was made of the glycan binding specificities of the 

type 2 RIP B chain and lectins from S. nigra using glycan arrays (Van Damme et al., 

2011). A major advantage of the glycan microarray is the availability of many glycans 

that can be analysed in a single analysis using limited amounts of the immobilized 

glycans and of the fluorescently labelled carbohydrate binding proteins. Ultimately a 

better understanding of lectin ligands can also contribute to new applications for 

these lectins in glycoconjugate research. In addition, glycan microarray analyses 

combined with the previously obtained sequence information can help to explain 

how evolution within a single lectin family eventually yielded a set of carbohydrate 

binding proteins with such a broad specificity range. 

5.3 Materials and methods 

5.3.1 Lectins and RIPs 

Apart from SNLRP all S. nigra proteins were purified by a combination of affinity 

chromatography and gel filtration as described previously (Broekaert et al., 1984; 

Mach et al., 1991; Van Damme et al., 1996b and 1997a). SNA-I SNA-II and SNA-V 

were isolated from lyophilized S. nigra bark whereas SNA-IV was purified from fruits. 

SNLRP was isolated from a lectin-depleted bark extract by ion-exchange 

chromatography and gel filtration (Van Damme et al., 1997b). 

5.3.2 Glycan array screening  

Glycan microarrays were printed as described previously (Blixt et al., 2004). The 

printed glycan array contains a library of natural and synthetic glycan sequences 

representing major glycan structures of glycoproteins and glycolipids. Array version 

2.0 and 2.1 with 264 and 303 glycan targets, respectively, were used for the analyses 

with S. nigra RIPs and lectins (http://www.functionalglycomics.org/ 

glycomics/publicdata/selectedScreens.jsp). The purified S. nigra proteins were 

labeled using the Alexa Fluor® 488 Protein Labeling Kit (Invitrogen, California, USA) 

following the manufacturer’s instructions. The labeled proteins were applied to 

separate microarray slides and incubated for 60 min under a cover slip in a dark, 

humidified chamber at room temperature. After incubation, the cover slips were 

gently removed in a solution of Tris-buffered saline containing 0.05% Tween 20 and 

washed by gently dipping the slides 4 times in successive washes of Tris-buffered 

http://www.functionalglycomics.org/%20glycomics/publicdata/selectedScreens.jsp
http://www.functionalglycomics.org/%20glycomics/publicdata/selectedScreens.jsp
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saline containing 0.05% Tween 20, Tris-buffered saline, and deionized water. After 

the last wash, the slides were spun in a slide centrifuge for approximately 15s to dry 

and immediately scanned in a PerkinElmer ProScanArray MicroArray Scanner using 

an excitation wavelength of 488 nm and ImaGene software (BioDiscovery, El 

Segundo, CA, USA) to quantify fluorescence. The data are reported as average 

relative fluorescence units (RFU) of six replicates for each glycan present on the 

array after removing the highest and lowest values.  

5.3.3 Sequence alignment and phylogenetic analysis  

ClustalW (Thompson et al., 1994) was used for alignment of the eldeberry lectins/RIP 

protein sequences. The phylogenetic tree of the sequences was constructed using 

the constraint-based alignment tool-COBALT 

(http://www.ncbi.nlm.nih.gov/tools/cobalt/) (Papadopoulos and Agarwala 2007). 

5.4     Results and Discussion 

5.4.1 Carbohydrate binding properties of type 2 RIPs B chain and lectins from S. 
nigra 

To corroborate the biological activity of the different S. nigra lectins and B chains of 

type 2 RIPs, detailed carbohydrate binding studies were performed using a screening 

of the lectins on a glycan array. As shown in Figure 5.1, all S. nigra proteins exhibited 

a strong reaction towards a well-defined set of carbohydrates/glycans of the glycan 

array. For each analysis the 30 most reactive glycans were analyzed in detail to 

determine the preferred glycan motifs for each protein (Table 5.2). 

The glycan array result for SNA-I (Fig. 5.1a) showed strong binding to Neu5Ac (α2-6) 

Gal/GalNAc, which is in agreement with previous reported publications (Shibuya et 

al., 1987). All strongly interacting glycans contain at least one terminal sialic acid 

residue bound in the α2-6 configuration. Recent reports also showed a comparative 

analysis of SNA-I and several sialic acid binding proteins using a specific array 

containing sialylated glycans (Smith et al., 2010; Song et al., 2011; Padler-Karavani 

eta l., 2012). These data also clearly indicated that SNA-I is unique with respect to its 

carbohydrate binding properties. SNA-I showed stronger binding to 2-keto-3-deoxy-

D-glycero-D-galactononic acid (Kdn) and Kdn derivatives than the derivatives of more 

common Neu5Ac and Neu5Gc (Song et al., 2011). Of all Sambucus nigra lectins under 

study SNA-I showed the strongest binding to the glycan array which is in agreement 

with its very strong interaction with cells and glycoproteins. 

http://www.ncbi.nlm.nih.gov/tools/cobalt/
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In contrast to SNA-I none of the other S. nigra lectins tested exhibited any 

preference for sialic acid containing glycans. SNA-II, SNA-IV and SNA-V all clearly 

interacted with Gal/GalNAc containing glycans as well as with the single GalNAc 

residue. In the case of SNA-II and SNA-V all reactive glycans possess a terminal Gal or 

GalNAc residue, but substitution with α1-2 Fuc is tolerated. Unlike SNA-II and SNA-V, 

SNA-IV also recognizes Gal residues in sialylated complex glycans. This sialic acid 

residue can occur in the α2-6 as well as α2-3 configuration. Furthermore, SNA-IV is 

the only protein tested that reacted with N-glycolylneuraminic acid (Neu5Gc) α2-6-

linked to GalNAc[NeuGc (α2-6)GalNAc]. Although Gal and Neu5Gc are also present 

on the array they do not show up as interactors with any of the lectins under study.  

Table 5.2 Glycan array data analysis. Top three glycan motifs that reacted with S. nigra type 
2 RIPs and lectins.  

Protein 1. Glycan motifs 2. Glycan motifs 3. Glycan motifs 

 

 

Type 2 
RIP 

 

 

 

SNA-I 

 

Neu5Ac(α2-6)-Galβ1-
4GlcNAc 

 

Gal (β1-4)GlcNAcβ 

 

Gal(β1-4)-Glcβ 

 

 

 

SNA-V 

 

Gal(β1-4)-Glcβ 

 

Fuc(α1-2)Gal(β1-
3)GlcNAcβ 

 

 

 

GalNAc(β1-4)GlcNAcβ 

 

 

SNLRP 

 

GlcNAc(β1-4)GlcNAcβ Gal (β1-4)GlcNAcβ 

 

 

 

 

Lectin 

 

 

 

SNA-II 

 

Fuc(α1-2)Gal(β1-
3)GalNAcβ 

 

 

 

Gal(β1-4)-Glcβ 

 

GalNAc(β1-
4)GlcNAcβ 

 

 

 

 

SNA-IV 

 

Neu5Ac(α2-6)-Galβ1-
4GlcNAc 

 

 

Neu5Ac(α2-3)-Galβ1-
4GlcNAc 

 

       

Gal(β1-4)GlcNAcβ Fuc(α1-2)Gal(β1-
3)GalNAcβ 
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      Figure 5.1 Legend on next page 
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Figure 5.1 The Consortium for Functional Glycomics website (http:// 
www.functionalglycomic.org) supports the complete raw data for all the proteins. Sugar 
code used: green circles represent mannose residues; yellow circles and squares indicate 
galactose and N-Acetylgalactosamine residues, respectively; blue squares indicate GlcNAc 
residues, red triangles show fucose, purple diamonds indicate NeuAc and white diamonds 
indicate NeuGc.  

Though the glycan array analyses of SNA-I, SNA-II, SNA-IV and SNA-V revealed 

previously unknown carbohydrate binding properties there was no conflict with the 

“old” results based on hapten-inhibition assays. In contrast, analysis of SNLRP on the 

glycan array revealed that this protein can no longer be considered a “carbohydrate- 

binding-defective lectin related protein” since it strongly interacts with GlcNAc-

oligomers (pentamer, hexamer, trimer with decreasing affinity) as well as with many 

glycan structures containing GlcNAc residues substituted with Gal residues. Taken 

into account that SNLRP reacts with GlcNAc oligomers as well as both high mannose 

and complex N-glycans it seems likely that SNLRP reacts with the core structure of N-

glycans. Apparently the protein does not require oligomers of GlcNAc since also 

glycan structures containing a single GlcNAc residue (e.g. Galβ1-4GlcNAc) are 

recognized. However, the monomeric GlcNAc was not reactive on the array. 

A comparison of the glycans reacting with SNA-I, SNA-IV and SNLRP revealed that 

they all interact preferentially with type 2 lactosamine structures (Galβ1-4GlcNAc) 

(Table 5.2), located internally or at the terminal branches of the glycans, some of 

which are also sialylated. These glycan motifs are responsible for blood group 

determination, cell-cell recognition and adhesion processes in the higher animals 

(Stanley et al. and Cummings 2009). 

Based on the results of the glycan array results and in particular on the top 30 most 

reactive glycans the Sambucus lectins can be divided into three specificity groups 

(Table 5.2). The first group comprises the lectins that recognize Gal/GalNAc 

containing glycans, being SNA-II, SNA-V and SNA-IV. SNA-I forms the second group 

and specifically reacts with glycans containing terminal sialic acid residues (α2-6) 

linked to Gal/GalNAc. Finally, SNLRP can be considered a GlcNAc binding lectin, 

representing a third specificity group.  

Two other S. nigra lectins, which have been isolated in the past (namely SNA-III and 

SNA-I’) were not analyzed on the glycan microarrays because the purified proteins 

were no longer available. However, the results of preliminary specificity studies 

http://www.functionalglycomic.org/
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indicate that the specificity of SNA-III is similar to that of SNA-IV whereas SNA-I’ 

exhibits the same exclusive specificity towards Neu5Ac(α2-6)Gal/GalNAc as SNA-I. 

5.4.2 Carbohydrate binding sites within the ricin B domain 

Lectins of the ricin B chain type consist of two β-trefoil domains, which are binding 

domains found in various kinds of proteins and show a pseudo threefold symmetry 

formed by an α, β and γ-subdomain. It is commonly accepted that triplication of an 

ancestral gene (Hazes, 1996) encoding a conserved amino acid sequence gave rise to 

the β-trefoil domains composing the ricin B chain (Robertus and Ready, 1984; 

Rutenber et al., 1987). The specific amino acid residues that form the actual sugar-

binding site in ricin have been determined by cocrystalization of ricin with several 

carbohydrate and glycan structures (Montfort et al., 1987). It has been reported that 

both the α-subdomain of the first β-trefoil domain and the γ-subdomain of the 

second domain can interact with glycans. No interaction with carbohydrate 

molecules has been shown for the β-subdomain of the β-trefoil (Rutenber and 

Roberus, 1991) 

Sequence alignment of the full-length amino acid sequences deduced from the cDNA 

clones encoding lectins and the B chains of the type 2 RIPs from S. nigra revealed a 

considerable degree of sequence conservation. Furthermore alignment with the ricin 

sequence also enabled a comparative analysis of the amino acid residues in the 

carbohydrate binding sites (Figure 5.2, Table 5.3).  

Table 5.3 Comparative analysis of the residues forming the carbohydrate binding sites of 
ricin and the type 2 RIP B chains and lectins from S. nigra.  

RIP - B 
chain/lectin 

Subdomain- Iα Subdomain - IIγ 

SNA-I Asp26, Gln39, Arg41, Asn48, Gln49 Asp231, Ile243, Tyr245, Asn252, Gln253; 

SNLRP Asp23, Gln36, Leu38, Ser45, Gln46 Glu230, Ile242, Tyr244, Asn251 , Gln252 

SNA-II Asp16, Gln29, Trp31, Asn38, Gln39 Asp227, Ile239, Phe241, Asn248, Gln249 

SNA-V Asp24, Gln37, Trp39, Asn46, Gln47 Asp235, Ile247, Phe249, Asn256, Gln257 

SNA-IV Asp18, Gln31, Trp33, Asn40, Gln41 Asp229, Ile241, Phe243, Asn250, Gln251 

Ricin Asp15, Gln27, Trp29, Asn39, Gln40 Asp227, Ile238, Tyr241, Asn248, Gln249 
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Figure 5.2 Sequence alignment of the B chains of the S. nigra type 2 RIP/lectins and ricin. ‘*’ 
Means that the amino acids are identical in all sequences; ‘:’ means conserved conversions 
(amino acids with the same shape, charge and other properties), and ‘.’ semi-conserved 
substitutions (properties not the same but still similar). X: Amino acid residues forming the 
binding sites in ricin; X: Amino acid residues replaced in SNA-I by site-directed mutagenesis 

SNA-IV 
SNA-V 
Ebulin 
SNA-I 
SNA-Im 
SSA-I 
SNA-I' 
SNLRP 
Ricin 

SNA-IV 
SNA-V 
Ebulin 
SNA-I 
SNA-Im 
SSA-I 
SNA-I' 
SNLRP 
Ricin 

SNA-IV 
SNA-V 
Ebulin 
SNA-I 
SNA- Im 
SSA-I 
SNA- I' 
SNLRP 
Ricin 

SNA-IV 
SNA-V 
Ebulin 
SNA- I 
SNA-Im 
SSA- I 
SNA-I' 
SNLRP 
Ricin 

SNA-IV 
SNA-V 
Ebulin 
SNA-I 
SNA- Im 
SSA- I 
SNA-I' 
SNLRP 
Ricin 

* * •*•* •*• * 
Subdomain I · · · · · 

: * .. : ** . * . . * **: * 
Subdomain I 

*: :: *::*. *** .. *:.: *** :** * ** 

QQWAL 
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QQWALYADGSIRPQQNRDNCLTSDSNIRETVVKILSCGPASSGQRWMFKNDGTI LNLYSG 

***. *: . : *: : * 

I 
I 



Chapter 5 Comparative analysis of carbohydrate binding properties of Sambucus 
nigra lectins and ribosome-inactivating proteins 

 
 131 

to mimic the conversion of the highly active B chain of SNA into the completely inactive B 
chain of SNLRP; X: Residues reported to be critical for the binding to the sialic acid in 
Neu5Aα2-6Gal/GalNAc sequence of 2-6-sialyllactose (according to Kaku et al. 2007). X: Basic 
residue for 6S-Gal binding according to Hu et al. 2012. Cys residue involved disulphide 
bridges are shown in bold. Homologous subdomains (α, β, γ) are indicated by arrows. 

 

Three out of five residues (corresponding to Asp15, Gln27 and Gln40 in ricin) forming 

the carbohydrate binding site in the α-subdomain of the β-trefoil of ricin are 

conserved between ricin and all Sambucus lectins under study. Trp residue 29 in the 

first binding site of ricin is also present in the Gal/GalNAc binding proteins SNA-II, 

SNA-IV and SNA-V but has been replaced by an Arg residue in SNA-I and a Leu in 

SNLRP (Table 5.3). In addition, residue Asn39 of the ricin binding site was replaced in 

SNLRP, but was conserved in all other Sambucus proteins. 

Similarly three out of five amino acids (Ile238, Asn248 and Gln249 in ricin) in the 

carbohydrate binding site of the γ-subdomain of the β-trefoil of ricin are conserved 

among all sequences shown in Figure 5.2. Asp227 from ricin is also present in all 

Sambucus lectins, except for SNLRP where it is replaced by a Glu residue. Tyr241 is 

conserved between ricin, SNA-I and SNLRP, but was replaced by a Phe residue in the 

Gal/GalNAc binding proteins SNA-II, SNA-IV and SNA-V.  

At present SNA-II is the only lectin from S. nigra for which information with respect 

to its three-dimensional structure is available. In 2009 Maveyraud et al. reported the 

X-ray structure of SNA-II in complex with Gal and five Gal-related saccharides 

(GalNAc, lactose, alpha1-methylgalactose, fucose, and the carcinoma-specific Tn 

antigen) at 1.55 Å (Maveyraud et al., 2009). These structural data confirm that the 

Gal/GalNAc-binding residues of SNA-II are present around the conserved Asp16 in 

subdomain I α and Asp227 in subdomain II γ. Three-dimensional structures have also 

been reported for the SNA-V ortholog found in S. ebulus (called ebulin-I) (Pascal et 

al., 2001). The structures of both SNA-II and the B chain of ebulin-I appear to be 

identical. 

