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Abstract

We study to which extent all pairs of opposite vertices of self-opposite type
determine a given building. We provide complete answers in the case of buildings
related to projective spaces, to polar spaces and the exceptional buildings, but for
the latter we restrict to the vertices whose Grassmannian defines a parapolar space
of point diameter 3. Some results about non-self opposite types for buildings of
types An, Dm (m odd), and E6 are also provided.

1 Introduction

In this paper, the main aim is essentially to prove that the opposition relation in a spherical
building B restricted to one self-opposite type of vertices uniquely determines B. However,
this is not true in full generality, as for instance, there are known counterexamples for
generalized hexagons, see [5], and we will discover a second class of counterexamples (of
unbounded rank) in this paper.

Given a particular building B and a particular self-opposite type t of vertices, then the
problem of reconstructing B from all opposite pairs of vertices of type t, is usually not
a too hard exercise, especially when B is finite (elementary counting techniques allow to
recognize the different vertices of B) or of classical type. However, if it is only known that
B belongs to a class of buildings, and t belongs to a set of self-opposite types, the question
becomes much harder, and more interesting. Also, the implications become stronger, as
this implies that the structures of opposition restricted to vertices of given types differ
whenever the buildings or the types differ. And we also discover cases in which these
structures coincide for different buildings.

The ultimate problem is to consider all spherical buildings and all self-opposite types. In
this paper, however, we have restricted our attention to all projective and polar spaces,
and to the popular point-line geometries arising from the (mainly exceptional) spherical
buildings, i.e., we restrict the type of vertices to those types whose Grassmannians define
parapolar spaces of diameter 3. This includes (with Bourbaki labeling) types 1 and 4 for
buildings of type F4, type 2 for buidings of type E6, types 1 and 7 for buildings of type
E7, and type 8 for buildings of type E8. The overlap with polar spaces consists of the
line Grassmannian of polar spaces themselves (type 1 for buildings of types Bn and Dn).
Informally, we can state our main result as follows:
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Main Result 1 — Informal statement. Let B be a building related to a projective
space or a polar space (this polar space must have thick lines but can be non-thick other-
wise—correspondingly, B can be non-thick of type Bn or thick of type Dn), except that we
do not allow B to correspond to a non-degenerate quadratic form of maximal Witt index
2n−1 in (4n−2)-dimensional projective spaces, or let B be a building of exceptional type.
Let t be a self-opposite type in B, with the restriction that the t-Grassmannian defines a
parapolar space of diameter 3 if B is of exceptional type. Then the set of all opposite pairs
of vertices of type t unambiguously determines B.

Concerning the parapolar spaces of diameter 3, there are essentially five different mutually
positions for two points: they can coincide (CASE 0), they can be collinear (CASE 1),
they can be at distance 2 in the collinearity graph, with at least two common neighbours
(CASE 2), they can be at distance 2 in the collinearity graph, with exactly one common
neighbour (CASE 3), or they can be opposite (and then they have distance 3 in the
collinearity graph of the parapolar space, CASE 4). Our second main result slightly
extends the first one for these parapolar spaces.

Main Result 2 — Informal statement. Let Γ be a parapolar space of diameter 3
arising from a spherical building B. Let i be such that 1 < i ≤ 4. Then the set of pairs
of points of Γ in mutual positions CASE j, with j ≥ i, uniquely determines Γ, and hence
the corresponding building B.

This statement is trivial for i = 2. For i = 3, it is proved with not much additional effort
together with the case i = 4, which is part of Main Result 1. And that is exactly why we
also include it.

For precise statements, we refer to the subsequent sections.

In order to prove our main results, we introduce the concepts of a round-up triple, and of a
geometric line. These notions can be studied on their own right, and they appear to have
tight connections with (minimal) projective embeddings of the corresponding Grassmann
geometry. In the course of our proof, we determine all round-up-triples and all geometric
lines of Grassmann geometries corresponding with an arbitrary type in any polar space,
and of parapolar spaces related to spherical buildings.

The paper is organized as follows. In the next section, we define the geometries that are
under consideration in this paper. In Section 3, we introduce the notion of round-up triple,
and prove some preliminary statements. We have chosen to do this in full generality in the
framework of arbitrary spherical buildings. However, we will not define all notions that we
need there (for example, the precise definition of a building, retraction onto apartments,
etc.) but refer to the literature such as [1, 10, 12]. In Section 4, we prove our main result
for polar spaces. Section 5 deals with strong parapolar spaces, i.e., opposition of vertices
of type 7 in buildings of type E7 and vertices of type n in buildings of type A2n−1. Here,
we also prove an analogue of our main results for vertices of type 1 and 6 in buildings of
type E6, and for vertices of arbitrary type in projective paces. Section 6 finally deals with
the remaining parapolar spaces of point diameter 3. .
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2 Point-line definitions

Our definitions mostly follow [11].

A point-line space (P ,L) is a set P together with a set L of subsets of P , such that
each L ∈ L has at least two elements. Point-line spaces can be identified with point-line
geometries (that is, bipartite graphs with the two parts labeled “points” and “lines”)
satisfying two requirements: no two lines are incident with exactly the same sets of points
and each line is incident with at least two points. The point-collinearity graph of a point-
line space Γ = (P ,L) is a graph with vertex set P in which two points p, q ∈ P are adjacent
if and only if they are distinct collinear points of Γ. A point-line space is connected if its
point-collinearity graph is connected. For a point p of a point-line space Γ we denote p⊥

the set of all points of Γ collinear with p; the set p⊥ includes the point p itself. A line
is called thick if it has at least three points. The point-line space (P ,L) is said to have
thick lines if all members of L are thick.

A partial linear space is a point-line space in which every pair of distinct points x, y is
contained in at most one line, denoted by 〈x, y〉.

A set S ⊆ P is called a subspace if, whenever two points of a line L belong to S, then all
points of L belong to S. A singular subspace is a subspace that corresponds to a clique
in the point-collinearity graph. A subspace is called convex if, whenever two points p, q
belong to it, then so do all points on any shortest path from p to q in the point-collinearity
graph of (P ,L).

We say here that a subspace of a point-line space Γ is a geometric hyperplane of Γ if it is
a proper subspace meeting every line nontrivially.

A gamma space is a point-line space satisfying one additionall axiom – for every non-
incident point-line pair (p, L), if the point p is collinear with at least two distinct points
of L, then p is collinear with all points of L.

The gamma space (P ,L) is a polar space if (1) every line has at least three points, if (2)
the length of nested sequences of singular subspaces is bounded, and if (3) for every point
p ∈ P , p⊥ is a geometric hyperplane. In a polar space, the singular subspaces endowed
with the lines contained in it are projective spaces. By definition, there is an r ∈ N such
that some singular subspace has dimension r−1, and no singular subspace has dimension
exceeding r− 1. Then r is called the rank of the polar space. Here, any line is considered
as a projective line. For convenience, we view a set of cardinality at least 2 without lines
as a polar space of rank 1, and every element of the set is viewed as a projective space of
dimension 0. A gamma space only satisfying (1) and (3), but not (2) is a polar space of
infinite rank.

Polar spaces of rank 2 are generalized quadrangles, but the converse is only true if one
requires that the generalized quadrangle has thick lines, i.e., every line contains at least
three points. Hence, a thick generalized quadrangle is a polar space of rank 2 which is
also a dual polar space. In general, a generalized quadrangle is either a grid (including
2× k grids, with k > 1 any cardinal), a dual grid, a polar space of rank 2, or the dual of
such.
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Suppose Γ is a point-line space. A symplecton of Γ is a convex subspace S of Γ such that
the point-line space induced by Γ on S is a polar space of rank at least 3, or a generalized
quadrangle.

Suppose ∆ = (V, E) is a graph. Let k ≥ 0 be an integer. Let u, v ∈ V . Then we
denote d∆(u, v) the length of a shortest possible walk from u to v in ∆, and we call this
number the distance from u to v in ∆. We let ∆k(u) = {v ∈ V |d∆(u, v) = k} and we let
∆∗

k(u) = {v ∈ V |d∆(u, v) ≤ k}.

Supppose Γ = (P ,L) is a point-line space with point-collinearity graph ∆. Then Γ is a
parapolar space if it satisfies the following axioms.

(PPS1) Γ is connected and is a gamma space.

(PPS2) For every pair p, q ∈ P with d∆(p, q) = 2, either |p⊥∩q⊥| = 1 or {p, q} is contained
in a symplecton.

(PPS3) Every line of Γ is contained in a symplecton.

Let Γ = (P ,L) be a parapolar space with point-collinearity graph ∆. We say that Γ has
symplectic rank at least r if every symplecton of Γ is a polar space of (polar) rank at least
r. Suppose p, q ∈ P are such that d∆(p, q) = 2. If |p⊥ ∩ q⊥| = 1 then we say that {p, q} is
a special pair; if {p, q} is contained in a symplecton, then {p, q} is a symplectic pair and
we denote S(p, q) the unique symplecton of Γ containing {p, q}. We denote S the set of
all symplecta of Γ. For a point p ∈ P , we let

∆symp(p) = {p′ ∈ ∆2(p)|{p, p′} is a symplectic pair}

∆spec(p) = {p′ ∈ ∆2(p)|{p, p′} is a special pair}

A parapolar space is a strong parapolar space if it has no special pairs.

Let Γ = (P ,L) be a point-line space and suppose ∆ denotes the point-collinearity graph
of Γ. For a point p ∈ P , we denote Γp the geometry of lines and projective planes of Γ on
p. We call Γp the point residue of Γ at p and we denote ∆p the point-collinearity graph
of Γp.