At present no structural data are available for SNA-I. However, based on the results 

of mutational analysis of SSA-I (the SNA-I ortholog from S. sieboldiana), which shares 

94% sequence identity with SNA-I and exhibits the same specificity) it was concluded 

that Ser197, Ala 233 and Gln234 in the B chain of SSA-I are crucial for binding to the 

Neu5Acα2-6Gal/GalNAc sequences (Kaku et al., 2007). If so, one has to conclude that 
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this binding site is not confined to the γ-subdomain of the second ricin domain but 

covers also (part of) the β-subdomain (harboring Ser197). Though the conclusions 

drawn for SSA are supported by the presence of the very same amino acid residues 

in the sequence of the B chain of SNA-I (being Ser 197, Ala 233 and Gln234) they are 

contradicted by the fact that in SNA-I’, which binds Neu5Acα2-6Gal/GalNAc almost 

equally well as SNA-I (Van Damme et al., 1997c), the presumed critical residues Ser 

197 and Ala 233 are replaced by an Asn and Asp residue, respectively. Irrespective of 

these contradictory results the Neu5Acα2-6Gal/GalNAc binding site can be localized 

with certainty at the C-terminus of the B chain because it has been demonstrated 

that a 22 kDa polypeptide corresponding to the C-terminal part of the B chain 

exhibits the same binding properties as the parent type 2 RIP (Peumans et al., 1998).  

At present only few sialic acid binding lectins of plant origin have been reported. A 

ricin-like lectin specific for glycans terminating with the sequence Neu5Ac2-6Gal 

was also purified from the fruiting bodies of Polyporus squamosus (Kadirvelraj et al., 

2011; Mo et al., 2000). Similar to SSA-I a Serine residue was shown to be a key 

residue for the interaction between the lectin and the Neu5Ac residue. Interestingly 

a novel sialic acid binding lectin was created from a naturally occurring Gal binding 

ricin-like lectin designated EW29Ch (C-terminal domain of earthworm 29-kDa lectin). 

Using random mutagenesis by error-prone PCR the lactose binding pocket of the 

scaffold protein EW29Ch was modified into an extended binding site for 2-6 sialic 

acid, confirming the close relationship between Gal binding and sialic acid binding 

lectin of the ricin type (Yabe et al., 2007).  

Another interesting observation from the glycan array data is that the different 

Sambucus lectins react with sulfated glycans, mainly 6-O-sulfated galactoses. 

Recently a few papers have shown that some basic amino acids in the ricin-like 

lectins are crucial for the recognition of 6-O-sulfated glycans. Wang et al. have 

shown that modification of the terminal Galβ has a significant effect on the 

interaction with the Ricinus communis agglutinin 120, RCA120 (Wang et al., 2011). 

Sulfation at the 6-O- or 2-O- positions of the terminal Galβ enhanced the binding 

activity of RCA120 whereas sulfation at the 4-O- position abolished the activity when 

compared with the non-sulfated residues. Similarly, Hu et al. have shown that 

mutants of EW29Ch in which a Glu residue at position 20 was replaced by an Arg or 

Lys residue acquired the ability to recognize 6-O-sulfated galactose (Hu et al., 2012). 

Sequence alignment of all Sambucus lectin sequences (Fig. 5.2) indicated that basic 

amino acids (Arg or Lys, corresponding to Arg 17 in ricin) are present in subdomain 
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I of all Sambucus lectins under study. In addition, these basic residues are also 

present in subdomain II  of most Sambucus lectins (except SNA-I, SNA-I’ and SSA). 

These data are in good agreement with the observation that all Sambucus lectins 

analysed on the glycan array reacted with sulfated glycans. SNA-I, SNA-II, SNA-IV and 

SNA-V showed good interaction with 6-O-sulfated galactose residues whereas SNLRP 

showed interaction with 6-O- sulfated, 4-O-sulfated as well as 3-O-sulfated 

galactoses. 

5.4.3 The complex mixture of type 2 RIP and related lectins covers an unsually 
broad and unique range of carbohydrate binding specificities 

Though the occurrence of multiple type 2 RIP genes within a single plant species is 

the rule rather than the exception, the RIP/lectin family in elderberry species seems 

to be unique for several reasons. First, even in the absence of a completed genome 

sequence the total number of documented protein and cDNA sequences of S. nigra 

exceeds that found in any other species. Secondly, S. nigra is the only species 

identified thus far in which both type 2 RIPs and lectins built up of subunits sharing a 

very high sequence identity with the B chain of the type RIP have been identified. 

Third, the documented range of carbohydrate binding specificities covered by the 

mixture of S. nigra RIP/lectins is much broader than that of any set of type 2 RIPs 

from any other species (e.g. Ricinus communis, Viscum album). This taken together 

with the availability of ample sequence information and detailed specificity analyses 

using glycan microarrays raised the question how evolution of a gene family within a 

single species eventually resulted in a battery of proteins capable of interacting with 

an extended range of carbohydrate structures. 

Sequence alignments revealed a high degree of sequence identity between the B 

chains of the different elderberry RIP/lectins leaving no doubt that they are all 

members of a single protein family. Moreover, the elderberry proteins share also a 

high sequence identity with ricin, and according to X-ray crystallographic studies and 

molecular modelling have a nearly identical overall fold. Accordingly, the very 

detailed information at the atomic level of the structure of the carbohydrate binding 

sites in ricin was exploited to explain and interpret the results of the specificity 

studies of the elderberry lectins obtained by hapten inhibition assays. Though this 

approach was perfectly applicable to the Gal/GalNAc-binding properties of e.g. SNA-

II, SNA-IV, SNA-V and ebulin-I, as well as for the apparent lack of sugar-binding 

activity of SNLRP it failed to explain the Neu5Ac (α2-6) Gal/GalNAc binding 
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properties of SNA-I and SSA-I. Moreover, the introduction of the highly performing 

glycan microarray technique revealed that the specificity of ricin is not primarily 

directed against Gal or GalNAc but against more complex glycan structures, which 

implies that the fine specificity (especially in terms of recognition of complex 

glycans) of ricin homologs can hardly been inferred from the conservation of the 

“canonical” residues occurring in the two binding sites of the ricin B chain. This 

limitation is clearly illustrated by the differences in specificity between SNA-II/SNA-V 

and SNA-IV. Though these proteins share all “canonical” amino acid residues in both 

the α-subdomain of the first β-trefoil domain and the γ-subdomain of the second 

domain SNA-IV is capable of interacting with Gal residues in sialylated complex 

glycans and [NeuGc(α2-6)GalNAc], whereas SNA-II/SNA-V is not. Most probably 

these obvious differences in specificity rely on differences in the amino acid 

sequence in the respective γ-subdomains of the second domain. 

SNLRP represents another example of the limitations inherent to predictions made 

on the basis of the presence/absence of presumed critical residues in the binding 

sites. Molecular modelling and docking studies with Gal and GalNAc confirmed that 

the presumed inactive B chain of this type 2 RIP possessed only defective binding 

sites (Van Damme 1997b). However, glycan microarray analysis revealed that SNLRP 

strongly interacts with GlcNAc-oligomers as well as with the core structure of N-

glycans, and accordingly should be considered a genuine lectin with a specificity 

unprecedented among type 2 RIPs.  

Since it is evident that the carbohydrate binding properties of the different 

elderberry lectins are determined by the atomic structure of the binding sites and 

thus eventually rely on the amino acid sequence of the B chains it seemed 

worthwhile to check whether and if so to what extent differences in specificity are 

reflected in the overall phylogeny of the RIP/lectin family. Analyses of the B chain of 

the S. nigra type 2 RIPs and lectins allowed to investigate the sequence similarity and 

evolutionary relationships between the proteins under study. Furthermore it 

allowed checking whether the grouping of the Sambucus lectins in different clades 

could also be correlated with their carbohydrate binding properties. Therefore, a 

phylogenetic tree was built of the sequences of the S. nigra RIP/lectins. Besides the 

RIP/lectins discussed here a few more Sambucus type 2 RIP as well as ricin were 

included. As shown in Figure 5.3 the dendrogram yields two major clades for the 

Sambucus protein. The first clade groups the Gal/GalNAc specific binding lectins 

SNA-V and SNA-IV whereas the second comprises SNA-I, SNA-Im (an inactive mutant 
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of SNA-I in which two amino acid residues were replaced Chen et al., 2002c), SSA-I, 

SNA-I’ (a paralog of SNA-I missing the Cys residue involved in the inter-protomer 

disulfide bond formation) (Van Damme 1997b, c) and SNLRP (Van Damme 1997b). 

Ricin forms a separate branch.  

 

Figure 5.3 Phylogenetic tree of sequences encoding type 2 RIPs and lectins from S. nigra and 
ricin. The dendrogram was made by using constraint-based alignment tool (COBALT). 
Accession numbers: Ricin (XP_002534649.1), SNA-I (U27122), SNA-I’ (U66191), SNA-II 
(U41299), SNA-IV (U76523), SNA-V (U41299), SNLRP (U58357 ), SSA-I (D25317), Ebulin 
(AJ400822). 

Two major conclusions can be drawn from the dendrogram. First, there is no straight 

forward relationship between sequence identity/similarity and carbohydrate binding 

specificity. This can easily be explained by the fact that replacement of one or two 

amino acids within a binding site can profoundly alter the activity and specificity of a 

lectin but has little consequences for its phylogeny, as is illustrated by SNA-I/SNA-Im. 

Secondly, the sequence of the B chain of ricin forms a separate branch indicating 

that all elderberry sequences represent a monophyletic group and thus evolved from 

a single ancestral gene through multiple gene duplication events. It is most likely 

that gene duplication and/or excision events have occurred in the ancestral lectin 

gene. In addition amino acid changes in the carbohydrate binding sites resulted in 

differences in the carbohydrate binding specificity for the different Sambucus lectins 

(Van Damme et al., 1998; Ferreras et al., 2010). Our data also agree with the 

hypothesis that sialic acid binding lectins have emerged during evolution from the 
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Gal binding lectins, as evidenced by the fact that some trace features of Gal 

recognition still remain in the sialic acid binding lectins such as SNA-I (Yabe et al., 

2007).  

Since no complete genome sequences are available the exact composition of the S. 

nigra RIP/lectin gene family cannot be determined yet. However, cDNA sequencing 

revealed that most -if not all- of the currently identified genes occur in multiple 

copies, and provided also indications for the occurrence of RIPs and lectins that have 

not been identified yet. Though only a preliminary analysis can be made of the 

phylogeny and the evolution it seems likely that (as was suggested previously by 

Kaku et al. 2007) a gene encoding a Gal/GalNAc-binding lectin was at the basis of the 

current elderberry RIP/lectin gene family. Genome and transcriptome sequencing 

programs provided evidence for the occurrence of (extended) type 2 RIP gene 

families in other species (e.g. Ricinus communis, Viscum album). However, the range 

of carbohydrate binding specificities covered by the whole set of type 2 RIP and 

related lectins is apparently far more narrow than in elderberry.  

Evidently, the simultaneous occurrence of large amounts of three different type 2 

RIPs raises the question of the physiological importance of these proteins for 

elderberry. At present, one can only speculate about the evolutionary advantage of 

possessing such a mixture of carbohydrate binding proteins. Most likely, a synergistic 

effect between the different RIP/lectins eventually results in an increased resistance 

to phytophagous insects and/or herbivorous animals. Indeed, over the years several 

experiments have shown that several RIPs and lectins from S. nigra play an 

important role in plant defense against pathogens (Chen et al., 2002a) and insects 

(Shahidi-Noghabi et al., 2008, 2009), or show a more or less selective cytotoxicity 

towards tumor cells (Battelli et al., 1997a). Mutational analysis with SNA-I have 

shown that especially the B chain of the protein, and thus the carbohydrate binding 

properties of the protein play an important role in the toxicity to cells and 

organisms. The variety of glycan-binding specificities from B chains of type 2 RIPs 

and lectins from S. nigra indicates that they will play an important role in the 

protein-carbohydrate recognition taken place at the surface of cells. For instance 

first evidence already showed interaction of different Sambucus lectins with insect 

and animal cells (Shahidi-Noghabi et al., 2011; Shang et al., 2013) and proved the 

importance of the carbohydrate binding activity in the interaction with the cell 

surface (Shahidi-Noghabi et al., 2008, chapter 7). More research is needed to identify 

the interacting proteins for the Sambucus lectins on the cell and unravel how the 
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lectins are internalized. Surely, a better knowledge of the glycans interacting with 

the proteins will enable to decipher the biological activity of these proteins and will 

contribute to future applications of the lectins in glycoconjugate research. 
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6.1   Abstract 
 
Although the protein translation inhibition activity of ribosome inactivating proteins 

(RIPs) is well documented, little is known about the contribution of the lectin chain 

to the biological activity of these proteins. In this study, we compared the in vitro 

and intracellular activity of several S. nigra (elderberry) RIPs and non-RIP lectins. Our 

data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than 

to primary fibroblasts. Differences in the cytotoxicity between the elderberry 

proteins correlated with differences in glycan specificity of their lectin domain, 

cellular uptake efficiency and intracellular destination. Despite the fact that the bulk 

of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could 

demonstrate effective inhibition of protein synthesis in cellula. As we also observed 

cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional 

pathways heralding cell death. Our data suggest that one of these pathways involves 

the induction of autophagy.  

6.2    Introduction  
 
Plant ribosome-inactivating proteins (RIPs) possess highly specific rRNA N-

glycosidase activity and are capable of catalytically inactivating eukaryotic 

ribosomes. This inactivation occurs through the removal of a specific adenine residue 

from a highly conserved (sarcin/ricin) loop of the large ribosomal RNA (Peumans et 

al., 2001; Stirpe et al., 2006). Based on their domain architecture, RIPs can be divided 

into two main categories. Type 1 RIPs such as saporin and trichosanthin represent a 

group of single-chain proteins with enzymatic activity. The type 2 RIPs are chimeric 

proteins composed of an A-chain with protein synthesis inhibition activity and a B-

chain with carbohydrate-binding/lectin activity (Van Damme et al., 2001). Infamous 

type 2 RIPs are ricin and abrin, potent toxins that are present in the seeds from 

Ricinus communis (castor bean) and Abrus precatorius (jequirity bean), respectively. 

Some well-known type 2 RIPs (such as ricin, abrin and volkensin) have been shown to 

exert anti-tumor activity (Puri et al., 2012). This has sparked interest in their use for 

potential therapeutic applications. However, there are major differences between 

the cytotoxicity of different type 2 RIPs, and while some type 2 RIPs (e.g. from 

Sambucus nigra (Ferreras et al., 2011)) exhibit strong protein synthesis inhibition 

activity in vitro, they can be as much as 103-105 less toxic than ricin when 

administered to animal cells. Possible explanations for this discrepancy include 

differential cellular uptake efficiency and/or intracellular trafficking of the proteins. 
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It has been shown that the cytotoxicity of certain type 2 RIPs relies on the binding of 

the B-chain to glycoconjugates at the cell surface, as such facilitating cellular uptake 

of the ribosome-inactivating proteins (Sandvig et al., 1978). Incubation of 

mammalian cells with ricin results in its endocytosis and subsequent transport to the 

TGN, followed by retrograde transport from the Golgi apparatus to the ER (Lord et 

al., 2005; Spooner et al., 2008), where the disulphide bridge between the A- and B-

chain is cleaved. Finally, the A-chain enters the cytoplasm where it exerts its N-

glycosidase activity (Sandvig et al., 1991; Lord et al., 1998; Yoshida et al., 1991). 

Volkensin, follows a similar internalisation pathway as ricin (Barbieri et al., 2004). In 

contrast, nigrin b, which has comparable plasma membrane binding affinity to 

volkensin (approx. 10-10M), enters the cytosol without passing the TGN and ER 

(Barbieri et al., 2004; Jiménez et al., 2014; Battelli et al., 1997a). These data show 

that the intracellular trafficking pathway (co-)determines cytotoxicity. However, for 

many RIPs, information on the internalisation kinetics is lacking or incomplete.  

 
As for their cytotoxic activity, it has been reported that RIPs induce apoptotic cell 

death through different mechanisms, often involving the induction of the unfolded 

protein response and mitochondrial dysfunction (Das et al., 2012; Narayanan et al., 

2005; Sikriwal et al., 2010). One of the pending questions is whether protein 

synthesis inhibition is the sole responsible for this RIP-induced apoptosis. The 

contribution of a lectin domain could modulate RIP activity in vivo, either in an 

antagonistic or synergistic manner. Providing support for the latter, various lectins 

have been shown to induce cytotoxicity (Fu et al., 2011; Liu et al., 2010).  

 
Studies to evaluate the cytotoxicity and/or internalization of type 2 RIPs have mainly 

focused on proteins with similar, fairly generic carbohydrate recognition domains 

(mostly galactose-binding) (Barbieri et al., 2004; Narayanan et al., 2005; Fang et al., 

2012; Gadadhar and Karande, 2013; Voss et al., 2006). However, other specific 

sugar-binding domains may bear more potential for selective targeting of certain 

(e.g. cancer) cell types. Elderberry (Sambucus nigra) produces several type 2 RIPs 

(SNA-I, SNA-V and SNLRP) and lectins (SNA-II and SNA-IV), with a variety of 

carbohydrate binding properties, which form an ideal model system to investigate 

their differential cytotoxicity towards mammalian cells.  Glycan array analyses 

revealed that SNA-I shows strong binding to Neu5Ac(α2-6)Gal/GalNAc, while SNA-II 

(corresponding to the lectin domain of SNA-V), SNA-IV and SNA-V exhibit clear 

interaction with Gal/GalNAc residues. Furthermore, SNA-IV is able to recognize Gal 

residues in sialylated complex glycans occurring in the α2-6 as well as the α2-3 
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linkage. In contrast to the other S. nigra proteins, which interact with terminal 

residues from glycans, SNLRP recognizes the core N-glycan structure since it shows 

reactivity towards GlcNAc oligomers as well as N-glycans (Shang and Van Damme, 

2014). At present, mostly SNA-I and SNA-V have been studied for their biological 

properties (Shang and Van Damme, 2014; Battelli et al., 1984; Citores et al., 2002; 

Ferreras et al., 2011; Tejero et al., 2015).  

 
Since all type 2 RIPs show a clear protein translation inhibition activity in vitro 

(Battelli et al., 1984; Svinth et al., 1998), but exhibit clear differences in cytotoxicity, 

it is conceivable that the B-chain has an important modulatory role. However, at 

present the exact working mechanisms are unresolved. To enhance insight in the 

mode of action of the different S. nigra type 2 RIPs (SNA-I, SNA-V and SNLRP) and 

non-RIP lectins (SNA-II and SNA-IV), we investigated their behaviour in vitro and in 

cellula. Our data confirmed that the elderberry RIPs are much less toxic than the 

classical RIPs from Ricinus and Abrus, but also showed that mortal cell cultures 

(fibroblasts) were less susceptible to the elderberry proteins than HeLa cell lines. In 

addition, our results revealed that differences among the elderberry proteins 

correlate with uptake efficiency and the glycan specificity of their lectin domains.  

6.3 Materials and methods  

6.3.1 RIPs and lectins 
 
All proteins from Sambucus nigra were purified by affinity chromatography and gel 

filtration as described previously (Broekaert et al., 1984; Mach et al., 1991; Van 

Damme et al., 1996b; Van Damme et al., 1997b). SNA-I, SNA-II, SNA-V and SNLRP 

were isolated from lyophilized S. nigra bark and SNA-IV from fruits. S. nigra RIPs 

(SNA-I, SNA-V and SNLRP) were reduced by incubation with 0.025 M dithiothreitol 

(DTT) at 37 °C for 1 h as described by Emmanuel et al. (1998). 

6.3.2 Cell culture 
 
HeLa (Cervix carcinoma, American Type Culture Collection, Manassas, Virginia, USA), 

NHDF (human dermal fibroblasts, passage 9, PromoCell GmbH, Heidelberg, 

Germany) and Luc2-IRES-tCD cell cultures (a gift from Dr. Pierre Busson group, 

Institut de Cancérologie Gustave Roussy, Villejuif, France) (Jiménez et al., 2011) were 

grown in advanced DMEM (Life Technologies, Merelbeke, Gent) supplemented with 

2% fetal calf serum (Life Technologies) and 1% L-glutamine Penicillin-Streptomycin-

Glutamin solution (Life Technologies) in an incubator set at 37°C and 5% CO2.  

https://www.researchgate.net/institution/Institut_de_Cancerologie_Gustave_Roussy
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6.3.3 Protein synthesis inhibition activity 
 
Protein synthesis inhibition activity for non-reduced or reduced S. nigra RIPs (SNA-I, 

SNA-V or SNLRP) was determined using the TnT® T7 Quick Coupled 

Transcription/Translation System Kit (Promega, Mannheim, Germany) based on a 

cell-free system (Voss et al., 2006). According to manufacturer’s instructions, the 

prepared mixture was incubated at 30°C for 10 min and chilled on ice. Afterwards, 2 

µl PBS or PBS containing different concentrations of S. nigra RIPs or lectins were 

added to the reaction mixture and incubated for 30 min at 30°C. After addition of 35 

µl nuclease-free water at room temperature the reaction samples were transferred 

to a luminometer plate (Greiner Labortechnik, Frickenhausen, Germany) containing 

5 µl luciferase assay reagent at 25°C. The relative luciferase activities of the samples 

were determined at 562 nm for 10s using a microtiter top plate reader (Infinite 200, 

Tecan, Mannedorf, Switzerland) with an initial delay of 2s. 

6.3.4 Cytotoxicity assay  
 
To study the effect of different S. nigra RIPs and lectins on cell viability and 

proliferation, a total of 3,000 HeLa or NHDF cells were seeded in a 96-well plate 

(Greiner Labortechnik) and incubated at 37 °C and 5% CO2 for 24 h. Subsequently, 

the medium was exchanged with medium supplemented with various 

concentrations of S. nigra RIPs or lectins (ranging from 0.1 to 2 µM), and incubated 

at 37°C and 5% CO2 for 2 time points (24 h and 48 h), respectively. Phosphate 

buffered saline (Life Technologies) with/without 2 µM BSA was used in the control 

treatments (Oliveira et al., 2011). Four technical replicates were performed for each 

concentration, and each experiment was repeated three times. 

 
Cell viability was determined by means of (resazurin-based) Presto Blue 

spectrophotometric assays (Life Technologies) according to manufacturer’s 

instructions. In brief, the culture medium of each well was replaced with fresh 

culture medium containing 10% final concentration of Presto blue reagent. After 

incubation for 20 min in the dark at 37 °C and 5% CO2 the fluorescence intensity of 

reduced resazurin was measured at 560/600 nm in a plate reader (Infinite 200, 

Tecan, Mannedorf, Switzerland).  

 

Cell morphology was assessed using an inverted transmitted light microscope (Ti 

Eclipse, Nikon Instruments, Paris, France), with a 10x dry objective (Numerical 

aperture 0.5). 
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6.3.5 Labelling of S. nigra RIPs and lectins with fluorescein isothiocyanate 
 
S. nigra RIPs and lectins were labeled with fluorescein isothiocyanate (FITC) (Sigma-

Aldrich, St. Louis, USA). Lyophilized protein (10 mg/ml) was dissolved in 0.1 M 

carbonate/bicarbonate (1:9) buffer, pH 9. Afterwards, a 24-fold molar excess of FITC 

in dimethylformamide was added to the protein. After 2 h incubation in the dark at 

room temperature, the labeled protein was purified by gel filtration on a Sephadex 

G25 column (1 cm diameter/ 5 cm height) using PBS as running buffer. Subsequently, 

the labeled protein fraction was analyzed by SDS-PAGE and visualized by Fujifilm FLA 

5100 (FUJIFILM Life Science, Japan). Protein concentrations and molar FITC/protein 

ratios were calculated to estimate the labeling efficiency according to 

manufacturer’s instructions (Thermo scientific, Rockford, USA). 

6.3.6 (Immuno-) fluorescence staining 
 
HeLa cells were seeded on coverslips in a 12 well plate (3.8 × 104 cells/well) for at 

least 24 h, and cells were incubated with culture medium containing 50 nM FITC-

labeled or non-labeled S. nigra proteins for fixed time periods. After washing with 

PBS, cells were fixed with 2% formaldehyde for 20 min, followed by three more PBS 

washes. Subsequently, cells were permeabilized in 0.5% Triton X-100 solution for 5 

min, blocked with 50% fetal calf serum for 40 min at room temperature and 

incubated for 1 h at room temperature with one of the following primary antibodies: 

mouse anti-PDI (1:1000, Endoplasmic reticulum marker), anti-Golgin97 (1:2000, 

Golgi marker), rabbit anti-Rab5 (1:1000, Early endosome marker) or p62/SQSTM1 

(1:100, autophagic flux marker, Santa Cruz Biotechnology Inc. Texas, USA). After 

three washes with PBS, cells were incubated for 1 h with goat anti-mouse IgG or goat 

anti-rabbit IgG Alexa Fluor-555 and after a final wash counterstained with DAPI (0.1 

μg/ml) and mounted with Vectashield (Vector Laboratories Inc., Burlingame, CA, 

USA). Next to the immunostaining, lysosomes were visualized with LysoTracker (Life 

technologies, 50 nM) and lipid droplets were stained with BODIPY 493/503 (Life 

Technologies, 2 μg/ml).  

 

6.3.7 In cellula luciferase assay 
 
To study translation inhibition in cellula, a total of 3,000 HeLa cells (HG1-luc2-IRES-

tCD cells (Voss et al., 2006)) were seeded per well in a 96-well plate (Greiner) and 

incubated at 37°C and 5% CO2 for 24 h. After replacing the medium, the cells were 
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exposed to medium supplemented with 100 nM S. nigra RIPs and SNA-II, and 

incubated at 37°C and 5% CO2 for another 24 h. Cycloheximide (10 μg/ml, Sigma-

Aldrich) was used as the control treatment (Oliveira et al., 2011). Luciferase activity 

in cell extracts was assessed using the Promega Luciferase Assay System according to 

the manufacturer’s instructions (Promega, Mannheim, Germany). After washing with 

PBS, cells were lysed with lysis buffer (Promega luciferase kit) for 2 min and half of 

the cell lysate was transferred to the luminometer plate (Greiner). After addition of 

the D-Luciferin substrate, luminescence was measured for a period of 10s. Recorded 

signals were normalized to the amount of viable cells as measured in a subsequent 

Presto blue assay. Four technical replicates were performed for each protein 

concentration, and each experiment was repeated three times. 

6.3.8 Autophagic flux assay  
 
The ptfLC3 expression vector from Dr. Tamotsu Yoshimori encoding an mRFP-EGFP-

LC3 fusion construct (Kimura et al., 2007) was purchased from Addgene (Cambridge, 

MA USA, plasmid 21074). The expression vector was introduced into HeLa cells using 

Lipofectamine® 2000 (Life Technologies) according to the manufacturer’s 

instructions. One day after transfection, the transfected cells were incubated with 

100 nM SNA-I for 7 h. Subsequently the cells were analysed by confocal microscopy.  

6.3.9 Microscopy and image analysis 
 
Confocal images were acquired with a Nikon A1R confocal system, mounted on a 

Nikon Ti microscope body using a 40x (Numerical aperture 1.3) oil or 60x (Numerical 

aperture 1.4) oil objective and appropriate filters. The amount of internalized FITC-

labeled S. nigra protein was quantified by measuring the total signal intensity per cell 

using a home-written script for FIJI image analysis freeware (http://fiji.sc/Fiji). More 

than 60 cells were analyzed for each treatment, and three repeats were performed 

for each experiment. The fluorescence signal data was normalized by the FITC 

labeling efficiency of the S. nigra proteins. Colocalization analysis was performed 

making use of the JaCoP plugin (Just Another Co-localization Plugin). Specifically, 

Manders’ coefficients were retrieved for a fixed threshold setting per dye 

combination (Manders et al., 1993) and object-based colocalization was calculated 

using the centre-of-mass method (Bolte et al., 2006). An alternative object-based 

colocalization analysis was also performed using an in-house developed method that 

calculates the overlap of binarized channels per object (Verdoodt et al., 2012).  

http://fiji.sc/Fiji
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For quantification of p62 foci or BODIPY stained lipid-droplets, images were captured 

by widefield fluorescence microscopy (Nikon Ti) using a 40x oil objective (Numerical 

aperture 1.3). At least 25 randomly selected areas in each sample (3 repeats) were 

recorded using fixed acquisition settings. Per cell, metrics such as mean signal 

intensity, spot number, and mean spot intensity were measured using an in-house 

developed cytometric analysis pipeline for FIJI (InSCyDe, De Vos et al., 2010).  

6.3.10 Mass spectrometry 
  
The glycomic analyses were performed in collaboration with the group of Prof. Anne 

Dell (Faculty of Natural Sciences, Imperial College London, UK).  

 
To acquire N- and O-glycans from glycoproteins, HeLa and NHDF samples were 

treated following an established protocol (Jang-Lee et al., 2006; North et al., 2010). 

Briefly, cells were suspended in lysis buffer (25 mM Tris, 150 mM NaCl, 5 mM EDTA 

and 1% CHAPS (v/v), pH 7.4) before homogenisation and sonication were performed. 

The homogenates were subsequently dialysed against a 50 mM ammonia 

bicarbonate buffer, pH 7.5, after which the samples were lyophilized. Extracted 

glycoproteins were reduced, carboxymethylated and tryptic digested prior to the 

release of protein linked N-glycans by PNGase F (Roche Applied Science) digest and 

O-linked glycans by reductive elimination. Released N- and O-glycans were 

permethylated prior to MS analysis. Sialidase cleavage was carried out using 

Sialidase S (Prozyme Glyko) and Sialidase A (Prozyme Glyko) in 50 mM sodium 

acetate, pH 5.5.  

 
To acquire glycans from glycolipids another protocol was used as described 

previously (Jia et al., 2014). Briefly, the HeLa and NHDF samples were sonicated in 

ice-cold ultra-pure water. Glycolipids were extracted by 

chloroform/methanol/water, followed by the release of lipid-linked glycans via 

rEGCase II (Takara) digestion, and then the glycan purification using a Sep-pack C18 

cartridge (Waters) and subsequently a Hypercarb column (Thermo Scientific). After 

this a deuteroreduction step was carried out. Sialic acids were cleaved using 

Sialidase S (Prozyme Glyko) and Sialidase A (Prozyme Glyko) in 50 mM sodium 

acetate, pH 5.5. The treated samples were lyophilized, permethylated and purified 

using Sep-Pak (C18; Waters). 

 
MS data were obtained via a Voyager MALDI-TOF (Applied Biosystems) mass 

spectrometer. Purified permethylated glycans were dissolved in 10 µl methanol and 



Chapter 6 The cytotoxicity of elderberry ribosome-inactivating proteins is not solely 
determined by their protein translation inhibition activity 

 
 

147 

1 µl of the sample was mixed with 1 µl of matrix, 20 mg/ml 2,5-dihydroxybenzoic 

acid (DHB) in 70% (v/v) aqueous methanol and loaded on to a metal target plate. The 

instrument was run in the reflectron positive ion mode using an accelerating voltage 

of 20 kV. 

 
MS/MS data were acquired using a 4800 MALDI-TOF/TOF mass spectrometer (AB 

SCIEX). In the MS/MS experiment the dissolved sample was dried and then re-

dissolved in 10 µl methanol, 1 µl of the sample was mixed with 1 µl of matrix, 10 

mg/ml diaminobenzophenone (DABP) in 70% (v/v) aqueous acetonitrile and loaded 

on to a metal target plate. The instrument was run in the reflectron positive ion 

mode. The collision energy was set to 1 kV with argon as the collision gas. The 4700 

calibration standard (mass standards kit for the 4700 proteomics analyzer, Applied 

Biosystems) was used as the external calibrant for the MS and MS/MS modes. 