If the parapolar space Γ with diameter 3 arises from a spherical building B, then its points
are the vertices of B of some distinguished type, and if that type is self-opposite, then
opposite vertices correspond with points at maximal distance in the point-collinearity
graph.

In a polar space (P ,L), two singular subspaces U, V are opposite if no point of U ∪ V
is collinear with all points of U ∪ V . Opposite singular subspaces necessarily have the
same dimension. The complex formed by all singular subspaces, structured by inclusion,
naturally forms a spherical building, in which the opposition relation for vertices coincides
with the opposition relation just defined.

The polar space (P ,L) of rank r is non-thick if every next-to-maximal singular subspace is
contained in exactly two maximal subspaces (the latter are also called generators). In this
case, the maximal subspaces fall into two classes, where two generators are in the same
class if and only their intersection has even codimension in both. The oriflamme complex
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is the geometry consisting of all singular subspaces, except for the next-to-maximal ones,
where the two classes of generators are different types of elements of the complex, two of
these being incident (or connected, or forming a simplex) if they intersect in a next-to-
maximal subspace. This complex defines a building of type Dr, r ≥ 2. Here, the types
corresponding to the generators are self-opposite if and only if r is even (in general, a
type is called self-opposite if there exist two opposite elements of that type).

3 Round-up triples

In this section we introduce the notion of round-up triple, first in a very general setting,
and then specializing to geometries and buildings.

3.1 Generalities

Suppose P is a set and F is a set of subsets of P . For a set T ⊆ P of size 3, we say that T
is an F-round-up triple of P if no element of F intersects X at exactly two points. That
is, for every X ∈ F , |X ∩ T | ≥ 2 implies T ⊆ X. If we let L to be a set of F -round-up
triples, then every element of F becomes a subspace of the point-line space (P ,L) (which
might not be a partial linear space).

In this section we first prove the following.

Theorem 3.1 Let Γ = (P ,L) be a point-line geometry with point-collinearity graph ∆.
Suppose Γ has thick lines. Let (F ,⊆) be a poset of subsets of P ordered by inclusion.
Suppose F satisfies the following conditions.

(F1) For every S ∈ F , S is a subspace of Γ and |S| ≥ 2.

(F2) F is closed under taking intersections, as long as the resulting intersection has
cardinality at least two.

(F3) L ⊆ F .

Then the minimal elements of F containing at least three points are (1) the lines of Γ,
and (2) the cocliques C ∈ F of ∆, with |C| ≥ 3 and such that every triple of distinct
points of C is an F-round-up triple.

We break up the proof of this theorem into three lemmas and a conclusion.

Lemma 3.2 Let P be a set and let (F ,⊆) be a poset of subsets of P ordered by inclusion.
Suppose F satisfies (F2) of Theorem 3.1. If X ∈ F and |X| ≥ 3, then X is a minimal
element of (F ,⊆) if and only if every 3-element subset of X is an F-round-up triple.

Proof. Let X ∈ F be such that |X| ≥ 3.
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Suppose first that X is minimal in F and let T be a 3-element subset of X. Suppose
Y ∈ F is such that |Y ∩ T | ≥ 2. Then |Y ∩X| ≥ 2, therefore by (F2) Y ∩X ∈ F . By
the minimality of X this implies that X ⊆ Y ∩X. Therefore T ⊆ Y .

Suppose now that every 3-element subset of X is an F -round-up triple and let Y ∈ F be
such that Y ! X. Let x ∈ X \ Y and let {y, z} be a 2-element subset of Y , the latter
exists by (F2). Then {x, y, z} is a subset of X of cardinality 3 which is not an F -round-up
triple, a contradiction. Therefore X must be minimal. !

Lemma 3.3 Let Γ = (P ,L) be a point-line geometry. Let (F ,⊆) be a poset of subsets of
P ordered by inclusion. Suppose F satisfies (F1) of Theorem 3.1. If L ∈ L ∩ F , then
every subset of L of cardinality 3 is an F-round-up triple.

Proof. Let L ∈ L ∩ F and let T ⊆ L be such that |T | = 3. Suppose Y ∈ F and
|Y ∩ T | = 2. By (F1) Y is a subspace of Γ, therefore T ⊆ L ⊆ Y . !

Lemma 3.4 Suppose Γ = (P ,L) is a point-line geometry with point-collinearity graph
∆. Let (F ,⊆) be a poset of subsets of P ordered by inclusion. Suppose F satisfies (F3)
of Theorem 3.1. If T is an F-round-up triple then either (i) T is a clique of ∆ contained
in a line of Γ or, else, (ii) T is a coclique of ∆.

Proof. Suppose {p, q} ⊆ T are distinct collinear points of Γ and let L = 〈p, q〉. Then
|L ∩ T | ≥ 2. By (F3) L ∈ F , therefore T ⊆ L. !

Proof of Theorem 3.1. By Lemmas 3.3 and 3.2, and since the lines of Γ are thick, the
subsets of P described in the conclusion are minimal elements of F of cardinality at least
3. It remains to show that every minimal element of F of cardinality at least 3 is either a
line of Γ or a coclique of ∆, and this follows from Lemma 3.4 combined with Lemma 3.2.

!

We will apply Theorem 3.1 in Sections 5 and 6 to parapolar spaces arising from spherical
buildings.

3.2 Geometries arising from spherical buildings

In this subsection we use the following notation.

Let B be a building of a spherical type M , a Coxeter diagram over a type set I. Suppose
J ⊆ I and I ′ = I − J . The J-Grassmann geometry Γ = (P ,L) is a point-line geometry
whose points p ∈ P are the residues of B of type I ′. In this section, we consider residues
as sets of chambers of B, hence viewing buildings as chamber systems. The lines L ∈ L
of Γ are the point shadows of the panels of B of all possible cotypes {j} ⊆ J , i.e., the sets
of residues of type I ′ meeting a panel nontrivially (viewing a panel as a set of chambers).

Given L ∈ L, more than one panel of B can have the point shadow L. More precisely,
suppose P is a panel of B whose point shadow is L. Then P is of type {j} ⊆ J . Let
T = {j} ∪ [I ′ −D0,1(j)], where D0,1(j) denotes the set consisting of j and all nodes i ∈ I
of the diagram M connected to the node j by at least one bond, and let R be the residue
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of B of type T containing P . The panels of B whose point shadow is L are precisely the
panels of R of type {j}. The residue R is the largest by inclusion residue of B with point
shadow L (see [12] Chapter 12; [9] Chapter 5; [8]). The residue R can also be described
as the largest by inclusion residue of B containing P and having the form P × P ′, where
× denotes the direct product of chamber systems and P ′ is a residue of B, intersecting
P , whose type is contained in I ′. For a point or line z ∈ P ∪L, we denote Rz the residue
of B corresponding to z. Also, the type of a residue R will be denoted by typ(R).

In the sequel, we will refer to Hypothesis (A) when Γ = (P ,L) is the J-Grassmann
geometry of the spherical building B, and we denote ∆ the point collinearity graph of Γ.
Moreover, we assume that the sets J and I ′ are stabilized by the opposition involution of
M . If the latter is not satisfied, we call it Hypothesis (A*) and we denote I ′′ the image
of I ′ under the opposition involution.

We need the following two results of Blok and Brouwer that originally were stated for
{j}-Grassmannians, but the same proofs go through for general J-Grassmannians.

Proposition 3.5 (Proposition 7.1 of [3]) Suppose Hypothesis (A*) holds and let R
be a residue of B of type I ′′. Then the set of residues of B of type I ′ not opposite to R is
a geometric hyperplane of Γ.

Suppose Hypothesis (A*) holds. For a triple {P, Q, R} of distinct residues of B of type
I ′, we say that {P, Q, R} is a round-up triple of B if no residue of B is opposite to exactly
one of P , Q, R. For a residue R of B of type I ′′, we denote HB,R, or just HR, the set of
all residues of B of type I ′ not opposite to R. By Proposition 3.5 HB,R is a hyperplane
of Γ. We let HB,I′ = {HB,R| R residue of B of type I ′′} and we let HB,I′ be the set of all
subsets of P containing at least two points and having the form ∩X, X ⊆ HB,I′ .

Proposition 3.6 (Lemma 6.4 of [3]) Suppose Hypothesis (A*) holds and let R be a
residue of B with point shadow S.
(i) Suppose Q is a residue of B of type I ′′ and suppose S − HQ += ∅. Then S ∩ HQ is
a geometric hyperplane of Γ|S consisting of the points p ∈ S, such that Rp ∩ R is not
opposite to projR(Q) in the building Q.
(ii) Suppose Q′ is a residue of R of type opposite to I ′∩typ(R). Let H ′ be the set of points
p ∈ S such that Rp ∩ R is not opposite to Q′ in the building R. Then H ′ is a geometric
hyperplane of Γ|S and there exists a residue Q of B of type I ′′ such that projR(Q) = Q′

and H ′ = S ∩HQ.

Lemma 3.7 Suppose Hypothesis (A*) holds. Then the round-up triples of Γ are precisely
the HB,I′-round-up triples of P. !

In Propositions 3.8-3.11 we look at the relationship of hyperplanes HR, and round-up
triples of Γ, with residues of B.

Suppose G = (V, E) is a graph, let H = (V ′, E ′) be a subgraph of G, and let x ∈ V . We
say that H is strongly gated in G with respect to x if there exists g ∈ V such that, for
all y ∈ V ′, dG(x, y) = dG(x, g) + dH(g, y). The vertex g is called the gate of x in H. The
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residues of a building are strongly gated with respect to the chambers of the building;
the gate of a chamber c in a residue R is called the projection of c on R and is denoted
projR(c).

Proposition 3.8 Suppose Hypothesis (A*) holds. Let S ⊆ P be the point shadow of a
residue R of B. Then, for every p ∈ P − S, there exists q ∈ P such that S ⊆ Hq and
p ∈ P −Hq.

Proof. Let p ∈ P − S. Let P = Rp and let x be a chamber in P . Let g = projR(x) and
let w1 = (x, . . . , g) be a geodesic from x to g in B. Let h be a chamber of R at a maximal
distance from g (that is, g and h are opposite in R) and let w2 = (g, . . . , h) be a geodesic
from g to h in R.

The gallery w1 ◦ w2 is a geodesic from x to h in B and can be extended to a geodesic
w = w1◦w2◦w3 in B, where w3 is a geodesic beginning at h and terminating at a chamber
y opposite to x in B. We have h = projR(y).

Let Q be the residue of B of type I ′′ containing y. Since x and y are opposite in B, we
have p +∈ HQ. We claim that S ⊆ HQ.

Let A be the unique apartment of B containing x and y. Since A is convex in B, all
chambers of w lie in A. Let t ∈ S and let T = Rt. Suppose, first, that T ∩ A += ∅. Then,
since T is gated in B and R and A are convex in B, we have T ∩R∩A += ∅. Since x is the
unique chamber of A opposite to y, the residue P ∩A is the unique residue of A opposite
to Q ∩ A. Since p +∈ S, we have T += P , therefore T ∩ A is not opposite to Q ∩ A. This
shows that t ∈ HQ.

Suppose now that T ∩ A = ∅. Let h′ = proj(T∩R)(y) and let v be a geodesic from h to
h′ in R. Let vA be the unique gallery in A that begins at h and has the same type as
v, let h′A be the terminal chamber of vA, and let TA be the residue of B of type I − J
containing h′A. Then TA ∩ A += ∅ and TA ∩ R += ∅, therefore by the first case TA and Q
are not opposite in B. This implies that T and Q are not opposite in B. !

Corollary 3.9 Suppose the hypothesis of Proposition 3.8 holds. If S += P, then S =
∩{HQ|Q ∈ X} for some set X of residues of B of type I ′′. !

Corollary 3.10 Suppose the hypothesis of Proposition 3.8 holds. If {p, q, r} ⊆ P is a
round-up triple of Γ and p, q ∈ S, then r ∈ S. !

Proposition 3.11 Suppose that Hypothesis (A*) holds. Let R be a residue of B and let
S ⊆ P be the point shadow of R. Suppose {p1, p2, p3} ⊆ S is a round-up triple of B and
let Ri = R ∩Rpi. Then {R1, R2, R3} is a round-up triple of the building R.

Proof. Let I ′R = I ′∩typ(R) and let I ′′R be the image of I ′R under the opposition involution
of the diagram M |typ(R). Suppose by way of contradiction that Q is a residue of R not
opposite to R1 and R2 and opposite to R3.

Since Q is opposite to R3, we have typ(Q) = I ′′R. By Proposition 3.6 there is a residue Q′ of
B of type I ′′ such that HR,Q = {Z ∩R|Z ∈ HB,Q′ and Z ∩R += ∅}. Since {R1, R2} ⊆ HR,Q
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and R3 +∈ HR,Q, we obtain {Rp1 , Rp2} ⊆ HB,Q′ and Rp3 +∈ HB,Q′ , a contradiction, since
{p1, p2, p3} is a round-up triple. !

Let B be a building over a type set I with Coxeter group (W, I), and suppose Q and R
are residues of B. Let WQR be the set of all galleries in B connecting chambers of Q to
chambers of R, and let w ∈WQR be a gallery of the smallest length among all galleries in
WQR. The type of w is a word t = typ(w) in the free monoid of words on I. Let δ(Q, R)
be the element of the group W corresponding to the word t. Then δ(Q, R) depends only
on Q and R and does not depend on the choice of the particular shortest gallery w ∈WQR

(see [12]).

Our next aim is to prove the following rather fundamental property of round-up triples.

Proposition 3.12 Suppose that Hypothesis (A*) holds. Let T = {p1, p2, p3} be a round-
up triple and let Ri = Rpi. Then δ(Ri, Rj) = δ(R1, R2) for all pairs {i, j} ⊆ {1, 2, 3}.

Let B be a building over a type set I. Suppose A is an apartment of B and suppose x is
a chamber of A. Then retrA,x : B → A is the retraction of B onto A with center x defined
in [12]; see also [10]. The retraction retrA,x is a distance contracting map. For a gallery
w in B, typ(w) denotes the type of w; typ(w) is a word in the free monoid of words on I
consisting of the types of the arcs of w.

Our proof of Proposition 3.12 relies on the following lemma.

Lemma 3.13 Suppose that Hypothesis (A*) holds. Let T = {p1, p2, p3} be a round-up
triple and let Ri = Rpi. Suppose A is an apartment of B such that A ∩ R1 += ∅ and
A ∩ R2 += ∅, and let x be a chamber of A opposite to a chamber of A ∩ R1. Then
retrA,x(R3) = A ∩R1.

Proof. Let Q1 = R1 ∩A and let Q′
1 be the unique residue of A opposite to Q1. Since A

is thin and Q1 = A ∩ R1 += A ∩ R2, the residues Q′
1 and A ∩ R2 of A are not opposite to

each other in A.

Let R′
1 be the residue of B of type I ′′ containing Q′

1. Then R′
1 is opposite to R1 and is

not opposite to R2 in B. Since T is a round-up triple, R′
1 must be opposite to R3 in B.

We have x ∈ Q′
1 ⊆ R′

1. Therefore R3 contains a chamber x′ opposite to x in B. This im-
plies that retrA,x(R3) contains a chamber x′′ opposite to x in A and, therefore, retrA,x(R3)
is opposite to Q′

1 in A. Since A is thin, retrA,x(R3) = Q1. !

For an element w of a Coxeter group (W, I), we denote l(w) the length of w, that is the
number of terms in the shortest word over I representing w.

Proof of Proposition 3.12. It suffices to show that δ(R1, R2) = δ(R2, R3) and the
result will follow by symmetry.

Let A and x be as in Lemma 3.13. Then retrA,x(R2) = A ∩ R2 and by Lemma 3.13
retrA,x(R3) = A ∩ R1. Let w be a shortest gallery among the galleries in WR2R3 , and
let w′ = retrA,x(w) be the nonstammering gallery which is the image of w under retrA,x.
Then w′ ∈WR2R1 .
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Consider the hypothesis of Lemma 3.13 with the roles of R1 and R3 interchanged and
with A and x renamed A′ and x′. Let w′′ = retrA′,x′(w′) be the image of w′ under retrA′,x′ .
By Lemma 3.13 w′′ ∈ WR2R3 . By a property of retractions (see [12] or [10]), typ(w′) is
obtained from typ(w), and typ(w′′) is obtained from typ(w′), by omiting a number of
terms, possibly zero. Since w is a shortest gallery in WR2R3 , we obtain l(w′′) = l(w).
Therefore typ(w′′) = typ(w′) = typ(w). !

We will use Propositions 3.12 in the following form.

Corollary 3.14 Suppose that Hypothesis (A*) holds. Let T = {p1, p2, p3} be a round-up
triple. Then d∆(pi, pj) = d∆(p1, p2) for all pairs {pi, pj} ⊆ {p1, p2, p3}. Furthermore, if
Γ is a parapolar space and d∆(p1, p2) = 2, then either all pairs {pi, pj} ⊆ {p1, p2, p3} are
symplectic or, else, they all are special.

Suppose Hypothesis (A*) holds. We say that a subset L ⊆ P is a geometric line of B (or
of Γ) if any residue of B of type I ′′ is non-opposite either to all of Rp, with p ∈ L, or to
exactly one of Rp, with p ∈ L.

Let L be a geometric line. It is straightforward to see that every triple in L is a round-up
triple. Hence we can state:

Corollary 3.15 Suppose that Hypothesis (A*) holds. Let L be a geometric line, and
let p, q ∈ L. Then d∆(x, y) = d∆(p, q) for all pairs {x, y} ⊆ L. Furthermore, if Γ is a
parapolar space, {p, q} is a symplectic pair, and L is contained in a symplecton, then L is
a geometric line in that symplecton (viewed as a building).

4 Polar spaces

4.1 Statement and Strategy

The aim of this section is to show the following theorem.

Theorem 4.1 Let there be given all pairs of opposite vertices of a certain (unknown)
self-opposite type t of the (not necessarily thick) building B associated to an (unknown)
polar space Ω with thick lines of finite (unknown) rank, or to its oriflamme complex.
Then there is a mathematical algorithm that allows to determine the isomorphism class
of Ω and the type t, up to a diagram automorphism, except that, if t is the type of the
maximal singular subspaces of a polar space associated to a non-degenerate quadratic form
of maximal Witt index 2n− 1 in a (4n− 2)-dimensional projective space, n ≥ 2, then the
algorithm tells us that t is the type of one of the families of maximal singular subspaces of
a polar space associated to a non-degenerate quadratic form of maximal Witt index 2n in
a (4n − 1)-dimensional projective space, and the associated building Ω is necessarily the
corresponding oriflamme complex.