 
The MS and MS/MS data were processed employing Data Explorer Software from 

Applied Biosystems. The processed spectra were annotated using a 

glycobioinformatics tool, GlycoWorkBench (Ceroni et al., 2008). Based on known 

biosynthetic pathways and susceptibility to PNGase F digestion, reductive 

elimination and rEGCase II digestion, all N-glycans are presumed to have a Manα1–

6(Manα1–3)Manβ1–4GlcNAcβ1–4GlcNAc core structure; all O-glycans are assumed 

to have reducing end GalNAc; all glycolipid derived glycans are assumed to have a 

core of Galβ1-4Glc (North et al., 2010; Schachter 1991; Taylor and Drickamer 2011). 

The symbolic nomenclature used in the spectra annotation is the same as the one 

used by the Consortium for Functional Glycomics (CFG) 

(http://www.functionalglycomics.org/) and the Essentials for Glycobiology on-line 

textbook(http://www.ncbi.nlm.nih.gov/books/NBK1931/figure/ch1.f5/?report=objec

tonl).      

6.3.11    Statistical analyses 
 
Statistical analyses were performed using Prism version 5 (GraphPad, La Jolla, CA). 

One-way ANOVA (Dunnett’s Multiple Comparison Test) was performed at the level 

of significance (*: p < 0,05; **: p< 0,01; ***: p < 0,001). The 50% lethal concentration 

(LC50) was determined using the non-linear regression analysis. Data were 

represented as means ± standard error (SE). Differences in cytotoxicity between 

different S. nigra proteins were statistically analyzed using SPSS (Tuckey’s b) - IBM 

Statistical Package for the Social Sciences Statistics (IBM SPSS Statistics, IBM, New 

York, US).  

http://www.functionalglycomics.org/
http://www.ncbi.nlm.nih.gov/books/NBK1931/figure/ch1.f5/?report=objectonl
http://www.ncbi.nlm.nih.gov/books/NBK1931/figure/ch1.f5/?report=objectonl
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6.4 Results  

6.4.1  Elderberry RIPs inhibit protein synthesis in vitro  
 
In an in vitro cell-free system, all non-reduced and reduced RIPs (SNA-I, SNA-V and 

SNLRP) from S. nigra clearly showed a concentration-dependent translation-

inhibiting activity, albeit with strongly varying potency (Fig. 6.1A and 1B) (S1 Fig.). 

Compared to SNA-I (IC50= 5.48 nM), the IC50 values for S. nigra RIPs SNA-V and 

SNLRP were significantly lower (25 to 50 fold) (Fig. 6.1D), indicating that their activity 

was proportionally higher. The lectins SNA-II and SNA-IV, which are merely 

composed of the lectin chain, also started interfering with the translation process in 

the dose range of SNA-I (Fig. 6.1A). The protein synthesis inhibition activity was not 

enhanced by DTT-mediated reduction of the proteins since the IC50 values for the 

non-reduced and reduced SNA-I, SNA-V and SNLRP are very similar (Fig. 6.1).  

6.4.2 S. nigra RIPs and lectins are more toxic towards HeLa than NHDF cells  
 
To assess the antiproliferative activity of the S. nigra RIPs (SNA-I, SNA-V and SNLRP) 

and lectins (SNA-II and SNA-IV) on HeLa and NHDF cells, spectrophotometric viability 

assays were performed after incubation with different concentrations (0.1-2 µM) of 

the proteins (Fig. 6.2A and 2B). In HeLa cells, all proteins, except for SNA-IV, induced 

significant (p<0.05) cytotoxicity after 48 h incubation at the lowest protein 

concentration tested (0.1 µM). Furthermore, SNA-IV also became cytotoxic at 

concentrations > 1.5 µM. There was a clear dose- and time-dependent effect on 

HeLa cell viability. The degree of cytotoxicity after 48 h was as follows: SNA-V > SNA-

II > SNA-I > SNLRP > SNA-IV (Table 6.1). The cytotoxic effect on HeLa cells was 

accompanied by clear morphological changes such as cell rounding and blebbing (Fig. 

6.2C). As evidenced by the increased LC50 values (Table 6.1), NHDF cells were much 

less susceptible to S. nigra proteins than HeLa cells. There was no statistically 

significant effect of SNA-IV and SNLRP on NHDF cell viability and proliferation after 

24 h whereas all the other S. nigra proteins caused a significant cytotoxicity, though 

at much higher protein concentrations compared to HeLa cells. Only after 48 h, a 

significant effect on cell viability was witnessed for SNA-V (p<0.001) at the lowest 

protein concentration (0.05 µM).  
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Figure 6.1. Effect of the S. nigra RIPs and lectins on protein synthesis in a cell-free translation assay. (A) Dose response curves of luciferase synthesis in 
treatments with SNA-I (non-reduced and reduced) and lectins (SNA-II, SNA-IV). (B and C) Dose response curves of luciferase synthesis in the treatments with 
non-reduced and reduced RIP for SNA-V and SNLRP, respectively. (D) IC50 values for the RIPs and lectins.  
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                       Table 6.1 Comparison of LC50 values for the S. nigra proteins in HeLa and NHDF cell lines. 

 

LC50 (µM) 

Time/Cell line SNA-I SNA-II SNA-IV SNA-V SNLRP 

24h HeLa 1.57 ± 0.32
c
 0.72 ± 0.11

a
 >2.00

b
 0.74 ± 0.08

a
 >2.00

b
 

48h HeLa 0.43 ± 0.04
d
 0.27 ± 0.03

d
 1.932 ± 0.20

e
 0.11 ± 0.01

d
 1.85 ± 0.44

e
 

24h NHDF >2.00
f
 >2.00

f
 >2.00

f
 >2.00

f
 >2.00

f
 

48h NHDF 1.70 ± 0.35
g,h

 2.00 ± 0.77
h
 >2.00

h
 0.74 ± 0.12

g
 >2.00

h
 

 

Data are shown as means ± SE based on 4 replications per treatment, and each experiment was repeated 3 times. Different 
letters (a-h) represent significant cytotoxicity differences (Duncan; P < 0.05) between different S. nigra proteins under each 
treatment.
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Figure 6.2 Dose response curve of the effect of S. nigra proteins on HeLa and NHDF cell viability after 24 and 48 h. (A) Dose-response curves for HeLa cells 
incubated for 24 and 48h with different concentrations of S. nigra RIPs/lectins. (B) Log concentration – cell viability curve of NHDF cells incubated for 24 and 
48 h with different concentrations of S. nigra RIPs/lectins. % ctrl (treated/control X 100) = ratio of surviving treated cells/ surviving cells percent in control. 
All data are expressed as means ± SE of 3 biological replicates in 4 technical replicates (n=12). (C) Transmission light microscopy images of HeLa cells grown 
in the absence (control) and presence of 1.5 µM SNA-V for 24 h. Scale bars represent 100 µm.  
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6.4.3 S. nigra proteins are internalized by HeLa cells 
 
To find out whether differences in cytotoxicity between S. nigra proteins were due 

to differences in cellular protein uptake, HeLa cells were incubated with FITC labeled 

RIPs and lectins, and monitored using live cell confocal imaging (Fig. 6.3A and 

supplementary Fig. S6.2). The binding and internalization kinetics of the proteins was 

quantified at different time points after incubation by measuring the intracellular 

fluorescence intensities (Fig. 6.3B). Within 0-5 min, we measured fluorescent signals 

that co-aligned with the plasma membrane, presumably reflecting lectin binding. At 

later time points, signals were also observed at intracellular locations. All proteins 

showed time-dependent internalization kinetics with a maximum fluorescent signal 

after 6 to 9 h of incubation. When fluorescently labelled SNA-I was added to the 

medium of HeLa cells, the protein attached to the cell surface within minutes. Within 

the first 40 min, fluorescent SNA-I became internalized and increasingly accumulated 

in spots close to the nucleus up till 9h (Fig. 6.3A). After 12h a decrease in fluorescent 

signal was observed, which probably reflects degradation and externalization of 

internalized lectin. A similar pattern was observed for SNA-V, albeit with a quicker 

turnover rate (max. at 6h) (supplementary Fig. S6.2B). The perinuclear accumulation 

was maintained even after mitosis. SNA-II (supplementary Fig. S6.2A) did not show a 

distinct tethering to the cell surface but also gradually accumulated inside the cell. 

Compared to SNA-V, intracellular accumulation of SNA-II was less pronounced. The 

same holds true for SNA-IV and SNLRP (supplementary Fig. S6.2C and D, captured 

with much higher laser power setting to be visible): the amount of bound protein to 

the HeLa cell surface was almost undetectable and the amount of internalized 

protein was low compared to SNA-I (supplementary Fig. S6.3B). After normalization 

for labeling efficiency, especially SNLRP internalization was negligible. During the 

time period of microscopic acquisition, HeLa cells incubated with the S. nigra 

proteins showed normal growth and cell division (supplementary Fig. S6.2B). Only a 

small subset of cells incubated with SNA-I, SNA-II or SNA-V showed morphological 

changes characteristic for apoptosis (supplementary Fig. S6.2A).  
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Figure 6.3 Internalization of FITC labeled S. nigra proteins in HeLa cells. (A) Confocal 
microscopic images of the uptake of SNA-I (25 nM) in HeLa cells after 6 hours incubation. 
The arrow indicates a spot where protein is accumulating. Nuclei have been delineated be in 
white. Scale bars represent 10 µm. (B) Uptake of 50 nM FITC labeled SNA-I, SNA-II, SNA-IV, 
SNA-V and SNLRP by HeLa cells after 0 min, 5 min, 30 min, 1 h, 3 h, 6 h, 9 h and 12 h 
incubation, based on fluorescence intensity, which was normalized by the FITC labeling 
efficiency. The pictures for quantification were acquired using identical confocal settings. 
Data are given as mean ± SE, based on at least 80 individual cell measurements per sample 
and each treatment was carried out with three independent replicates. 
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6.4.4 S. nigra proteins predominantly localize to lysosomes but are also found in 
other organelles.  

 

To find out where the FITC-labeled S. nigra proteins are targeted to in the cell, a 

quantitative colocalization analysis was performed on confocal microscopy images 

after co-labeling various endovesicles (Fig. 6.4). Irrespective of the measurement 

method (Manders’ coefficients or object-based colocalized coefficients), the analysis 

showed that a few discrete dots overlap with markers for ER or Golgi but the 

majority of the lectin/RIP-positive dots colocalized with the endosomes and 

lysosomes. In the case of SNA-I and SNA-IV higher Manders’ coefficients were 

obtained for the ER, indicating relatively more colocalisation. It is also worth noting 

that the presence of SNA-IV and SNLRP in the Golgi compartment was clearly lower 

than for the other proteins.  

 

 
Figure 6.4A Legend on next page
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Figure 6.4 Confocal microscopic images and quantitative analysis of the colocalization. (A) Double immunofluorescence analysis of FITC-labeled SNA-I (a, e, i 
and m), and marker for ER (b, c and d), Golgi (f, g and h), endosomes (j, k and l) and lysosomes (n, o and p) in HeLa cells. The merged reconstructed images 
are shown in (d, h, l and p) with the green dots from FITC-labeled SNA-I and the red dots from the marker. The arrow indicates SNA-I dots overlapping with 
the marker. Scale bars represent 10 µm. (B) Manders’ coefficients and object-based colocalization graphs of the colocalization image analysis study. 
Asterisks denote values significantly different from the lysosome (*: p < 0,05; **: p< 0,01; ***: p < 0,001). 
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6.4.5 Autophagy induced in HeLa cells  
 
Given the fairly high load of proteins in the lysosomes, we reasoned that cellular 

uptake of some S. nigra proteins may trigger alternative degradation pathways such 

as autophagy. p62 is a direct substrate for autophagy that becomes included in 

autophagosomes, which is why we used it to monitor formation of autophagosomes 

(Bjørkøy et al., 2005). A quantitative analysis of the number of p62 puncta per cell 

revealed that the autophagosome formation increased significantly after 

administration of any of the different elderberry proteins (Fig. 6.5A and B). To 

determine whether the autophagic flux was altered, a tandem mRFP-GFP-tagged LC3 

construct (Kimura et al., 2007; Mizushima et al., 2010) was used. This fusion 

construct relies on the properties of mRFP to withstand the acidic environment of 

the lysosomes and maintain its fluorescence, whereas GFP does not. A strong 

increase in red over yellow (green+red) foci suggested enrichment of LC3 positive 

autophagolysosomes and thus an increase in autophagic flux in HeLa cells incubated 

with SNAI (Fig. 6.5C and D).  
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Figure 6.5 S. nigra proteins induce autophagy. (A) Confocal images of HeLa cells treated with S. nigra proteins, immuno-stained for p62 (red) and 
counterstained with DAPI (blue). (B) Quantification of p62 puncta numbers/cell (n>600 cells). Asterisks denote values significantly different from the cells 
incubated in the control (medium containing 1 x PBS) (*: p < 0,05; **: p< 0,01; ***: p < 0,001). 
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Figure 6.5 S. nigra proteins induce autophagy. (C) representative images of HeLa cells transfected with a tandem fluorescent mRFP-GFP-LC3 treated with  1x 
PBS (control) or SNA-I, (D) Quantification of yellow (autophagosomes) and red (autophagolysosomes) puncta reveals increased autophagy (total number of 
spots) as well as autophagic flux (red spots) in SNAI treated cells. The asterisk indicates a significant difference compared to the control with P-value < 0.05. 
Scale bars in panels A and C represent 10 µm and 15 µm, respectively.  
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6.4.6 Uptake of S. nigra proteins leads to translation inhibition in cellula 
 
To ascertain protein translation inhibition activity within cells, we used the formation 

of lipid droplets (LDs) as a proxy (Suzuki 2012). Under ER stress, lipid droplets that 

increase in cultured cells are enriched with cholesterol esters (unpublished data, 

Suzuki et al., 2012). Detection of translational shutdown is one of the intermediate 

markers of ER stress (Bernales et al., 2006). HeLa cells have few small LDs when 

cultured in normal culture medium (Shibata et al., 2010), but show strong 

accumulation of LD’s upon treatment with translation inhibitors such as 

cycloheximide (Suzuki 2012). When treated with 100 nM S. nigra RIPs SNA-I and 

SNA-V for 22 hours, there were significantly more LDs (Fig. 6.6A and B). This was not 

the case for SNLRP and the non-RIP lectins (SNA-II and SNA-IV), suggesting that the S. 

nigra RIPs do effectively exert their ribosome inactivating activity inside the cells. 

Experiments with a bioluminescent reporter cell line (HG1-luc2-IRES-tCD) supported 

this notion (Jiménez et al., 2011) (Fig. 6.6C). SNA-V significantly reduced the 

luminescent signal compared to the control. The other proteins showed no 

significant effect on the luminescent signal within the non-toxic range, possibly due 

to the weak sensitivity of the reporter cell line. 

 

 
Figure 6.6 In vivo protein translation inhibition activity of S. nigra RIPs. (A) Merged confocal 
images of HeLa cells stained with DAPI (blue) and BODIPY (green).  Scale bars represent 15 
µm.  
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Figure 6.6 In vivo protein translation inhibition activity of S. nigra RIPs. (B) Average numbers 
of LDs/cell (n>400) (C) Luciferase activity measured in HG1-luc2-IRES-tCD cells incubated 
with S. nigra RIPs/lectins and controls. The treatment with 1 x PBS was selected as the 
negative control, and cycloheximide was used as a positive control. The luminescent signal 
was normalized by the fluorescence signal from the Presto blue assay to correct for 
variations in cell density. Asterisks denote values significantly different from the cells 
incubated with control (1 x PBS) (*: p < 0,05; **: p< 0,01; ***: p < 0,001).  