Hence, if t is not the type of the maximal singular subspaces of a polar space associated to
a non-degenerate quadratic form of maximal Witt index 2n− 1 in a (4n− 2)-dimensional
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projective space, n ≥ 2, then every permutation of the set of vertices of type t of B
preserving opposition and non-opposition is induced by a collineation of Ω, except if Ω is
a polar space of type D4 and (1) the vertices under consideration are the lines of Ω, or (2)
the vertices under consideration are of end-node type, but not the points.

In the former case (1), which we can detect from the given pairs of opposite vertices,
every permutation of the set of lines preserving opposition and non-opposition is induced
by an automorphism of the building of type D4 corresponding to Ω (and that automorphism
might be non-type preserving, in particular, trialities are allowed).

In the latter case (2), which we can also detect from the given pairs, every permutation of
the given set of vertices preserving opposition and non-opposition is induced by an auto-
morphism of the building of type D4 corresponding with Ω, but this time the automorphism,
preserving type t, can only be type preserving, or a duality.

The maximal singular subspaces of polar spaces associated to non-degenerate quadratic
forms of maximal Witt index in (4n−2)-dimensional projective spaces are a true exception
to the theorem. Indeed, consider such a polar space Ω of rank 2n−1. Then Ω corresponds
to a quadric of Witt index 2n − 1 in some projective space PG(4n − 2, K), with K some
field. Embed Ω into a hyperbolic quadric Ω′ of rank 2n, living in PG(4n− 1, K). Let G be
one of the classes of maximal singular subspaces of Ω′. There is a bijection β attaching
to each maximal subspace S of Ω the unique member of G containing S. Moreover, since
the rank of Ω′ is even, we have that, for each pair (S, S ′) of maximal singular subspaces
of Ω, S is opposite S ′ if and only if β(S) is opposite β(S ′). Hence every automorphism
α of Ω′ preserving G induces a permutation S /→ β−1(α(β(S))) on the set of maximal
singular subspaces of Ω preserving opposition. If α does not stabilize Ω, then clearly this
permutation cannot be induced by an automorphism of Ω.

Let us also remark that we cannot always reconstruct B since, if Ω is non-thick, there are
essentially two choices for B: a non-thick building, or the oriflamme complex. The reason
we want to include the non-thick case here is for the next-to-maximal singular subspaces,
which are not elements of the building in the oriflamme case.

The strategy of the proof is as follows. We first classify the round-up triples of vertices
of type t in all buildings arising from polar spaces or their oriflamme complexes. Such
triples will usually be collinear points in the t-Grassmannian, but in some cases, also other
triples turn up. Then we determine precisely in which cases round-up triples give rise to
geometric lines that are not lines in the t-Grassmannian. In order to distinguish between
these, we determine maximal cliques in the “geometric collinearity graph”, defined by
these geometric lines. Looking at the behaviour of these cliques with respect to these
triples, we will be able to recover the t-Grassmannian. Together with opposition, this will
enable us to identify the vertices of type t − 1 (or, in some cases, those of type t − 2),
and determine the corresponding opposition relation. Continuing this procedure, we will
eventually get the point set of Ω, exactly when non-opposition defines the collinearity
relation of a polar space, which must necessarily be Ω. In the course of the proof, we will
recognize a case met exactly by the polar spaces of type D4. We will have to treat this
case separately.
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4.2 Preliminary lemmas

We now embark on the proof of Theorem 4.1. Throughout, let Ω be a polar space of rank
r at least 3, with thick lines and let i be such that 0 ≤ i < r. For the time being, we do
not put any restriction on Ω. We use common terminology and notation, such as A⊥ for
the set of points of Ω collinear to all points of the set A (which is also supposed to be a set
of points). We use one, perhaps less standard, convention, and that is, for a non-maximal
singular subspace U , we denote by ResΩ(U) the polar space obtained by considering all
singular subspaces of Ω which properly contain U .

We denote by B a building corresponding to Ω. The building B is unique if Ω is thick, but
there are two choices if Ω is non-thick: the canonical non-thick building, or the oriflamme
complex, see [12].

Let U, V,W be three singular subspaces of dimension i of Ω. Recall that {U, V,W} is
a round-up triple if the subspaces U, V,W have the same dimension, and if no singular
subspace is opposite exactly one of U, V,W .

We want to determine all round-up triples of singular subspaces of dimension i of Ω. We
start with a lemma stating an equivalent, workable condition for being a round-up triple
in a polar space.

Lemma 4.2 Let U, V,W be three singular subspaces of dimension i of the polar space
Ω. Then {U, V,W} is a round-up triple if and only if the following two conditions are
satisfied.

(RU1) We have U⊥ ∩ V ⊥ = V ⊥ ∩W⊥ = W⊥ ∩ U⊥.

(RU2) Whenever a line L contains two distinct points u, v with U ⊆ u⊥ and V ⊆ v⊥, then
there is a point w ∈ L with W ⊆ w⊥.

Proof. First suppose that {U, V,W} is a round-up triple. To prove (RU1), we may
suppose without loss of generality, and by way of contradiction, that there is a point
x ∈ (U⊥ ∩ V ⊥) − W⊥. Then x /∈ W and we can include x in a singular subspace W ′

opposite W . Since x is collinear with all points of both U and V , the subspace W ′ can
neither be opposite U nor V .

To prove (RU2), we may assume, by way of contradiction, that a line L contains two
distinct points u, v with U ⊆ u⊥ and V ⊆ v⊥, and with W⊥ ∩ L = ∅. The latter implies
that there is a singular subspace W ′ containing L and opposite W . As in the previous
paragraph, this leads to the contradiction that W ′ is not opposite U nor V .

Now suppose U, V,W are three singular subspaces satisfying both (RU1) and (RU2). By
assumption, these have the same dimension.

Let W ′ be a singular subspace opposite W but not opposite U nor V . Since U, V,W ′

have the same type, there are points u, v ∈ W ′ collinear with all points of U and V ,
respectively. By (RU1), the points u and v are distinct. But they are clearly collinear,
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and so there is a point w on the line 〈u, v〉, and hence in W ′ collinear with all points of
W , contradicting the fact that W ′ is opposite W . !

So, from now on, when we have a round-up triple {U, V,W}, we will freely use the
Conditions (RU1) and (RU2) of Lemma 4.2.

The surprising, nice and very useful thing about (RU1) and (RU2) is that these are
residual properties, whereas the definition of round-up is far from residual, since no two
singular subspaces in a proper residue can be opposite each other! This is, however, in
accordance with Proposition 3.11. We make this more concrete with the following lemma
which completes Proposition 3.11 to an “if-and-ony-if”-statement in this particular case.

Lemma 4.3 Let U, V,W be three singular subspaces. Let p be a point of Ω in U ∩V ∩W .
Then {U, V,W} satisfies Conditions (RU1) and (RU2) if and only if U, V,W , viewed as
subspaces of the residue of Ω in p satisfy Conditions (RU1) and (RU2) inside ResΩ(p).

Proof. The assertion follows easily from the fact that collinearity of points in ResΩ(p)
is equivalent with the corresponding lines of Ω being coplanar, noting that, for (RU2), if
two points of a line of Ω are contained in U⊥ and V ⊥, respectively, then every point of
that line is collinear with p. !

The next lemma deals with the case where a round-up triple is contained in a common
singular subspace.

Lemma 4.4 Let {U, V,W} be a round-up triple such that U and V are contained in a
(minimal) common singular subspace Z. Then also W is contained in Z, and we have
1 + dim U = dim Z and U ∩ V = V ∩W = W ∩ U .

Proof. Considering the residue of Z in the building B, Corollary 3.10 implies that W
is contained in Z. Hence, by Proposition 3.11, {U, V,W} is a round-up triple in the
projective space Z. The assertion now follows from Subsection 5.2. !

Lemma 4.5 Let {U, V,W} be a round-up triple. Then U ∩ V = V ∩W = W ∩ U .

Proof. By symmetry, it suffices to prove that U ∩ V ⊆ W . Considering the residue of
U ∩ V in B, this follows from Corollary 3.10. !

Lemma 4.6 Let U, V,W be maximal singular subspaces satisfying Conditions (RU1) and
(RU2). Then 2 + dim(U ∩ V ) ≥ dim U .

Proof. Suppose, by way of contradiction, that 2 + dim(U ∩ V ) < dim U , with U, V,W
maximal subspaces satisfying (RU1) and (RU2). In the residue ResΩ(U∩V ), the subspaces
U, V and W are opposite maximal singular subspaces (using Lemma 4.5). Hence we may
assume, using Lemma 4.3, that U, V,W are mutually opposite maximal singular subspaces,
and that the rank of Ω is at least 3.

Let u be any point of U . Since the rank of Ω is at least 3, there is a plane π through u
meeting V in a line L. If π met W in a line M , then L∩M would belong to V ∩W , which
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is empty, hence we obtain a contradiction. Consequently |π ∩W | ≤ 1. This implies that
we can choose a line K through u not meeting W . Since K meets L, say in the point v,
we have a line 〈u, v〉 with a point u ∈ U⊥ = U and a point v ∈ V ⊥ = V , but containing
no point in (the perp of) W . Hence U, V,W cannot satisfy (RU2), a contradiction. !

Lemma 4.7 Let U, V,W be nonmaximal singular subspaces, satisfying Conditions (RU1)
and (RU2). Then 1 + dim(U ∩ V ) ≥ dim U .

Proof. Suppose, by way of contradiction, that 1 + dim(U ∩ V ) < dim U , with U, V,W
nonmaximal subspaces satisfying (RU1) and (RU2). In the residue ResΩ(U ∩V ), the sub-
spaces U, V and W are pairwise disjoint nonmaximal singular subspaces (using Lemma 4.5)
of dimension at least 1. Hence we may assume, using Lemma 4.3, that U, V,W are pair-
wise disjoint nonmaximal singular subspaces of dimension at least 1, and that the rank of
Ω is at least 3. Moreover, by Lemma 4.4, we may assume that U, V,W are not contained
in a common subspace (which by Condition (RU1) again implies that they are pairwise
not contained in a singular subspace).

Let VU and WU be the set of points of V and W , respectively, collinear with all points
of U , and set UV = 〈U, VU〉 and UW = 〈U,WU〉. In ResΩ(U) we can find a point not
collinear with all points of the respective singular subspaces UV and UW (using the fact
that ResΩ(U) is a polar space with thick lines). Let U ′ be a singular subspace of dimension
1 + dim U , containing U , corresponding with such point of ResΩ(U), and let u′ be a point
of Ω contained in U ′ − U . Interchanging the roles of U and V , we construct a singular
subspace V ′ with similar properties, but with U and V interchanged. It follows from these
properties that the subspace V ′ ∩W⊥ has dimension at most −1 + dim V .

Now let Z be a singular subspace of dimension dim V ′ containing u′ and intersecting V ′

in a hyperplane H of V ′. The hyperplane H cannot coincide with V as u′ is not collinear
with all points of VU ⊆ V by the choice of U ′. By the same token, VU +⊆ H. Now,
from Condition (RU1) follows that VU = VW ; also, W⊥ does not contain V ∩ H, as the
latter is a hyperplane in V and otherwise W⊥ would contain V ∩H and VU , which span
the whole of V , a contradiction. All this implies that H ∩ W⊥ has dimension at most
−2 + dim H. This implies that W⊥ ∩ Z has dimension at most −2 + dim Z. Hence we
can find a line L in Z containing u′ disjoint from W⊥. But u′ ∈ U⊥ and the intersection
point L ∩ H belongs to V ⊥ (L indeed intersects H nontrivially as H is a hyperpane of
Z). This contradicts Condition (RU2) and the assertion follows. !

Hence, denoting the intersection of U, V,W by C, we have the following cases for a round-
up triple {U, V,W}.

(NM1) U, V,W are collinear points in ResΩ(C), and ResΩ(C) has rank ≥ 2.

(MS1) U, V,W are distinct points in ResΩ(C), and ResΩ(C) has rank 1.

(NM2) U, V,W are opposite points in ResΩ(C), W ∈ {U, V }⊥⊥, and ResΩ(C) has rank ≥ 2.

(MS2) U, V,W are opposite lines in ResΩ(C), W meets every line that meets both U and
V , and ResΩ(C) has rank 2.
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The geometric lines corresponding to (NM1) and (MS1) are just the lines of the cor-
responding Grassmannian, which we shall call Grassmannian lines. Now we determine
precisely when the cases (NM2) and (MS2) give rise to geometric lines.

Lemma 4.8 A set L of opposite points of a polar space Ω of rank r ≥ 2 is a geometric
line if and only if Ω corresponds to a symplectic polarity in some PG(2n− 1, K), for some
field K, and L corresponds to an ordinary but non-singular line of PG(2n− 1, K).

Proof. Since two opposite points always lie in a rank 2 residue, it suffices to prove the
lemma for r = 2. So let T be a set of opposite points constituting a geometric line. If a
point x is collinear with two elements of T , then all elements of T are collinear with x,
hence we see that T is contained in a trace {x, y}⊥. Suppose, by way of contradiction,
that some line L through x does not contain any member of T . Then no point of T is
collinear with the point on L collinear with y, contradicting the fact that T is a geometric
line. Hence T = {x, y}⊥. From the definition of geometric line and the fact that the
automorphism group of Ω is distance transitive now immediately follows that x, and
hence every point, is regular. Since every point is non-opposite some point of T , or in
other words z⊥ ∩ x⊥ ∩ y⊥ is nonempty for every point z, the set T is a long hyperbolic
line, in the terminology of [13], see also [14]. Now [13], see also Theorem 6.5.3 of [14],
concludes the proof of the lemma. !

It now follows immediately that for i < r − 1, the polar space Ω admits a geometric line
which is not a Grassmannian line if and only if Ω arises from a symplectic polarity (then
B is a split building of absolute and relative type Cn). For ease of reference, we will call
such polar space a symplectic polar space.

Lemma 4.9 A set L of opposite lines of a generalized quadrangle Ω with thick lines is a
geometric line if and only if Ω is either a grid and L consists of one class of generators,
or Ω is the dual of a symplectic quadrangle and L is as in the dualized rank 2 case of
Lemma 4.8.

Proof. If Ω is non-thick, then we clearly have a grid and the result follows trivially. If
Ω is thick, then this follows from the dual of the previous lemma. !

It now follows immediately that for i = r − 1, the polar space Ω, which we now assume
to be thick, admits a geometric line which is not a Grassmannian line if and only if Ω is
a quadric of maximal Witt index in even-dimensional projective space (then B is a split
building of absolute and relative type Bn). For ease of reference, we will call such a polar
space a parabolic polar space.

We now define the following graph ∆i = (Yi,∼), where i < r. The set Yi is the set
of singular subspaces of Ω of dimension i, two vertices U, V being adjacent if they are
contained in a common geometric line. Our first aim is to determine all maximal cliques
of this graph. In fact, we will treat this problem slightly more general, by noting that,
if there exist round-up triples not contained in a Grassmannian line, then two distinct
singular subspaces U, V of dimension i are adjacent if and only if (1) for i < r − 1,
dim(U ∩ V ) = −1 + dim U , or (2) for i = r − 1, dim(U ∩ V ) ≥ −2 + dim U . But first we
treat the case where every round-up triple would be contained in a Grassmannian line.
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So let ∆′
i be the graph on Yi where two distinct vertices U, V are adjacent if dim(U ∩V ) =

−1 + dim U and, in case i < r − 1, then we also require that U and V are contained in a
common maximal subspace.

Lemma 4.10 Any maximal clique of ∆′
i, i < r − 1, either corresponds to the set of all

singular subspaces of dimension i contained in a fixed singular subspace of dimension
i + 1, or i < r − 2 and then it can also correspond to the set of all singular subspaces
of dimension i contained in a maximal singular subspace and containing a fixed singular
subspace of dimension i− 1. If i = r− 1, then any maximal clique corresponds to the set
of maximal subspaces containing a fixed next-to-maximal singular subspace.

Proof. Suppose i < r − 1. Let U ∼ V in ∆′
i. Then, by definition, all points of U are

collinear with all points of V . Hence, the union of all points of the subspaces of dimension
i corresponding to the vertices of ∆′

i of a maximal clique C, is a set of mutually collinear
points in Ω. Hence it is contained in a singular subspace Z, which we may assume to
be of minimal dimension. If dim Z = i + 1, then clearly C consists of all subspaces of Z
of dimension i, and this is clearly a maximal clique. Suppose now dim Z > i + 1. Then
there are three elements U, V,W ∈ C generating a subspace S of dimension i+2. Clearly,
U ∩ V = V ∩ W = W ∩ U , and any other vertex A ∈ C must contain U ∩ V ∩ W . By
maximality of the clique C, it now follows easily that Z is a maximal singular subspace (as
every singular subspace is contained in a maximal one) and every member of C contains
U ∩ V .

Now suppose i = r − 1. Let {U, V,W} be a triple of pairwise adjacent vertices in ∆′
i. By

definition, U∩V is (i−1)-dimensional. If W does not contain U∩V , then (W∩U)−(U∩V )
is nonempty, and any point x in that set is collinear with all points of (U ∩ V ) ∪ ((W ∩
V )− U). Since also ((W ∩ V )− U) is nonempty, this implies that x is collinear with all
points of V , contradicting the assumption x /∈ V . Hence U ∩ V = V ∩W = W ∩ U and
the assertion follows. !

Now let ∆′′
i be the graph on Yi where two distinct vertices U, V are adjacent if dim(U∩V ) =

−1 + dim U when i < r − 1, or dim(U ∩ V ) ≥ i − 2 when i = r − 1. We first treat the
case of maximal singular subspaces.

Lemma 4.11 Any maximal clique in ∆′′
i , with i = r− 1, corresponds either to the set of

maximal singular subspaces containing a fixed singular subspace of dimension i− 2, or to
the set of all maximal singular subspaces intersecting a fixed maximal singular subspace in
a singular subspace of dimension at least i− 1, or every pair of members of the maximal
clique intersects in a subspace of dimension i− 2 and they all contain a fixed subspace of
dimension i− 3.

Proof. Let Z be a fixed member of a given maximal clique C in ∆′′
i and suppose that

Z is chosen in such a way that, if C contains maximal singular subspaces intersecting one
another in a subspace of dimension i− 1, then Z is one of those.

Suppose first that there exist three members U, V,W,∈ C intersecting Z in distinct sub-
spaces of dimension i − 1 with dim(Z ∩ U ∩ V ∩ W ) = i − 3. Suppose there exists an
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A ∈ C intersecting Z in a subspace A′ of dimension i − 2. Then our assumptions imply
that A′ is non-contained in at least one of U, V,W , say U . Hence there is a point x of
U ∩ A not in Z. Then x is collinear with all points of (Z ∩ U) ∪ (Z ∩ A), which spans
Z. This contradiction shows that C consists of all maximal singular subspaces of Ω which
intersect Z in a subspace of dimension at least i− 1.