 

6.4.7 Glycomic characterization of HeLa and NHDF cells 
 
To assess whether differences in cytotoxicity between cell types and proteins were 

due to differences in carbohydrate binding to the cell surface, we analysed the 

glycome patterns on both glycoproteins and glycolipids of HeLa and NHDF cell 

samples using mass spectrometric methodologies (North et al., 2010). These 

experiments confirmed the presence of high mannose and complex glycans in both 

cell types. The major complex N-glycans in both HeLa and NHDF cells are sialylated 

with N-acetylneuraminic acid (NeuAc) or are terminated with uncapped galactose 

(Gal) (supplementary Fig. S6.3). To determine the sialic acid linkages, the glycans 

were digested with sialidase S, which specifically removes α2-3 linked sialic acid, or 

sialidase A, which cleaves all non-reducing terminal sialic acid residues. 

Quantification of terminal Gal and terminal NeuAc on glycans from each cell line was 

performed by comparing the relative abundance of LacNAc (Gal-GlcNAc) antenna 

and sialylated LacNAc antenna. The result (Fig. 6.7) showed that before Sialidase S 

digestion, the percentage of glycans terminated with Gal was approximately 54% in 

NHDF cells, which is significantly higher than in HeLa cells (approximately 30%). After 

Sialidase S digestion, the percentage of glycans terminated with α2-6 linked NeuAc in 
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HeLa cells is around 17%, which is considerably higher than the 3% observed in NHDF 

cells, Sialidase A digestion removed all NeuAc supporting the glycomic assignments.  

 
MALDI-TOF spectra of O-glycans from HeLa and NHDF cells are shown in 

supplementary Fig. S6.4. The profile demonstrated the presence of both core 1 and 

core 2 structures in NHDF cells whilst in HeLa cells the majority of the glycan 

structures are of the core 1 type, although minor core 2 glycans were observed after 

sialidase digestion (Table 6.2). In both cell types the O-glycans are either sialylated 

with NeuAc or terminated with uncapped Gal. Comparison of the abundances of the 

O-glycans (Table 6.2) indicated that the glycans terminated with Gal are more 

prominent in NHDF cells than in HeLa cells, while the relative abundance of the 

glycans terminated with the α2-6 linked NeuAc (NeuAc(α2-6)GalNAc) is higher in 

HeLa cells.  

 
MALDI-TOF data from glycans derived from the glycolipids of HeLa and NHDF cells 

are shown in supplementary Fig. S6.5. Table 6.3 summarises our structural 

conclusions which are derived from the glycomics experiments, taking into account 

biosynthetic considerations. The major glycans are sialylated, and glycans 

terminated with uncapped Gal represent only a minor fraction. In addition, a glycan 

(m/z 1101) terminated with HexNAc is present in HeLa cells. Sialidase digestion of 

HeLa samples confirmed the α2-3 linkage of the peripheral NeuAc of GM3, GM1b 

and GD1a (supplementary Table S6.1). 
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Figure 6.7 Comparative analysis of the relative intensities of LacNAc antenna and sialylated LacNAc antenna in all complex glycans in HeLa and NHDF cells 
(A), and in Sialidase S treated (B) and Sialidase A treated (C) samples. Black colour, relative intensity of α2-3 and α2-6 sialylated LacNAc antenna; blue 
colour, relative intensity of LacNAc antenna; red colour, relative intensity of α2-6 sialylated LacNAc antenna.  GlcNAc,  Gal,  NeuAc. 
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Table 6.2 O-glycan structures observed in the MALDI-TOF MS spectra of Hela and NHDF glycoproteins. All glycans are permethylated and shown in the form 
of [M+Na]+. Glycan structures and linkages are drawn based on the molecular weight, O-glycan biosynthetic pathway and MS/MS data. ND, not detected. 
*=minor (<20%), **=medium (20-50%), ***=major (>50%).   GalNAc  GlcNAc,  Gal,  NeuAc.   

                          

D • 0 • 
Relative abundance in 

m/z Structures Hela NHDF Hela, Sialidase NHDF, Sialidase Hela, Sialidase NHDF, Sial idase 
S treated S treated A treated A t reated 

534 ~9 ND ** ** ** *** *** 

895 ~9 ** ** ND ND ND ND 

895 >---9 3 ND ND *** * ND ND 

984 ~· ND * * *** * ** 9 
3 

1257 *** ** ND ND ND ND ~· 9 
3 

1345 *"' (~ ND * ND ND ND ND 

1706 o; 3 ~ 4 
~ 6 ND * ND ND ND ND 9 

o; 3 
~ 3 
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Table 6.3 Structures of glycans derived from glycolipids observed in the MALDI-TOF MS spectra of Hela and NHDF cells. All glycans are deuteroreduced (DR), 
permethylated and shown in the form of [M+Na]+. These glycan structures and linkages are drawn based on the molecular weight, glycolipid glycan 
biosynthetic pathway and MS/MS data. ND, not detected. *=minor (<20%), **=medium (20-50%), ***=major (>50%).  GalNAc,  Glc,  Gal,  NeuAc.   

                                  

D • 0 • 
Relative abundance in Relative abundance in 

m/z Structures 35% acetonitrile fraction 50% acetonitrile fraction 

Hela NHDF Hela NHDF 

855 GM3 ~9 DR * *** ND ** 

943 GAl * * ND ND 
~9 DR 

1101 GM2 ~DR 4 
CL 

*** ND * ND 

1217 GD3 
. CL 8 . CL 3 013 4 . 9 DR ND ** ND *** 

GMla 13 3 
13 4 .... ' 

CL 3 
134 .... 9 DR 

1305 ** * * * 

GMlb ...... .... 9 DR 
".. CL 3 13 3 13 4 134 .... 

....... 
1666 GD la 

...... CL 3 13 3 
13 4 .... 

9 DR 
CL 3 

134 .... * ND *** * 

1666 GDlc ...A.. ....... .... 
9 

ND ND ND * DR 
...... CL 8 ...... CL 3 ll 3 13 4 p4 .... 
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6.5 Discussion   
 
We have performed a comprehensive analysis of the cytotoxic activity of S. nigra 

proteins, including the type 2 RIPs (SNA-I, SNA-V and SNLRP) and lectins (SNA-II and 

SNA-IV), towards HeLa and NHDF cells. The results illustrate striking differences in 

terms of cytotoxicity and uptake between cell types and proteins. An important 

observation is that HeLa cell cultures are more sensitive to incubation with 

elderberry proteins than human fibroblasts. This can be explained by cell-type 

dependent differences at three levels, namely at the level of attachment, uptake 

and/or intracellular destination. Lectin binding to cell-type specific glycosylated 

proteins on the cell surface might lead to blocking of specific adhesion complexes or 

activate cell death factor receptors. For instance, galectin-1 induces apoptosis of 

activated T-cells and T leukaemia cell lines but does not affect resting T cells (Perillo 

et al., 1995). This difference in cytotoxicity depends on the expression of primary 

receptors (e.g. glycoproteins-CD43, CD45 and CD7) on the activated T-cell surface 

(Rabinovich et al., 2005). Specific (glycan-dependent) or aspecific (cell-type 

dependent) differences in endocytotic flux may in turn affect uptake efficiency and 

different cells may also sort or allocate the ingested proteins towards different 

organelles. Around 2000 genes are expressed at much higher levels in HeLa cells 

than in 16 normal human tissues (of which 805 are protein-coding). These genes 

typically relate to proliferation (cell cycle phase), transcription (RNA processing, 

rRNA transcription) and DNA repair (Landry et al., 2013). Therefore, the specific 

cytotoxicity towards HeLa cells, may also point to a specific, modulatory role in cell 

proliferation and/or cell cycle-dependent processes. This notion also implies 

potential anti-carcinogenic activity of these elderberry proteins, which would enable 

the exploration of natural lectins as anti-cancer compounds.  

 

The protein translation inhibition activity of SNLRP and SNA-V was significantly 

higher than that of SNA-I in the in vitro cell-free system. The IC50 values for SNA-I 

and SNA-V correspond well with earlier estimations derived from studies using 

rabbit reticulocyte lysates (Jiménez et al., 2014). Barbieri et al. reported that the 

translation inhibition activity in a cell-free system was considerably higher for the 

reduced protein compared to the non-reduced type 2 RIPs (e.g. riproximin, ricin and 

volkensin) (Barbieri et al., 2004). Similarly Voss et al. (Voss et al., 2006) reported a 2-

fold higher activity for the purified A chain of the type 2 RIP from Ximenia 

americana, suggesting that the translation inhibition activity of the A-chain from this 

type 2 RIP is inhibited due to steric hindrance by the B-chain (Voss et al., 2006). 
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However, as also shown by Barbieri et al. (Barbieri et al., 2004) this result cannot 

readily be generalized since the reduction of type 2 RIPs such as SNA-I and SNLRP 

does not affect their activity on protein synthesis in a rabbit reticulocyte lysate. Our 

analyses revealed no significant influence of reduction on the activity of SNA-I, SNA-

V and SNLRP, suggesting that there is no adverse impact of the lectin domain on the 

activity of these RIPs. Surprisingly, SNA-II also showed some modest RIP activity 

when tested at high concentration (>10 nM). This may be due to SNA-II binding to 

ribosomal proteins leading to inactivation of the ribosomes, but at present the exact 

modus operandi remains speculative.   

 

Another surprising finding is that the order of the in vitro protein synthesis inhibition 

activity of S. nigra proteins (SNLRP > SNA-V > SNA-I > SNA-II > SNA-IV) did not mirror 

their cytotoxicity towards HeLa cells (SNA-V > SNA-II > SNA-I > SNLRP > SNA-IV). In 

line with this, it was shown that SNLRP exhibits at least 250-fold lower RIP activity in 

cellula than in vitro (Battelli et al., 1997b), while for ricin, RIP activity is in a 

comparable range in cellula and in vitro (Jiménez et al., 2014). The lectin SNA-II 

proved to be even more cytotoxic than some of the RIPs, despite the absence of a 

RIP domain. This suggests that alternative or even complementary activities take 

place at the level of the cell. Several non-exclusive mechanisms that rely on lectin-

carbohydrate interactions may explain this conundrum. One possibility is the 

differential uptake efficiency of the proteins in the cell; another is the inefficient 

targeting of the ribosomes (RIPs) or aspecific binding to and blocking of the 

ribosomes (lectins).  

 

When assessing internalization kinetics, we observed that SNA-V is internalized most 

efficiently, whilst SNLRP was taken up least efficiently in HeLa cells. This could 

explain why these two proteins are at opposite ends of the cytotoxicity spectrum, 

despite their comparable in vitro protein translation inhibition activity. Indeed, lower 

binding to and uptake in the cells has been related to lower toxicity of type 2 RIPs, 

(e.g. ebulin 1) (Citores et al., 1996; Pascal et al., 2001). During cellular uptake, SNA-I, 

SNA-IV and SNA-V first bind to the cell surface and then accumulate around the 

nucleus. But, SNA-II and SNLRP enter the cells with much less attachment to the cell 

membrane. It is known that internalization of proteins in cells is not a must to 

provoke toxicity: some lectins can block cell surface receptors and thereby cause 

cytotoxicity (Lichtenstein et al., 2013). In this respect, we note that SNA-V and SNA-II 

are Gal binding proteins whereas SNA-I and SNA-IV are sialic acid binding proteins. In 
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contrast to the other proteins, SNLRP specifically recognizes GlcNAc oligomers. Thus, 

the differential cytotoxicity of the elderberry proteins could (in part) be caused by 

differences in the efficiency of binding to the cell membrane and the different 

number of binding sites present on the cell surface. To get a better view on the 

available glycan moieties, we performed a glycomic analyses.  This revealed similar 

sialylation of the glycoproteins in the two cell types, a higher level of sialylation of 

the HeLa O-glycome compared with NHDF, and a variety of differences in the N-

glycomes. In particular, N-glycomic analysis revealed that there were substantially 

more α2-6 linked sialic residues in glycoproteins from HeLa cells compared to NHDF 

cells. At least for SNA-I this could explain the increased cytotoxicity towards HeLa 

cells. Similarly, the higher overall level of sialylation of N- and O-glycans in HeLa cells 

compared with NHDF cells, could explain the higher cytotoxicity of SNA-IV for HeLa 

cells. SNA-II and SNA-V showed more cytotoxicity to the HeLa than to NHDF cell line, 

possibly evidenced by their specific binding to Core 1 glycans on glycolipids. 

Furthermore, SNA-V is the only protein that demonstrated significant cytotoxicity 

towards NHDF cells. This could be due to the high abundance of terminal Gal 

residues in these cells. SNLRP recognizes the core chitobiose moiety of N-glycan 

structures (Shang and Van Damme, 2014), so in theory, it could interact with all N-

glycans. However, the LC50 values for SNLRP are very high, suggesting low binding to 

the cell surface glycoconjugates. Furthermore the amount of SNLRP internalized in 

HeLa cells was extremely low, suggesting that SNLRP binding to the chitobiose core is 

prevented e.g. by steric hindrance.  

 

Although the MS data provided new insights on potential carbohydrate binding sites 

that correlate with cell binding/uptake for S. nigra proteins, it is clear that this 

interaction is complex and not sufficient to explain the cytotoxic activity of the 

proteins under study. For example, it remains unclear why the SNA-V and SNA-II are 

more toxic than SNA-I, despite the amount of terminal Gal on HeLa and NHDF cells 

being considerably lower than the amount of sialic acid.  

 

When looking at the cellular destination via colocalization analysis, it became clear 

that most of the S. nigra proteins end up in the lysosomes. However, a small 

fraction, which varied per protein, also reached the Golgi apparatus or the ER. For 

ricin, the Golgi complex has typically been considered to be the crucial intermediate 

subcellular compartment for delivery into the cytosol (Van Deurs et al., 1987), 

defining the cytotoxic potential of ricin (Sandvig et al., 1991; Yoshida et al., 1991; 
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Citores et al., 2002). Our results show low accumulation of the S. nigra proteins in 

the Golgi complex, but still significant toxicity. We reasoned that the protein fraction 

accumulating in the lysosomes may overload these organelles, causing saturation 

and subsequent activation of alternative degradation pathways such as autophagy. 

By scoring p62 positive foci, as well as LC3 foci, we confirmed an upregulation of the 

autophagic flux in the presence of all S. nigra proteins, suggesting that indeed such a 

pathway becomes activated, which in turn may provoke cell death (Klionsky et al., 

2012). Autophagic cell death pathways have also recently been described for 

Concanavalin A and Polygonatum cyrtonema lectin (Fu et al., 2011; Liu et al., 2010; 

Lei et al., 2009) and may present a valuable venue for novel cancer therapeutic 

strategies.   