Next we assume that all members of C which intersect Z in a hyperplane of Z contain a
fixed subspace S of dimension i− 2, and there are at least two members U, V intersecting
Z in distinct hyperplanes. By assumption, all other members of C intersecting Z in a
hyperplane of Z, contain S, and by the same argument as in the previous paragraph, the
intersection with Z of every member of C intersecting Z in a subspace of dimension i− 2
must be contained in both Z ∩ U and Z ∩ V , and so coincides with S. Consequently,
every member of C contains S and C consists of the set of all maximal singular subspaces
containing S.

Next, we assume that there is a member U of C intersecting Z in a hyperplane H of Z, and
every other member of C intersecting Z in a hyperplane of Z contains H. Since, by the
same token as before, every other member of C intersects Z in a subspace contained in H,
we deduce by the maximality of C that every maximal singular subspace of Ω containing
H belongs to C. Since, again by the maximality of C, the latter does not consist of
all maximal singular subspaces of Ω through a singular subspace of dimension i − 2 (as
otherwise this subspace belongs to H and we would be in the previous case), there exist
two members V, W ∈ C with Z ∩ V += Z ∩W and with both intersections of dimension
i−2 and contained in H. This implies that Z ∩V ∩W has dimension i−3 and so there is
some point y ∈ V ∩W that does not belong to Z. But that point is collinear to all points
of Z∩V and Z∩W , and these points generate H. Hence y belongs to a maximal singular
subspace A intersecting Z in H. Clearly V ∩ A is (i − 1)-dimensional. Since A ∈ C, we
are back to the previous case, with A playing the role of Z.

The previous arguments now imply that all members of C pairwise intersect in subspaces
of dimensjon i − 2. Now suppose for two members U, V ∈ C, the intersections Z ∩ U
and Z ∩ V together generate Z. Since Z ∩ U ∩ V has dimension i − 4, there is a point
x ∈ (U ∩ V ) − Z, which is then collinear to all points of Z, a contradiction. Hence the
set S = {Z ∩ U : U ∈ C − {Z}} is a set of (i − 2)-spaces of Z pairwise intersecting in
(i− 3)-spaces. Dually, we have a set of lines pairwise intersecting in a point. It is easy to
see that either all these lines contain a fixed point, or they are contained in a fixed plane.
Hence, all members of S are either contained in a hyperplane H, or they all contain a
fixed (i− 3)-space. In the first case, by maximality of C, all maximal singular subspaces
containing H belong to C, contradicting our hypothesis on C. Hence all members of C
contain a fixed (i− 3)-space Q. !

The last case of Lemma 4.11 really occurs, for instance in the unique orthogonal polar
spaces of rank 3 in projective 6-space; the maximal clique consists of all planes in a sub-
polar space in projective 5-space (a Klein quadric) belonging to one system of generators.

If Ω is a hyperbolic quadric, then we are also interested in the maximal cliques of the
subgraph ∆∗

i of ∆′′
i , with i = r−1, consisting of all maximal singular subspaces belonging

to one fixed system of generators, where i is odd (if i is even, then in the building
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B corresponding to the oriflamme complex, no type corresponding to generators is self-
opposite). Since maximal cliques of an induced subgraph are contained in maximal cliques
of the ambient graph, we immediately obtain the following corollary.

Corollary 4.12 Any maximal clique in ∆∗
i , with i = r − 1 odd, corresponds either to

the set of maximal singular subspaces containing a fixed singular subspace of dimension
i− 3, or to the set of all maximal singular subspaces intersecting a fixed maximal singular
subspace not belonging to ∆∗

i in a singular subspace of dimension i− 1.

Now we handle the case of non-maximal singular subspaces.

Lemma 4.13 Any maximal clique in ∆′′
i , with i < r− 1, corresponds either to the set of

singular subspaces containing a fixed singular subspace of dimension i− 1, or to the set of
all maximal singular subspaces contained in a fixed singular subspace of dimension i + 1.

Proof. This follows immediately from the obvious fact that, whenever three subspaces
U, V,W of dimension i are pairwise adjacent in ∆′′

i , but do not contain a common subspace
of dimension i− 1, then they are contained in a common subspace Z of dimension i + 1,
which is spanned by any pair of {U, V,W}. !

Now we return to the graph ∆i, and assume i > 0. It is straightforward to see that,
if we endow any maximal clique of ∆i with all geometric lines contained in it, then we
obtain a projective space, which we refer to as a maximal geometric projective space.
We sometimes omit the adjective “maximal”, and refer to any subspace of a maximal
geometric projective space as a geometric (projective) subspace. We easily obtain the
following cases.

(I) If Ω is non-thick, and i = r− 1, then “opposition” defines two nontrivial connected
components if and only if r is even, and r is odd if and only if “opposition” defines
a bipartite graph. Moreover, if “opposition” defines either two nontrivial connected
components or a bipartite graph, then it follows that Ω is non-thick.

(II) If Ω is thick (hence not isomorphic to the polar space arising from a hyperbolic
quadric), not isomorphic to a parabolic polar space, and if i = r − 1, then every
maximal clique of ∆i coincides with a geometric line, which in this case is always a
Grassmannian line. Hence every geometric projective space has dimension 1.

(III) If Ω is not isomorphic to a symplectic polar space, and if i = r − 2, then every
geometric projective space has dimension i + 1 ≥ 2. Moreover, every geometric
line is contained in a unique geometric projective space (hence geometric projective
spaces intersect in the empty set, or in a singleton).

(IV) If Ω is not isomorphic to a symplectic polar space, and if i < r − 2, then every
geometric projective space has dimension either i+1 ≥ 2 or r−i−1 ≥ 2. Two latter
such spaces can intersect in geometric subspaces of dimension r−i−2 and any smaller
dimension. Neither the relation “intersecting in a geometric line” nor “intersecting
in a subplane” defines a bipartite graph in the set of geometric projective spaces.
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Note that, if we consider two vertices U, V of ∆i at distance 2 from each other,
and we consider the geometry G of common neighbours in ∆i endowed with the
geometric lines, then there are generically three possibilities: (1) G consists of a
single point (if U ∩ V has dimension i− 2 and U, V are not contained in a common
singular subspace), (2) G is a polar space isomorphic to the residue in Ω of any
member of Yi (if U ∩V has dimension i−1 and U, V are not contained in a common
(i+1)-dimensional subspace), (3) G is a grid (if U ∩V has dimension i−2 and U, V
are contained in a common singular subspace).

(V) If Ω is isomorphic to a symplectic polar space, and if i ≤ r−2, then every geometric
projective space has dimension either i + 1 ≥ 2 or 2r − 2i − 1 ≥ 3. Two such
spaces can intersect in either the empty set, or a singleton, or a geometric line. The
relation “intersecting in a geometric line” defines a connected bipartite graph in the
set of geometric projective spaces, where two geometric projective spaces belong to
the same bipartition class only if they have the same dimension.

(VI) If B is the oriflamme complex of a hyperbolic quadric Ω, and i = r − 1, with
r > 4 even (hence we consider one system of generators of Ω), then the geometric
projective spaces have dimension either 3 or r− 1 > 3 (and r− 1 is odd). Here, two
geometric 3-spaces intersect either in the empty set, or in a geometric line, or in a
singleton. Also, two geometric (r− 1)-spaces intersect either in the empty set, or in
a geometric line, but never in a singleton. The relation “intersecting in a subplane”
defines a connected bipartite graph in the set of geometric projective spaces, where
two geometric projective spaces belong to the same bipartition class if and only if
they have the same dimension.

(VII) If Ω is isomorphic to a parabolic polar space, and if i = r−1, with r even (note that r
odd is excluded from the hypothesis of Theorem 4.1), then the geometric projective
spaces have dimension either 3 or r (and r is even). Here, as in the previous case,
two geometric 3-spaces intersect either in the empty set, or in a geometric line, or
in a singleton. Also, two geometric r-spaces intersect either in the empty set, or in
a geometric line, but never in a singleton. The relation “intersecting in a geometric
subspace of dimension 2 (a geometric plane)” defines a connected bipartite graph in
the set of geometric projective spaces, where two geometric projective spaces belong
to the same bipartition class if and only if they have the same dimension.

Consider two opposite elements of Yi. In the graph ∆i, these elements are at distance
r/2, and it is easy to see that in no minimal path from U to V in ∆i, two adjacent
vertices are contained in a Grassmannian line.

The last case needs some explanation. In particular, it might not be completely clear why
the maximal clique of ∆′′

r−1 consisting of a fixed maximal subspace V and all maximal
subspaces meeting V in a subspace of dimension r− 2 gives rise to a geometric projective
space of dimension r. Well, this is due to the fact that, in the ambient projective space
PG(2r, K) every r-space through V is either tangent (and there is exactly one such) or
contains a unique maximal singular subspace other than V . Now the reader can check
that (r + 1)-spaces through V correspond to geometric lines.
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We need one more lemma before we can explain the algorithm.