 

In summary, the cellular uptake of S. nigra RIPs and lectins follows differential 

routing depending on their molecular structures, carbohydrate-binding properties 

and interaction with glycans present on the cell surface, which together determine 

the cytotoxic activity. Until now, it was believed that the lectin domain only 

facilitated internalization of the proteins, but we now show that the lectin domain 

can also exert a cytotoxic activity as such. This inherent cytotoxic potential may be 

due to one or a combination of the following mechanisms: blocking cell membrane 

receptors, a synergistic role in protein translation inhibition activity and/or lysosome 

saturation triggering autophagy. Our data helps filling in pieces of the puzzle of RIP 

induced cell death. Furthermore, a better understanding of the interaction of RIPs 

with a variety of carbohydrate-binding properties with different cell types may 

contribute to the development of more specific immunotoxins for future medical 

applications.  
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6.6 Supplemental data  
 
Table S6.1 Structures of glycans derived from glycolipids observed in the MALDI-TOF MS 
spectra of HeLa cells. All glycans are deuteroreduced (DR), permethylated and [M+Na]+. 
Glycan structures  are drawn based on molecular weight, glycolipid glycan biosynthetic 
pathway and MS/MS data. ND, not detected. *=minor (<20%), **=medium (20-50%), 
***=major (>50%).  GalNAc,  Glc,  Gal,  NeuAc.   
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Figure S6.1 SDS-Polyacrylamide gel electrophoresis of S. nigra proteins. (A) Purified S. nigra 
proteins were analyzed under non-reducing (left) and reducing conditions (with 2 % β-
mercaptoethanol) (right). Samples (3 µg) were loaded as follows: lane 1- Page Ruler 
Prestained Protein Ladder (Fermentas); lane 2- SNA-I; lane 3- SNA-V; lane 4- SNLRP; lane 5-
SNA-II; lane 6- SNA-IV. (B) Non-reduced (without treatment) and reduced (incubation with 
0,025 M DTT at 37 °C for 1 h or 2 h) S. nigra proteins for in vitro protein synthesis inhibition 
assay. Samples (7.5 µg) were loaded as follows: Lane 1- Page Ruler Prestained Protein 
Ladder; lane 2, 5 and 8- non-reduced SNA-I, SNA-V and SNLRP, respectively; lane 3, 6 and 9- 
reduced SNA-I, SNA-V and SNLRP treated with DTT for 1 h 37 °C, respectively; lane 4, 7 and 
10- reduced SNA-I, SNA-V and SNLRP treated with DTT for 2 h at 37 °C, respectively.  
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Figure S6.2 Internalization of FITC labelled S. nigra proteins in HeLa cells at different time points during a long incubation period. Confocal microscopic 
images of the uptake of SNA-II (A), SNA-V (B), SNLRP (C) and SNA-IV (D) in HeLa cells during incubation for a maximum of 8 hours. A small subset of HeLa 
cells incubated with SNA-II and SNA-V showed morphological changes characteristic for mitosis and apoptosis, which were showed by arrows.  To visualize 
the cellular uptake clearly, the live cell images were captured with different settings (much higher laser power settings for SNA-IV and SNLRP and gain 
visibility). Scale bars represent 20µm.  
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Figure S6.3 Annotated MALDI-TOF MS spectra of permethylated N-glycans in Hela (A) and 
NHDF (B) cells. Profiles were obtained from the 50% acetonitrile fraction from a C18 Sep-Pak 
column. All ions are [M+Na]+. Putative structures are based on the molecular weight, N-
glycan biosynthetic pathway and MS/MS data.  GlcNAc,  Man,  Gal,  Fuc,  NeuAc. 
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Figure S6.4 Annotated MALDI-TOF MS spectra of permethylated O-glycans in Hela (A) and 
NHDF (B) cells. Profiles were obtained from the 35% acetonitrile fraction from a C18 Sep-Pak 
column. All ions are [M+Na]+. Putative structures are based on the molecular weight, O-
glycan biosynthetic pathway and MS/MS data.  GalNAc  GlcNAc,  Gal,  NeuAc. 
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Figure S6.5 Annotated MALDI-TOF MS spectra of deuteroreduced, permethylated glycolipid 
derived glycans from Hela (A, B) and NHDF (C, D) cells. These profiles were obtained from 
the 35% and 50% acetonitrile fractions from a C18 Sep-Pak column. All ions are [M+Na]+. 
Putative structures are based on the molecular weight, glycolipid glycan biosynthetic 
pathway and MS/MS data.  GalNAc,  Glc,  Gal,  NeuAc.   
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Throughout their development plants are continuously threatened by attacks from 

micro-organisms, insects, herbivores and mammals. To survive in such a highly 

competitive environment, each plant must elaborate a complex set of different 

defense mechanisms, involving both physical adaptations (spines or leathery leaves) 

and synthesis of biochemical compounds with defense properties (alkaloids, toxins, 

lectins, ribosome-inactivating proteins, chitinases, …) (Muthamilarasan and Prasad, 

2013; Wirthmueller et al., 2013; Lev-Yadun and Halpern, 2008; Vargas and Carlini, 

2014). During the last decades, plant toxins, in particular RIPs, have attracted a lot of 

attention from researchers in different scientific disciplines. Several studies 

confirmed that RIPs play an important role in plant defense (Peumans et al., 2001; 

Van Damme, 2001; Krivdova et al., 2014). However, taking into account the toxic 

properties of these proteins RIPs have also been investigated for their biomedical 

applications, e.g. as tools in the battle against tumor cells.  

 
New RIPs and RIP sequences are still being discovered regularly. Both genome and 

transcriptome sequences have resulted in new insights concerning the occurrence 

and physiological importance of RIPs. The recent discovery of RIP sequences in 

genome and transcriptome databases from daily consumed fruits, such as e.g. apple 

also raises questions with respect to food safety. However, the direct purification of 

apple RIPs from mature fruit failed, suggesting that levels of the level of RIP in apple 

are low. Nevertheless these proteins could play an important role in the plant. For 

instance, RIPs expressed in edible fruit could be useful due to their antiviral, 

antifungal or insecticidal activity, without any toxic effect to humans. Taking into 

account the widedistribution of RIPs (especially type 1 RIPs) in edible plants and their 

low toxicity to mammals both in vitro and in vivo, genes encoding RIPs might be 

candidate transgenes to enhance the resistance of plants against insects, fungi and 

viruses.  

In this PhD thesis, the biological activities and physiological role(s) of RIPs have been 

investigated in detail. The apple RIPs have been studied for their molecular structure 

and biological activities, their developmental expression, their localization in the cell, 

and their involvement in plant defense. In addition, the effects of elderberry RIPs 

and lectins on mammalian cells were investigated with respect to their interaction 

with the cell surface, uptake and internalization by the cells and their cytotoxicity. 
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7.1     Characterization and biological properties of RIPs from apple  
 

The first aim of this PhD research was to characterize the type 1 and type 2 RIPs 

from apple. The molecular structure, N-glycosidase activity, carbohydrate binding 

specificity and cytotoxicity of apple RIPs were investigated in detail in chapter 2. Due 

to the low expression of RIPs in the apple tissues (chapter 3), it was impossible to 

purify the native apple RIPs directly from apple tissues. Thus, heterologous 

expression systems were selected to express recombinant apple RIPs. Afterwards, 

the protein synthesis inhibition activity of recombinant RIPs was studied in a cell free 

system and their toxicity towards cells and plant predators as well as pathogens was 

investigated.  

7.1.1 Molecular evolution 
 
In some families (e.g. Euphorbiaceae and Poaceae) RIP genes are found in all 

sequenced genomes whereas in others (e.g. Rosaceae) RIP genes occur in some 

genomes (Malus domestica and Prunus persica) but are absent from others (Fragaria 

vesca) (described in chapter 1). It was found that apple (Malus sp.) and pear (Pyrus 

sp.) express both type 1 and type 2 RIPs whereas Prunus sp. (e.g. apricot and peach) 

expresses a complex set of type 1 RIPs. On the basis of a phylogenetic analysis, it was 

suggested that most type 1 RIPs found in dicots are evolutionary related to type 2 

RIPs (Peumans and Van Damme, 2010). Sequence alignment of the coding sequences 

of the type 1 RIP and the type 2 RIP gene from Malus domestica demonstrated that 

after deletion of the C-terminus of the A domain and the entire B-domain minus the 

last amino acids at the C-terminus, both sequences can readily be aligned at the 

nucleotide level. However, due to the introduction of two frame shifts the type 1 RIP 

sequence lacks the signal peptide as well as the C-terminus of the type 2 RIP (Fig. 

7.1). Therefore, type 1 RIPs from Rosaceae can be considered as “deletion” products 

of type 2 RIPs.   

 

Besides domain deletion events type 1 RIP genes can also be generated by 

‘truncation” of type 2 RIP B chimers through “more simple” genetic events such as 

the introduction of a stop codon or a frame shift or the insertion of a transposable 

element. All these events shaped the complex RIP gene family. 
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Figure 7.1 Documented domain deletion events that illustrate the conversion of apple type 2 
RIP into type 1 RIP gene.  

 

7.1.2 Molecular structure 
 
The recombinant apple type 2 RIP is a multimeric protein as also suggested by the 

different forms observed on the SDS-PAGE analysis (chapter 2). This oligomerization 

is similar as shown for SNA-I and ebulin f. SNA-I, a type 2 RIP from S. nigra, is a 

tetrameric ([(A-S-S-B)2]2) protein in which the two B chains of two heterodimers are 

linked by a disulfide bond. Ebulin f, a type 2 RIP from S. ebulus L., is polymerized with 

other ebulin f or SELd (lectin B-B) molecules to form multimeric proteins (Citores, et 

al., 1998). Similar to ebulin f, the recombinant apple type 2 RIP occurs as a 

polymerized protein, whereby dimeric and monomeric type 2 RIPs probably coexist 

(chapter 2). 

 
Normally, type 2 RIPs are chimeric proteins, consisting of an N-terminal enzymatic 

domain (the A chain) and a C-terminal lectin domain (the B chain) linked by a 

disulfide bridge. Unlike all other type 2 RIPs, the processing step consisting of the 

excision of the linker between the A and B chain from the precursor polypeptide 

does not seem to occur in native apple type 2 RIP (chapter 2). In addition, the native 

type 2 RIP from 10-day old fruits from pear was not reduced by 

betamercaptoethanol (data not shown). In contrast, the recombinant type 2 RIPs, 

either purified from whole transgenic tobacco leaves (chapter 4) or from the 

extracellular space between  tobacco cells (data not shown), do show a clear A and B 

chain after reduction with betamercaptoethanol. To our knowledge this is the first 

report of a type 2 RIP where the A and B chains are not separated during processing 

of the precursor polypeptide into the mature RIP. It is not completely clear why this 
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processing step does not take place. Western blot analysis suggests that A and B 

chain remain linked in the native type 2 RIP, at least in 10-day old fruits from apple 

(chapter 2).    

 
Similarly, the question remains why the linker sequence is not processed during the 

recombinant expression of apple type 2 RIP in BY-2 cells. Interestingly, the 

expression of the apple RIP sequence in the tobacco plants showed cleavage of the 

precursor into the A and B chain. Possibly, the sequence of apple type 2 RIP is 

insensitive to the proteolytic cleavage of the linker sequence. Moreover, it is 

possible that some particular protease necessary to process the linker sequence 

between A chain and B chain is present in the tobacco plant system but is absent in 

BY-2 cells.     

7.1.3 Binding of apple type 2 RIP to sialic acid  
 
The carbohydrate binding properties of the recombinant type 2 RIP from apple were 

defined by agglutination inhibition assays as well as glycan array analyses, and 

indicated that the apple type 2 RIP specifically recognizes sialic acid residues. The 

carbohydrate binding properties of the apple RIP are similar to those of SNA-I, a 

well-known type 2 RIP from elderberry (Sambucus nigra) (Van Damme et al., 1996a; 

Kaku et al., 2007; Shang and Van Damme, 2014). However, this carbohydrate binding 

specificity is very different from the majority of type 2 RIPs that specifically react 

with galactose or galactose derivatives. It is commonly accepted that sialic acid is 

absent in plants, although researchers did many efforts to confirm the occurrence of 

sialylated glycoconjugates in plant cells (Zeleny et al., 2006, Takashima et al., 2009). 

However, sialic acid is widely spread from bacteria to animal tissues, and plays an 

important role in cell communication, adhesion and protein targeting (Varki and 

Schauer, 2009). Similar to SNA-I, the sialic acid binding specificity of the apple type 2 

RIP may also protect plants from plant diseases e.g. fungi, insects or viruses.  

7.1.4 Cytotoxicity of apple type 2 RIP on mammalian cells  
 
The type 2 RIP from apple showed toxicity to both HeLa and NHDF cell lines. Mass 

spectrometry allowed to analyse the glycome patterns on both glycoproteins and 

glycolipids of HeLa and NHDF cell samples and revealed that sialylated glycans with 

NeuAc are abundant on both cell lines (chapter 6). Furthermore this analysis 

provided evidence for the toxicity of sialic acid binding apple type 2 RIP on 

mammalian cells. Due to the lectin domain, it is much easier for the type 2 RIP to 

recognize the specific glycans on the cell surface and enter the cells by endocytosis 
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(Spooner and Lord 2014). Unlike type 2 RIPs, the pathway of type 1 RIPs (lacking the 

lectin domain) to enter cells is binding to cell surface receptors or via pinocytosis. 

This was shown for trichosanthin and saporin (de Vergilio et al., 2010), and these 

type 1 RIPs showed toxicity to mammalian cells after successful internalization. In 

our analysis, both HeLa and NHDF cells were not susceptible to the apple type 1 RIP. 

The question remains whether enough molecules of the RIP succeeded in getting 

into the cells?  

 

Further research is needed to validate whether the type 1 RIP is able to bind to 

receptors on the cell surface. FITC labeling of the RIPs under study would be useful 

to follow the internalization of the proteins by microscopic analysis. Furthermore it 

might be interesting to check if the type 1 and type 2 RIPs can act synergistically. In 

addition, in view of possible future applications, the toxicity of the apple RIPs for 

human cells should be assessed in more detail. 

7.2  Expression of RIPs in different apple tissues and during fruit development   
 
In chapter 3, the tissue-specific expression of RIPs was quantitatively analyzed by 

studying the transcripts encoding apple type 1 and type 2 RIPs in different apple 

tissues, throughout plant and fruit development. The relative expression levels for 

the RIPs were normalized to the expression of two reference genes (18S rRNA and 

GAPDH) (Schaffer et al., 2007; Foster et al., 2006). In this study, all the apple tissues 

were sampled under natural growth conditions at the faculty campus during spring-

autumn of 2013.  

 
The apple genome contains three sequences encoding type 1 RIP sequences in 

particular type 1 RIP gene A (accession number: >MDP0000918923), gene B 

(>MDP0000134012) and gene C (>MDP0000223290). We have to mention that only 

one type 1 RIP gene, in particular gene A was analyzed in our study, instead of all 

three type 1 RIP genes from the apple genome. Type 1 RIP expression for gene A was 

not detected, most probably due to its very low expression. Based on the analysis 

from one gene encoding type 1 RIP, we can not conclude that in general the type 1 

RIP has no or low expression in apple tissues. Possibly, genes B and C show a 

different expression pattern than gene A. At present, there is no information from 

transcriptome analysis about which tissue expresses type 1 RIP genes A and C. The 

transcriptome analysis showed that the type 1 RIP gene B is possibly expressed in 

young leaves. It was reported before that some type 1 RIPs are present only in some 

particular tissues, e.g. seeds (Basella rubra and Cinnamonum camphora), leaves 

http://www.applegene.org/genedescription.asp?ID=MDP0000918923
http://www.applegene.org/genedescription.asp?ID=MDP0000134012
http://www.applegene.org/genedescription.asp?ID=MDP0000223290
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(Phytolacca americana, Sambucus ebulus L., Beta vulgaris and Bougainvillea 

spectabilis), roots (Mirabilis jalapa) and bulbs (Iris and Charybdis maritima) (Ng and 

Wong et al., 2014). For instance, the distribution of saporin (type 1 RIP from 

Saponaria officinalis L.) was detected throughout different plant tissues but was 

most abundant in seeds (Tartarini et al., 2010). Another example is beetin (a type 1 

RIP from Beta vulgaris), it accumulates in adult plants but not in germs or young 

plants (Iglesias, et al., 2008). Luffin, a type 1 RIP from Luffa cylindrica, accumulates in 

seeds, leaves and stems (Di Cola et al., 1999). Possibly, some type 1 RIPs are also 

expressed in some particular tissues (e.g. roots) or are expressed only during a very 

specific time during development.  

 
The apple genome contains only one sequence (>MDP0000711911) for a type 2 RIP 

gene. qRT-PCR analyses indicated that the apple type 2 RIP preferably accumulates 

in the early growth stages (young leaves, flower buds and 10 day-old fruits) and the 

expression level gradually decreases throughout plant/ tissue development. 

Compared to many other documented type 2 RIPs (e.g. ricin, SNA-I, abrin…) that can 

directly be purified from raw plant tissues, the transcript levels for the apple type 2 

RIP are quite low. Interestingly, the type 2 RIP was found to accumulate in spring 

bark from apple trees collected in 2013. Similarly, SNA-I, possessing a similar 

carbohydrate binding specificity as the apple type 2 RIP, was reported as an 

abundant protein in the protein bodies of S. nigra bark as well (Van Damme et al., 

1996a, Greenwood et al., 1986). In addition, the transcript level of apple type 2 RIP 

in mature seeds was quite low compared to the other tissues. Likely, ricin 

particularly accumulates in the last stage of seed development and early stage of the 

seed germination (Barnes, et al., 2009, Loss-Morais et al., 2013). These data suggest 

that ricin protects the seeds from invading pests and pathogens (Nielsen and Boston, 

2001). The accumulation of apple type 2 RIP in particular tissues may suggest that 

the RIP is involved in plant defense.  