Lemma 4.14 If non-opposition in the set of singular subspaces of dimension i in the
polar space Ω with thick lines, or in the set of generators of one self-opposite type in the
oriflamme complex of a hyperbolic quadric, defines collinearity of some possible different
polar space Ω′, then either i = 0, and Ω = Ω′, or i = 2 and Ω is a parabolic polar space
of rank 3 and Ω′ is a hyperbolic quadric in 7-dimensional projective space, or i = 3, Ω
is a hyperbolic quadric in 7-dimensional projective space, we are considering the set of
generators of a single class of generators, and Ω is isomorphic to Ω′.

Proof. First note that every pair of collinear points in Ω′ is contained in a unique (geo-
metric) line. But if 0 < i < r−1, then there exist non-opposite disjoint singular subspaces
of dimension i, which are never contained in a geometric line since, by Lemma 4.7, they
are not contained in a round-up triple. Therefore i = 0 or i = r − 1.

If i = 0, then clearly the geometric lines containing non-opposite elements are precisely
the lines of the polar space, and hence Ω′ = Ω.

Suppose now i = r−1. If Ω is thick and has rank r ≥ 4, then, by Lemma 4.6, two maximal
singular subspaces intersecting in a point can not be contained in a round-up triple, and
hence neither in a geometric line. If r = 3, then Lemma 4.9 implies that Ω is a parabolic
polar space of rank 3. Including Ω into a hyperbolic quadric Ω′ in 7-dimensional projective
space and attaching to each maximal singular subspace of Ω the unique maximal singular
subspace of Ω′ belonging to one fixed system of generators, the assertion follows.

Finally suppose i = r−1 and Ω non-thick. Then the building B is the oriflamme complex
and r is even since otherwise either the type under consideration is not self-opposite (r
odd, B the oriflamme complex), or opposition defines a bipartite graph (r odd, B the
corresponding non-thick building), or opposition defines a non-connected graph (r even,
B the corresponding non-thick building), a contradiction. If r = 4, then triality implies
the assertion. If r ≥ 6, then two maximal singular subspaces intersecting in a line are
never contained in a round-up triple, by Lemma 4.6.

The lemma is proved completely. !

4.3 The algorithm

We can now put our algorithm in action. We have been given a set Yi of objects, together
with a set Pi of pairs of these, and the objects represent the set of vertices of some
unknown self-opposite type (and of dimension i) of some unknown building B of rank r
corresponding to a polar space Ω or the oriflamme complex of a hyperbolic quadric Ω. It
is assumed that Ω is not a parabolic building of odd rank in case the elements of Yi are
the maximal singular subspaces.

We can determine the geometric lines, define the graph ∆i (this includes ∆∗
i , which we

from now on also denote by ∆i, since there is no confusion possibe) and determine the
(maximal) geometric projective spaces.
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We run through the following steps, where it is assumed that, if we reach a certain step,
then this means that the conditions of all previous steps are not satisfied. It should also be
noted that each time we rerun the algorithm, we remember the inclusions of the elements
of the sets Yi into the elements of the new set Yi−1 or Yi−2. This is necessary to reconstruct
the precise mutual positions of the elements of Yi at the end. Indeed, this way we know
precisely which points are incident with which elements of Yi, as we always finish with Y0,
except in the exceptional cases of D4.

STEP 0. If the complement of the relation Pi in Yi defines collinearity in some polar
space, then by Lemma 4.14, we can reconstruct B (we cannot reconstruct the polar space,
if B has type D4, because we cannot distinguish between points and the two families of
generators). Note that, by assumption, we cannot have a parabolic polar space of rank 3.

STEP 1. If Pi defines a bipartite graph in Yi, then we know by (I) that Ω is non-thick
of odd rank r, and i = r − 1. The maximal distance in the graph ∆i is (r − 1)/2. We
consider the set Yi−2 of all geometric lines and call two of them opposite if every element
of one geometric line is at maximal distance of every element of the other geometric line
in ∆i. We now run the algorithm again.

STEP 2. If Pi has two nontrivial connected components, then we know by (I) that Ω is
non-thick of even rank r, and i = r−1. In this case, we just take one of these components,
and run the algorithm again. At the end we will have to remember to take the non-thick
building associated to the non-thick polar space instead of the oriflamme complex.

STEP 3. If every maximal clique of ∆i coincides with a geometric line, then we know,
by Case (II), that we are dealing with a thick polar space not isomorphic to a parabolic
polar space. Also, i = r − 1. Consider the set of geometric lines, and define two such to
be opposite if the complement of the relation Pi in Yi defines a bijection between them.
Then it is clear that we obtain the opposition relation in the set of singular subspaces of
dimension r − 2. We now run the algorithm again using this set and that relation.

STEP 4. If every geometric line is contained in a unique geometric subspace of dimension
at least 2, then we are in case (III). We define a new graph ∆′′

i , with vertex set Yi. Two
vertices are adjacent in ∆′′

i if either the corresponding i-spaces are adjacent in ∆i, or if they
are at distance 2 from each other in ∆i and they have at least three common neighbours. It
is easy to see that in the polar space Ω, adjacency coincides with intersecting in a singular
subspace of dimension i− 1. Hence our notation agrees with the former use of ∆′′

i . Now
Lemma 4.13 tells us that there are maximal cliques of ∆′′

i which are maximal cliques of
∆i, but there are also new maximal cliques (and these correspond to subspaces W of
dimension i− 1; we denote the set of those cliques by Yi−1). If we endow a new maximal
clique with the geometric lines, then we obtain a generalized quadrangle isomorphic to
ResΩW . We define two of those new maximal cliques to be opposite if the relation Pi in
Yi restricted to these cliques does not vanish in any element. Now we run the algorithm
again for these maximal cliques and the opposition relation just defined.

STEP 5. If neither “intersecting in a geometric line” nor “intersecting in a subplane”
defines a bipartite graph in the set of (maximal) geometric projective spaces, then we are
in Case (IV). If there exist two vertices of ∆i at distance 2 such that the geometry of
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common neighbours in ∆i (endowed with the geometric lines) is not a grid, then we define
the graph ∆′′

i on Yi as follows: two vertices are adjacent in ∆′′
i if they are either adjacent

in ∆i, or if they are at distance 2 in ∆i and the geometry of common neighbours in ∆i

(endowed with the geometric lines) is neither a grid nor a single point. By Lemma 4.13,
maximal cliques of ∆′′

i that are not cliques of ∆i correspond to all singular subspaces of
dimension i containing a fixed subspace of dimension i − 1. We denote the set of these
maximal cliques by Yi−1. Now we again define two members of Yi−1 to be opposite if the
relation Pi in Yi restricted to these cliques does not vanish in any element. We run the
algorithm again for these maximal cliques and the opposition relation just defined.

Now suppose that for every pair of vertices of ∆i at distance 2 admitting at least two com-
mon neighbours, the geometry of common neighbours in ∆i (endowed with the geometric
lines) is a grid. By case (IV) above, we know that Ω is a building of type D4. Clearly,
“intersecting in a geometric line” defines a tripartite graph in the set of all geometric
planes. If this is the second time the algorithm runs, then we know that in the previous
time, the set Y2 was the set of planes of Ω, viewed as a polar space. Then the elements
of Y1 incident with any plane form a generic member of one class C of these geometric
planes. If we run the algorithm for the first time, then we know that we will not be able
to distinguish the types corresponding with the end vertices of the diagram D4, and so we
choose one class C of the tripartite graph arbitrarily (and think of this class as the set of
planes of Ω).

We now define a new graph ΓC with vertex set C, where two geometric planes are adjacent
if their intersection is nonempty. Consider three such planes π1, π2, π3 pairwise adjacent
but not containing a common element. Then there is a unique maximal clique of ΓC

containing π1, π2, π3 (these cliques correspond with the 3-spaces of Ω if C is the set of
planes). “Intersecting in a vertex” defines a bipartite graph on these maximal cliques (each
bipartition class corresponds to a class of maximal singular subspaces of Ω). Consider one
such class K. A member L of Yi is called incident with a member k of K if L belongs to at
least one of the geometric planes contained in k. We then obtain the point-line structure
of Ω, and have reconstructed Ω up to triality and duality, or only up to duality if we run
the algorithm for the second time. Hence we have reconstructed B unambiguously.

STEP 6. If “intersecting in a geometric line” defines a connected bipartite graph in the
set of (maximal) geometric projective spaces, then we are in Case (V). We now consider
the set Yi−1 of maximal geometric subspaces which contain geometric lines that are not the
intersection of two maximal geometric subspaces. We call two members of Yi−1 opposite if
the relation Pi in Yi restricted to these subspaces does not vanish in any element. We run
the algorithm again for these maximal cliques and the opposition relation just defined.

STEP 7. If “intersecting in a subplane” defines a connected bipartite graph in the set
of (maximal) geometric projective spaces, then we are in Cases (VI) or (VII), and some
geometric projective spaces have dimension 3. There are two cases.

• If the dimension of the other geometric subspaces is odd, then we are in Case (VI).
We consider the family of maximal geometric subspaces of dimension 3 and define two of
those to be opposite if the relation Pi in Yi restricted to these spaces does not vanish in
any element. We run the algorithm again for this family and the opposition relation just
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defined.

• If the dimension of the other geometric subspaces is even, then we are in Case (VII). We
remove from ∆i all adjacencies occurring in any minimal path between any two opposite
elements of Yi, with here i = r − 1 odd. The maximal cliques of the resulting graph
are geometric lines corresponding to the singular subspaces of dimension i − 1. We now
proceed as in STEP 3

This completes the proof of Theorem 4.1

5 Strong parapolar spaces arising from spherical build-
ings

In this section we look at some strong parapolar spaces arising from spherical buildings.
Remember that, under Hypotesis (A), and in view of Section 4, we are primaryly con-
cerned with the Grassmann geometries A2n−1,n and E7,7, but we will also include the
Grassmann geometries An,k and E6,1, for 1 ≤ k ≤ n, and show the following theorem.