 

It has been noticed that changes in mRNA levels are not congruent to the changes in 

protein levels, depending on the transcriptional and translational rates (Feussner 

and Polle, 2015). Our data provided some first evidence for the expression of RIPs at 

mRNA level in different apple and pear tissues. A quantitative measurement at the 

protein level would give a more solid statement about the presence of these 

enzymes in fruit or tree samples (e.g. western blot).   

 

http://www.applegene.org/genedescription.asp?ID=MDP0000711911
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7.3 Apple type 1 RIP in cytoplasm and nucleus  
 
All type 1 RIP sequences from apple are synthesized without a signal peptide. Using 

different experimental setups to study the localization (chapter 3) of the type 1 RIP-

sequence A, we could show that the protein locates to the cytoplasm and the 

nucleus. These data are in agreement with the fact that due to the absence of a 

signal peptide, the protein is synthesized on free ribosomes in the cytoplasm of cells 

and partly targeted into the nucleus.  

 
Type 1 RIP sequence A contains a clear nuclear targeting sequence at the C terminus 

of the sequence: 298KKKK301. Similar to the type 1 RIP gene A, type 1 RIP genes B and 

C from apple also contain a classical nuclear targeting sequence (307KKPR310 and 
300KKPH303 for genes B and C, respectively). Therefore, it is hypothesized that all the 

type 1 RIPs from apple localize in the cytoplasm and the nucleus. In contrast to many 

other RIPs that are sequestered from the host ribosomes in e.g. vacuoles, the apple 

type 1 RIP is present in the cytosolic compartment which is similar to the localization 

pattern observed for the classical cereal type 1 RIPs (Nielsen and Boston, 2001). They 

are synthesized without a signal peptide and therefore will reside in the same cell 

compartment as the ribosomes (Nielsen et al., 2001). This raises some questions 

about their physiological importance and interaction with the own plant ribosomes. 

Some of these cereal RIPs have been shown to have little activity against plant 

ribosomes, while other cereal RIPs exert their function by interacting with the 

ribosomes of the host plant. For example the working mechanism of JIP60 nicely 

illustrates the endogenous function of some cereal RIPs during senescence (Rustgi et 

al., 2014). Similarly tritin is a cytosolic type 1 RIP from wheat, which is produced in 

senescing coleoptiles and plays an important role in the senescing of these 

coleoptiles (Sawasaki et al., 2008). However, it was also reported that some plant 

ribosomes are insensitive to RIPs compared to fungal and mammalian ones (Girbés 

et al., 2004). For instance, the ribosomes from sugar beets are resistant to beetins 

(type 1 RIP from sugar beet) (Iglesias et al., 2008). At present no extensive studies 

have been performed to unravel the physiological role of these proteins in the plant, 

but beetins have been reported as virus-inducible type 1 RIPs in adult leaves of Beta 

vulgaris L. Western blot analysis revealed the presence of beetin forms in adult 

plants but not in germ or young plants, indicating that the expression of these 

proteins is developmentally regulated. Furthermore, treatment of B. vulgaris leaves 

with mediators of plant-acquired resistance such as salicylic acid and hydrogen 

peroxide promoted the expression of beetin by induction of its transcript, but only in 

adult plants. Taking into consideration that the low-expressed RIPs are more 
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widespread in the plant kingdom than their abundant counterparts there is a 

reasonable chance that these RIPs play a very specific role in the plant. To unravel 

whether the apple type 1 RIP recognizes and interacts with plant ribosomes and/or 

exhibits N-glycosidase activity, in vivo analyses can be set up in order to test the 

effect of the RIPs on plant cell cultures/protoplasts or plant ribosomes (Dunaeva et 

al., 1999; Krawetz and Boston, 2000; Rustgi et al., 2014).  

7.4    Secretion of apple type 2 RIP  
 
Microscopic analyses revealed that the type 2 RIP sequence from apple contains a 

signal peptide, and the protein is secreted to the extracellular space (chapter 3). The 

apple type 2 RIP is synthesized on ribosomes on the rough ER and secreted into 

intercellular apoplastic space (Drakakaki and Dandekar, 2013). These data are in 

good agreement with the secretion of the RIP in the cell culture as evidenced by the 

successful purification of the recombinant type 2 RIP from stably transformed BY-2 

medium (Chapter 2). According to their final subcellular localization RIPs synthesized 

on the ER can be divided in three main groups (Di Cola et al., 1999): (i) RIPs 

accumulating in the intercellular space, e.g. PAP (type 1 RIP from Phytolacca 

americana) and luffin; (ii) RIPs in the vacuolar compartment, e.g. ricin (Tully and 

Beevers, 1976); (ii) RIPs in both the extracellular space and the vacuole, e.g. saporin, 

gypsophilin (type 1 RIP, Gypsophila elegans). Being present in the extracellular 

space, apple type 2 RIPs can form a natural barrier against pathogen attack.  

 
Besides using GFP fusion proteins, immunostaining would be another good choice to 

study the localization of apple RIPs. The use of antibodies would have been a 

preferred method as targeting of tagged proteins may not reveal the behavior of the 

endogenous protein. Since a specific antibody directed against apple RIPs is 

available, the experiments can be performed to study the localization of RIPs directly 

on different apple tissues by immunostaining.    

7.5     Antifungal, antiviral and insecticidal properties of RIPs from apple  
 
Most plant pathogens (fungi, bacteria and viruses) infect the plant tissue through 

intercellular spaces, which allows fast spreading of the pathogen. Plants produce 

various defense proteins in the intercellular space. Except for the basic PR proteins 

predominantly located in the vacuole, most acidic PR proteins are located in the 

intercellular space (Ng, 2004, Ebrahim et al., 2011). Many RIPs have also been 

reported as plant defense proteins accumulating in the intercellular space, such as 

PAP, ricin and saporin. Apple type 2 RIP is secreted into the extracellular apoplastic 



Chapter 7 General discussion and perspectives for future research 

 184 

space (chapter 3), which is in good agreement with its involvement in plant defense. 

Nevertheless, further research is needed to elucidate the physiological roles of apple 

RIPs (fruit RIPs) in the plant response to stress treatments and to investigate their 

application for plant improvement.  

7.5.1 Antifungal activity of apple RIPs 
 
Type 1 and Type 2 RIPs from apple showed antifungal activity when detached 

transgenic tobacco leaves were tested with the necrotrophic pathogenic B. cinerea 

(chapter 4). A hypothesis to define the function of apple RIPs was hypothesized as 

described in Fig. 7.2. The antifungal activity of RIPs is less potent compared to other 

antifungal proteins as described in chapter 1 (Ng, 2004, Nielsen and Boston, 2001). 

Nevertheless, the antifungal activity of apple RIPs can still be useful in plant defense 

and crop protection. The plant immune responses can be triggered by the infection 

of plant pathogens, both by biotrophs and necrotrophs. All the responses 

(biochemical, cellular and molecular events…) have one main goal, namely to limit 

the proliferation of the pathogens (Wen, 2013). The hypothesized mechanisms to 

explain the mode of action of RIPs on fungi are either to directly inactivate 

ribosomes from fungi (Krivdova et al., 2014) or to up-regulate endogenous host plant 

defenses (e.g. secondary metabolites, hormones and antimicrobial peptides). Many 

RIPs show the ability to depurinate fungal ribosomes, e.g. curcin 2 (a type 1 RIP from 

Jatropha curcas). To determine whether the RIP concentration is a factor 

determining the higher antifungal activity of the type 2 RIP, it would be nice to 

calculate the correlation between the antifungal activity and RIP expression in the 

future. Furthermore, the germination and development of Botrytis spores was 

clearly inhibited after incubation with 100 ng recombinant apple type 1 or type 2 

RIPs in an in vitro antifungal assay (Fig. 4.5). A quantitative bioassay is necessary to 

gain better knowledge of the activity of the RIPs against fungi. For instance, 

experiments whereby the same concentration of recombinant type 1 or type 2 RIP is 

incubated with the fungus will allow to determine which protein has the highest 

antifungal activity. Investigation of the depurination activity of apple RIPs on fungal 

ribosomes can be considered in future studies. Furthermore, the contribution of 

other plant defense related compounds should be analyzed. Moreover, it would also 

be interesting to check whether the expression of apple RIPs can induce the 

expression of pathogenesis-related genes, which can be determined by analysis of 

the transcript levels of PR protein genes in transgenic plants attacked by pathogens 

or insects.    

 



Chapter 7 General discussion and perspectives for future research 

 185 

 
Figure 7.2 Schematic overview of the infection process of Botrytis cinerea on transgenic 
tobacco plants expressing RIPs from apple. B. cinerea (broad host-range necrotroph) 
produces diverse D/PAMPs that activate plant immune responses as well as virulence factors 
that suppress immune response (Mengiste, 2012). This scheme illustrates how the type 2 
RIP from apple could be involved in plant defense. D/PAMPs, damage/pathogen-associated 
molecular patterns. NEPs, necrosis and ethylene-inducing proteins. CWDEs, cell wall-
degrading enzymes. The cells and organelles are not drawn to scale. Only organelles relevant 
to the results of this study are shown.  
 

The interaction of pathogens with the plant cell surface is an important step for the 

pathogens to get access to the intercellular space. It can be envisaged that type 2 

RIPs might also enter the pathogens after binding of the lectin chain to the 

glycoconjugates on the surface. Although there is no information about the glycan 

structures on Botrytis, research confirmed there many carbohydrates are present on 

the surface of pathogens. For instance, lactose and galactose were detected on 

Aspergillus nidulans (Fekete et al., 2008). The surface glycans of Candida albicans 

consist of glucan (D-glucose polymer with glycosidic bonds), mannan (mannose 

polymers), chitin and sialic acids (Masuoka, 2004, Soares, 2000). Furthermore, sialic 

acids have been found in the cell wall of some plant pathogens, such as Ascocalyx 

abietina (Benhamou and Ouellette, 1986) and Aspergillus fumigatus (Warwas et al., 

2007), and therefore these pathogens possess potential target carbohydrates for the 

sialic acid binding apple RIP (chapter 2). Immediate adhesion of Botrytis cinerea was 
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not significantly influenced by lectins (concanavalin A, soybean agglutinin, Lotus 

tetragonolobus lectin, and Ulex europaeus lectin) (Doss et al., 1993).  

 
Apple RIPs also showed antifungal activity in vitro by reducing the growth of hyphae 

(chapter 4). In contrast to the apple type 2 RIP, incubation of fungal spores with 

different concentrations of the recombinant B chain alone did not affect fungal 

spore germination and growth. This experiment suggests that the antifungal activity 

of the RIP was due to its enzymatic activity, and that the lectin chains probably only 

helped the RIP to enter the fungal cells. Since the glycan structure for B. cinerea are 

not known, it would be interesting to analyse the glycans present on the fungal 

surface and the glycosylation of the effector proteins. These analyses may provide 

new insights to elucidate the mechanism of RIPs in plant defense against fungi, or in 

interaction with fungi evading the host plant innate immunity.  

 

7.5.2 Antiviral activity of apple RIPs 
 
Transgenic tobacco plants overexpressing a type 1 RIP or a type 2 RIP from apple 

showed clear antiviral activity against TMV infection (chapter 4). It was reported that 

SNA-I, SNA-V and SNLRP were inactive on plant ribosomes, but, displayed in vitro 

depurination activity on TMV RNA (Vandenbussche et al., 2004b; Tejezo et al., 2015). 

These elderberry type 2 RIPs as well as SNAI’ also showed good antiviral activity in 

planta (chen et al., 2002a). As described in chapter 1 (Fig. 1.4), three mechanisms 

are hypothesized to explain the antiviral activities of RIPs. To determine which 

mechanism is applicable to apple RIPs, the depurination activity of RIPs on tobacco 

ribosomes and TMV RNA should be tested. Furthermore, a study of the expression of 

PR proteins (e.g. PR1, PR2), regulation of SA and activities of some antioxidant 

enzymes (e.g. superoxide dismutase and catalase…) in these plants after viral 

infection can provide better insights for the antiviral activity of apple RIPs.  

7.5.3 Insecticidal activity of apple RIPs 
 
The artificial diet assay revealed the insecticidal activity of recombinant RIPs from 

apple on nymphs of Acyrtosiphon pisum. The type 2 RIP from apple was clearly more 

toxic to aphids compared to the type 1 RIP most probably due to its carbohydrate 

binding activity. It will also be interesting to study the effect apple RIPs on other 

important pest insects, such as piercing-sucking aphids (e.g. peach-potato aphid (M. 

persicae)) or biting-chewing lepidopteran caterpillars (e.g. beet armyworm (S. 

exigua)). The effects of apple RIPs on proliferation and adult survival should be 
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investigated by long-term experiments with transgenic tobacco plants. To complete 

the experiments, it will be interesting to investigate the effects of apple RIPs on 

pests in planta. For example, Spodoptera exigua can be fed on the transgenic 

tobacco plants expressing apple RIPs and the development from larvae to pupa can 

be investigated. The larval weight and larval growth can be measured to determine 

the effect of apple RIPs on insect development. Furthermore, larvae can be fed with 

fluorescently labeled proteins (e.g. FITC-RIPs) to determine the internalization of 

apple RIPs in insect cells.  

7.6 Mode of action of elderberry RIPs on mammalian cells 
 
Our results show that the cytotoxicity of elderberry RIPs is not solely determined by 

their inhibitory activity on protein translation. Interestingly, it was found that the 

accumulation of S. nigra proteins in the lysosomes might cause saturation and 

subsequent activation of alternative degradation pathways such as autophagy due to 

overloading of these organelles (Fig. 7.3) (chapter 6). In addition, an increase of 

autophagy was detected when cells were incubated in the presence of all S. nigra 

proteins, suggesting that these proteins provoke additional cell stress and cell death 

(Klionsky et al., 2012). The apoptosis induced by RIPs was documented well (chapter 

1), only few RIPs were reported to show an autophagic cell death phenotype (e.g. 

curcin, Mohamed et al., 2014). It would be interesting to know more about the cell 

death pathway caused by the S. nigra RIPs. Some further experiments can be 

performed to study e.g. the DNA fragmentation in cells treated with RIPs, cell cycle 

distribution of cells (by flow cytometric analysis), generation of ROS (DCFH-DA dye 

and fluorescence detection), mitochondrial stress (mitochondrial membrane 

transition pore assay) and caspase activation (extrinsic-caspase-8/-10 or intrinsic-

caspase-3/-9)... 
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Figure 7.3 Hypothesis of cell death mechanism of RIPs from S. nigra in HeLa cells. The cells 
and organelles are not drawn to scale. Only organelles relevant to the results of this study 
are shown.  
 

7.7     Final remarks 
 
To conclude, research was performed to achieve some predefined objectives. This 

PhD research attempted to elucidate the physiological role and biological activities 

of ribosome-inactivating proteins from apple and elderberry. The recombinant type 

1 and type 2 RIPs from apple were successfully characterized as functional RIPs 

possessing protein translation inhibition activity. The apple type 2 RIP is a chimeric 

protein with specificity for sialic acid and shows cytotoxicity towards mammalian 

cells (Objective 1). Our results have shown that the type 1 RIP is located in the 

cytoplasm and nucleus of the plant cell whereas the type 2 RIP is a secreted protein 

which is targeted to the apoplastic space. Furthermore, the type 2 RIP is especially 

abundant in the young tissues from the apple tree (Objective 2). Based on our 

results, it can be concluded that apple RIPs play an important role in plant defense 

against fungi, viruses and insects (Objective 3). The carbohydrate binding properties 

of the S. nigra lectins and type 2 RIPs have been investigated in detail by glycan array 

screening. Finally, the effects of S. nigra lectins and type 2 RIPs on mammalian cells 

indicated that HeLa cells are more susceptible to these proteins than NHDF cells.  We 

showed that the enzymatic domain of the RIPs is not the only factor that determines 
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the cytotoxicity of the protein (Objective 4). Taken all these results together, we 

believe that this study contributed significantly to the understanding of the 

importance and biological activity of RIPs from apple and elderberry.  
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Ribosome-inactivating proteins are a family of proteins that damage ribosomes, 

which can be classically subdivided into two major groups: type 1 RIPs with 

enzymatic activity and type 2 RIPs consisting of a domain with enzymatic activity 

linked to a carbohydrate binding domain. Although RIP genes occur in bacteria, some 

fungi and invertebrates, most research was focused on RIPs from flowering plants. In 

the past, RIPs under study were abundant proteins that accumulated in storage 

tissues (barks, seeds and roots…) and hence could directly be purified from the plant 

materials. Furthermore, a lot of attention was given to the biological activities and 

possible applications of these RIPs in medicine (antiviral and anticancer therapy) and 

agriculture (plant defense against fungi, bacteria, viruses and insects). 

 
The occurrence of protein homologs of some extremely toxic RIPs (such as e.g. ricin 

and abrin) in several food plants might be of concern with respect to food safety. In 

this PhD thesis, type 1 and type 2 RIPs originating from Malus domestica (apple) and 

type 2 RIPs as well as lectins from Sambucus nigra (elderberry) were chosen as study 

objects to investigate the biological activities of RIPs. It is interesting to check the 

cytotoxicity of especially the type 2 RIPs expressed in fruits. Furthermore, a detailed 

analysis of protein expression can give a lot of information on the specific role of 

these RIPs in the plant.    

 
The type 1 and type 2 RIPs from apple were characterized and their cytotoxicity 

towards mammalian cells was investigated. Because of the low expression of RIPs in 

the apple tissues, the proteins were expressed recombinantly. Molecular cloning of 

the type 1 RIP and type 2 RIP sequences enabled the heterologous expression in 

Pichia pastoris and tobacco BY-2 cells. The recombinant type 1 RIP was purified using 

a combination of ion exchange chromatography and metal affinity chromatography. 

Similarly, the recombinant type 2 RIP was purified by a combination of hydrophobic 

interactions chromatography and affinity chromatography. Subsequently, a 

eukaryotic cell free translation system was used to show the effect(s) of the proteins 

on protein translation inhibition. Moreover, the analysis of a glycan array containing 

human glycans demonstrated that recombinant type 2 RIP from apple specifically 

recognizes carbohydrate structures containing sialic acid. The recombinant type 2 

RIP showed cytotoxicity on both HeLa and NHDF cell lines, whereas the type 1 RIP 

demonstrated low cytotoxicity to mammalian cells.  

To gain more insight on the expression of the proteins under study at cell and plant 

level, subcellular localization studies of apple RIPs were done using microscopy and 

analysis of RIP gene expression at transcript level was performed using qPCR 
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analysis. It was shown that the type 1 RIP fusion construct with EGFP yielded 

fluorescence in nucleus and the cytoplasm. These data were confirmed in different 

plant systems, such as the transient expression in N. benthamiana leaves, 

Arabidopsis suspension cells and Arabidopsis protoplasts, as well as the stable 

expression in Arabidopsis plants. Unlike the type 1 RIP, expression of the Type 2 RIP 

coupled with EGFP was detected in the ER and in vesicles, both in Arabidopsis 

suspension cells and in Arabidopsis protoplasts. Moreover, the type 2 RIP was also 

observed in the intercellular space from stably transformed Arabidopsis plants. Our 

data allowed to conclude that the type 2 RIP sequence which –unlike the type 1 RIP- 

contains with a signal peptide is synthesized following the secretory pathway. 

Furthermore, a quantitative analysis of the transcript levels of apple RIPs was 

performed in different tissues of an apple tree and throughout fruit development. 

Apple type 2 RIP transcripts accumulated at higher levels in young tissues (leaf buds, 

young leaves, unopened flower buds) and barks, and expression levels were low in 

the flower and the fruit. qPCR analysis did not allow to detect  transcripts for the 

type 1 RIP from apple in any of the tissues tested.    

 
In an attempt to determine the biological activities of RIPs from apple and their 

involvement in disease resistance, both apple RIPs were overexpressed in tobacco 

and the performance of the transgenic tobacco plants was investigated after 

infection with different plant pathogens. In addition, the recombinant RIPs purified 

in chapter 2 were tested in an artificial diet to study the insecticidal activity of the 

apple RIPs. The transgenic tobacco lines overexpressing type 1 and type 2 RIPs from 

apple were constructed and transformation of the lines was confirmed on RNA, DNA 

and protein level. A selection of the transgenic plants was used to investigate the 

effects of overexpression of the RIP genes on plant development and on their 

disease resistance to tobacco mosaic virus (TMV) and fungal (Botrytis cinerea) 

infection. Our results revealed that tobacco plants overexpressing apple RIPs showed 

clear antifungal activity after inoculation of B. cinerea conidial spores to detached 

leaves. Microscopic analysis indicated that the transgenic tobacco leaves inhibited 

the growth of the fungal hyphae at an early stage of development. The tobacco 

plants overexpressing the apple RIPs obviously also limited the disease spreading of 

TMV compared to wild type plants. Furthermore addition of the recombinant RIPs to 

an artificial diet revealed that the recombinant apple RIPs showed lethal effects on 

nymphal survival of Acyrtosiphum pisum.  
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The biological activities of the RIPs (SNA-I, SNA-V and SNLRP) and the lectins (SNA-II 

and SNA-IV) from S. nigra were investigated in detail. First the carbohydrate 

specificity of all S. nigra proteins was analyzed and compared in detail. Furthermore, 

the biological activity of several S. nigra proteins on different human cell lines was 

tested to study the cytotoxicity of the proteins. It was clearly shown that S. nigra 

proteins were more toxic to HeLa cells than to NHDF cells. Furthermore the data also 

suggest a much lower toxicity of the elderberry proteins than observed for the 

classical type 2 RIPs. The in vitro and in vivo protein synthesis inhibition activities of 

several S. nigra proteins indicated that type 2 RIPs from elderberry inhibit protein 

translation. The internalization and intracellular localization of the proteins showed 

clear differences among the elderberry proteins under study. These results probably 

relate to the differential binding and interaction of the elderberry proteins to glycans 

present on the cell surface due to the differences in carbohydrate binding specificity. 

Furthermore, glycan analysis (N- and O-glycans) of cell surface glycoproteins and 

glycolipids revealed a clear correlation with the results from cytotoxicity and 

internalization studies, indicating the importance of protein-carbohydrate 

interactions for the entry process of the proteins in the cell.    

 

Throughout the PhD research, our knowledge of the biological activity of ribosome-

inactivating proteins from apple and elderberry increased considerably. Obviously, 

apple RIPs are probably involved in plant defenses against several pathogens and 

insect predators. Nevertheless, more research is needed to confirm the physiological 

importance of RIPs from edible fruits. Ultimately this research might lead to 

applications in crop protection.               
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Ribosoom-inactiverende proteïnen (kortweg RIP’s) zijn een groep van eiwitten die, 

zoals hun naam doet vermoeden, ribosomen kunnen beschadigen. Deze enzymen 

worden ingedeeld in twee grote groepen. De eerste groep bevat de zogenaamde 

type 1 RIP’s, welke zijn opgebouwd uit één enkel domein verantwoordelijk voor de 

enzymatische activiteit. De type 2 RIP’s daarentegen beschikken naast dit 

enzymatisch domein over een tweede, koolhydraat bindend domein of lectine 

domein. Hoewel RIP genen voorkomen in bacteriën, sommige schimmels en 

invertebraten, zijn het vooral de RIP’s uit zaadplanten waarnaar het meeste 

onderzoek gebeurt. Dit onderzoek focuste in het verleden vooral op RIP’s die typisch 

in grote hoeveelheden voorkomen in opslagorganen (schors, zaden, wortels,...) en 

die bijgevolg zonder problemen uit de plantenweefsels konden opgezuiverd worden. 

Er werd veel aandacht besteed aan de biologische activiteit van deze eiwitten en hun 

mogelijke toepassingen in de geneeskunde (antivirale werking en gebruik in 

kankertherapie) en de landbouw (gewasbescherming tegen schimmels, bacteriële en 

virale pathogenen, insecten). 

 
De aanwezigheid van homologen van enkele zeer toxische RIP’s (zoals ricine en 

abrine) in voedingsgewassen is uiteraard van groot belang met betrekking tot 

voedselveiligheid. Type 1 en type 2 RIP’s afkomstig uit appel (Malus domestica) en 

type 2 RIP’s en enkele lectinen uit de vlier (Sambucus nigra) vormen het 

studieonderwerp van dit doctoraat. Het is interessant om de mogelijke cytotoxische 

eigenschappen van vooral de type 2 RIP’s die voorkomen in fruit na te gaan. 

Daarnaast kan een gedetailleerde analyse van de eiwitexpressie ons meer leren over 

de functie die deze RIP’s vervullen in de plant.  

 
De type 1 en type 2 RIP uit appel werden gekarakteriseerd en hun cytotoxiciteit 

tegenover dierlijke cellen werd bepaald. Ten gevolge van het lage expressieniveau 

van deze eiwitten in verschillende weefsels van de appel/appelboom, dienden deze 

recombinant aangemaakt te worden. Met behulp van moleculaire klonering werd de 

heterologe expressie van de RIP’s in Pichia pastoris en tabakscellen (BY-2) mogelijk 

gemaakt. Het recombinante type 1 RIP werd opgezuiverd door middel van een 

combinatie van ionuitwisselingschromatografie en metaal affiniteitschromatografie. 

Het type 2 RIP werd op een gelijkaardige manier opgezuiverd door gebruik te maken 

van een combinatie van hydrofobe interactie chromatografie en 

affiniteitschromatografie. Vervolgens werd het effect van deze recombinante RIP’s 

op de eiwitsynthese bevestigd aan de hand van een celvrij in vitro translatiesysteem. 

Verder toonde een glycaan array analyse aan dat het type 2 RIP uit appel specifiek 
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siaalzuur-bevattende suikerstructuren herkent. Het recombinante type 2 RIP 

vertoonde cytotoxiciteit tegenover zowel HeLa cellen als NHDF cellen, terwijl het 

type 1 RIP slechts een lage cytotoxiciteit vertoonde tegenover dierlijke cellen. 

 
Om een beter inzicht te verwerven in de expressie van de bestudeerde eiwitten, 

zowel op celniveau als op plantniveau, werden subcellulaire lokalisatiestudies 

uitgevoerd door middel van microscopie en aangevuld met qPCR analyses 

uitgevoerd om de RIP genexpressie in kaart te brengen. Er werd aangetoond dat een 

fusieconstruct waarbij het type 1 RIP gekoppeld werd aan eGFP aanleiding gaf tot 

een fluorescent signaal in de kern en het cytoplasma. Dit werd bevestigd in 

verschillende plantsystemen zoals transiënte expressie in N. benthamiana bladeren, 

Arabidopsis suspensieculturen en Arabidopsis protoplasten, alsook in stabiel 

getransformeerde Arabidopsis planten. In tegenstelling tot het type 1 RIP, werd 

expressie van het fusieconstruct van het type 2 RIP met eGFP gedetecteerd in het ER 

en in vesikels van zowel Arabidopsis suspensiecellen als Arabidopsis protoplasten. 

Daarnaast werd het type 2 RIP ook waargenomen in de intercellulaire ruimte van 

stabiel getransformeerde Arabidopsis planten. Gebaseerd op deze data werd 

geconcludeerd dat het type 2 RIP, dat in tegenstelling tot het type 1 RIP beschikt 

over een signaalpeptide, de secretorische pathway volgt. Verder werd ook een 

kwantitatieve analyse uitgevoerd van de transcriptniveaus van de appel RIP’s in 

verschillende weefsels van een appelboom en doorheen de vruchtontwikkeling. 

Transcripts van het type 2 appel RIP bleken vooral abundant te zijn in jonge 

weefseltypes (bladknoppen, jonge bladeren, ongeopende bloemknoppen) en in 

schors, terwijl de expressie laag was in de bloem en de vrucht. Met behulp van qPCR 

was het niet mogelijk om expressie van het type 1 appel RIP te detecteren. 

 
Om de biologische functie van de appel RIP’s te achterhalen en hun mogelijke 

betrokkenheid in de plantafweer te onderzoeken, werden beide RIP’s tot 

overexpressie gebracht in transgene tabaksplanten en de gevoeligheid van de 

overexpressielijnen tegen verschillende pathogenen werd onderzocht. Daarnaast 

werd ook de insecticidale werking van de RIP’s getest door de opgezuiverde 

recombinante RIP’s uit hoofdstuk 2 toe te voegen aan een artificieel dieet voor 

bladluizen.  De transformatie van tabak voor de overexpressie van de type 1 en type 

2 RIP’s werd bevestigd op DNA, RNA en eiwitniveau. Een selectie van de transgene 

planten werd gebruikt om het effect van de overexpressie op de ontwikkeling van de 

plant en op de resistentie tegen het tabak mozaiekvirus (TMV) en tegen 

schimmelinfectie (Botrytis cinerea) te onderzoeken. Onze resultaten tonen aan dat 
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tabaksplanten die de appel RIP’s tot overexpressie brengen duidelijke antifungale 

activiteit vertonen na de inoculatie van B. cinerea sporen op losse transgene 

tabaksbladeren. Uit microscopische analyse bleek dat de transgene tabaksbladeren 

de groei van de fungale hyfen in een vroeg stadium van ontwikkeling inhibeerden. Bij 

de tabaksplanten die de RIP’s tot overexpressie brachten was de verspreiding van 

TMV duidelijk minder dan bij wild type planten. Het toevoegen van de recombinante 

RIP’s aan een artificieel dieet onthulde dat de RIP’s een letaal effect hadden op 

nymfen van Acyrtosiphum pisum.  

 
De biologische activiteiten van de RIP’s (SNA-I, SNA-V en SNLRP) en de lectinen (SNA-

II en SNAIV) uit S. nigra werden in detail onderzocht. Allereerst werd de 

suikerspecificiteit van alle S. nigra proteïnen geanalyseerd en onderling vergeleken. 

Vervolgens werd de cytotoxiciteit van verschillende S. nigra eiwitten op 

verschillende humane cellijnen getest. Er werd duidelijk aangetoond dat de S. nigra 

eiwitten toxischer waren voor HeLa cellen dan voor NHDF cellen. Verder doen de 

data ook vermoeden dat de eiwitten van de vlier veel minder toxisch zijn dan 

waargenomen voor klassieke type 2 RIP’s. Type 2 RIPs van de vlier waren in staat om 

de proteïnesynthese zowel in vitro als in vivo te inhiberen. Onder de bestudeerde 

proteïnen uit S. nigra waren er grote verschillen wat betreft hun internalisatie en 

intracellulaire lokalisatie in de HeLa cellen. Dit is hoogstwaarschijnlijk te verklaren 

door de verschillende suikerspecificiteit van de eiwitten waardoor deze met 

verschillende suikerstructuren aanwezig op het celoppervlak gaan interageren. 

Glycaan analysen (N- en O-glycanen) van glycoproteïnen op het celoppervlak 

onthulde dan ook een sterke correlatie tussen de resultaten van de 

cytotoxiciteitstesten en de internalisatiestudies, wat wijst op het belang van eiwit-

koolhydraat interacties bij het binnentreden van de eiwitten in de cel. 

 
Hoofdstuk 7 geeft een algemene discussie van de belangrijkste resultaten van dit 

doctoraat, alsook worden enkele perspectieven en ideeën voor toekomstige studies 

besproken. Doorheen deze doctoraatsstudie is onze kennis van de biologische 

activiteit van ribosoom-inactiverende proteïnen uit appel en vlier aanzienlijk 

toegenomen. De appel RIP’s zijn hoogstwaarschijnlijk betrokken in de verdediging 

van de plant tegen verschillende pathogenen en insecten. Niettegenstaande is 

verder onderzoek nodig om de fysiologisch rol van RIP’s in eetbare vruchten te 

bevestigen. Uiteindelijk kan dit onderzoek leiden tot toepassingen in 

gewasbescherming. 
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