Theorem 5.1 Let B be a building of type An, n > 1, Dm, m ≥ 5 and odd, or E6, and let Yi

be the set of all vertices of certain type i of B, where 0 ≤ i ≤ n for An, i ∈ {m−1, (m−1)′}
for Dm, or i ∈ {1, 6} for E6. Let j be the type opposite i and let Yj be the set of vertices
of type j. Then the family F ′ of subsets {v ∈ Yi : v is opposite w}, for w running through
Yj uniquely determines B.

With the notation of the Theorem, and in accordance to the notation used in Subsec-
tion 3.2 under Hypothesis (A*), HB,I′ is the family of complements of F ′, and HB,I′ is
the family of subsets of Yi obtained by intersecting arbitrary members of HB,I′ , as long
as the intersection contains at least two elements.

For An and E6, it suffices to reconstruct the Grassmann geometries, i.e., it suffices to show
that the HB,I′-round-up triples are collinear triples. For Dm, we reduce to Section 4.

We begin with E6. Since the Grassmann geometry is here a strong parapolar space of
diameter 2, we might as well phrase and prove our result in these terms.

5.1 Cases E6 and E7

Theorem 5.2 Suppose that Hypothesis (A*) holds. Suppose further that the geometry Γ
satisfies the following conditions.
(i) Γ is a strong parapolar space of point diameter 2 or 3.
(ii) Γ has thick lines.
(iii) The symplecta of Γ are point shadows of residues of B.
(iv) The symplecta of Γ are polar spaces having no round-up triples that are cocliques of
their point-collinearity graphs.
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Then, with the above notation, the minimal elements of the poset (HB,I′ ,⊆) containing at
least three points are (1) the lines of Γ and possibly (2) cocliques of ∆ consisting of points
at mutual distance 3.

Proof. First, we show that the hypothesis of Theorem 3.1 holds. for HB,I′ in the role
of F . Indeed, by (ii), Γ has thick lines. Conditions (F1) and (F2) are satisfied by the
defintion of HB,I′ . By Corollary 3.9 we have L ⊆ HB,I′ , therefore (F3) holds.

Now we claim that possibility (2) of the conclusion of Theorem 3.1 cannot occur for points
at distance 2. Indeed, suppose T = {p, q, r} is a round-up triple of Γ consisting of points
at mutual distance 2. Since by (i), Γ is a strong parapolar space, there is a symplecton S
of Γ containing p and q. By (iii) and Corollary 3.10 r ∈ S, and by Proposition 3.11 T is
a round-up triple of the point-line space induced in Γ on S. This is a contradiction with
Condition (iv). !

Remark 5.3 All symplecta of a J-Grassmann geometry of a building B are point shadows
of residues of B.

We now show that in the case E7,7, there are no round-up triples consisting of mutually
opposite points. This will follow from the lemma below. We recall that strongly gated
subgraphs were defined in Section 3.2.

Lemma 5.4 Let Γ = (P ,L) be the J-Grassmann geometry E7,7 with point-collinearity
graph ∆. Suppose that {p, q, r} ⊆ P are such that d∆(p, q) = d∆(p, r) = d∆(q, r) = 3.
Then there exists a point t ∈ P such that |∆∗

2(t) ∩ {p, q, r}| = 2.

Proof. Let S be a symplecton of Γ containing p. By Theorem 20 of [7] S is strongly gated
in ∆ with respect to q and r with gates {a} = q⊥∩S and {b} = r⊥∩S. Since d∆(q, r) = 3,
a += b. Since S is a nondegenerate polar space, there exists a point t ∈ S ∩ (a⊥ − b⊥).
Then {p, q} ⊆ ∆∗

2(t) and r +∈ ∆∗
2(t). !

5.2 Case An

Let 0 ≤ i ≤ n − 1 and let Yi be the set of all i-dimensional subspaces of a projective
space Pn of dimension n. By symmetry we may assume that i ≤ n/2. Let {U, V,W} be a
round-up triple in Yi. Let L be a line of Pn intersecting U and V . If L does not intersect
W , then there exists an (n− i−1)-dimensional subspace W ′ through L not meeting W , a
contradiction. Hence every line meeting both U and V meets W . This implies easily that
U ∩ V = V ∩W = W ∩ U and that W is a hyperplane in the subspace generated by U
and V . This yields that U, V,W are contained in a line of the corresponding Grassmann
geometry.
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5.3 Case Dm

Here, with the above notation, we can identify the set Y(m−1)′ with the family F ′. Hence
we know all pairs of opposite elements of type m − 1 of a non-thick polar space of rank
m and we are reduced to Theorem 4.1.

6 Parapolar spaces that are not strong parapolar,
arising from spherical buildings

6.1 Hexagonic geometries

We call a point-line space Γ = (P ,L) a hexagonic geometry if it satisfies the following
axioms.

(H0) Γ is a parapolar space of symplectic rank at least three.

(H1) For every point p ∈ P and every symplecton S of Γ, p⊥ ∩ S is either empty or
contains a line (equivalently, p⊥ ∩ S is never a single point).

(H2) For every point residue Γp = (Lp, Πp) and every point x ∈ Lp, the set {y ∈
Lp|d∆p(x, y) ≤ 2} is a subspace of Γp that meets every line of Lp non-trivially.

(H3) For every point residue Γp = (Lp, Πp) and every point x ∈ Lp, there is a point y ∈ Lp

such that d∆p(x, y) = 3.

Let Γ = (P ,L) be a hexagonic geometry with thick lines. Suppose that Γ satisfies one
additional requirement — either some symplecton has rank exactly three or Γ has finite
singular rank. Then it was shown in [7] that Γ is one of the following geometries: E6,2,
E7,1, E8,8, a metasymplectic space, or the polar Grassmannians of lines of a nondegenerate
polar space of possibly infinite rank at least 4 (the labelling of the nodes of the diagrams
is as in [4]). It follows that all hexagonic geometries of finite singular rank arise from
spherical buildings in the situation of hypothesis (A).

In this section, we will prove the following theorems and corollaries.

Theorem 6.1 Let Γ = (P ,L) be a hexagonic geometry with point-collinearity graph ∆.
Suppose that (i) Γ is a J-Grassmann geometry of a spherical building, that is, Hypoth-
esis (A) holds, and (ii) Γ has thick lines. Let F∆,2 be the set of all subsets of P that
contain at least two points and are of the form ∩{∆∗

2(p)|p ∈ P ′}, P ′ ⊆ P. Then the
minimal elements of the poset (F∆,2,⊆) containing at least three points are (1) the lines
of Γ, and (2) cocliques C of ∆ contained in a symplecton, such that any triple of distinct
points of C is a round-up triple of that symplecton.

Corollary 6.2 Suppose that the hypothesis of Theorem 6.1 holds. Then the lines of Γ
can be reconstructed from the distance three graph of ∆.
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Remark 6.3 In Theorem 6.1 and Corollary 6.2 requirement (i) can be dropped at the
expence of lengthening the proof. See Remark 6.24 for details.

Theorem 6.4 Let Γ = (P ,L) be a hexagonic geometry. Suppose that Γ has thick lines.
Let Ω = (P , E) be the graph with the edge set E = {{p, q}|p, q ∈ P and p ∈ q⊥ or {p, q}
is a symplectic pair}. Let FΩ be the set of all subsets of P that contain at least two points
and are of the form ∩{Ω∗

1(p)|p ∈ P ′}, P ′ ⊆ P. Then the minimal elements of the poset
(FΩ,⊆) containing at least three points are (1) the lines of Γ, and (2) cocliques C of ∆
contained in a symplecton, such that any triple of distinct points of C is a round-up triple
of that symplecton.

Corollary 6.5 Suppose that the hypothesis of Theorem 6.4 holds. Then the lines of Γ
can be reconstructed from the graph Ω.

6.2 Properties of hexagonic geometries

In this section we state properties of hexagonic geometries that are needed in the proofs
of Theorems 6.1 and 6.4.

Axioms (H0) and (H1) imply that the point residues of Γ are strong parapolar spaces and
are connected. Axioms (H2) and (H3) together are equivalent to requiring that, for every
point residue Γp = (Lp, Πp) and every point x ∈ Lp, the set {q ∈ Lp|d∆p(x, q) ≤ 2} is a
geometric hyperplane of Γp.

Lemma 6.6 Suppose Γ = (P ,L) is a hexagonic geometry. Let p, x, and y be as in the
axiom (H3). Let q, r ∈ p⊥ be such that x = 〈p, q〉 and y = 〈p, r〉. Then {q, r} is a special
pair.

Proof. Suppose {q, r} is a symplectic pair. By (H0) Γ has symplectic rank at least 3,
therefore there exists a line L of Γ on p such that L ⊆ q⊥∩r⊥, contradicting d∆p(x, y) = 3.

!

Lemma 6.7 (Theorem 21 of [7]; see also [6]) Suppose Γ = (P ,L) is a hexagonic ge-
ometry with point-collinearity graph ∆. Then the following statements hold.

(H4) For every point p ∈ P, every geodesic of length 2 in ∆p is extendable to a geodesic
of length 3.

(H5) For every point p ∈ P, the set ∆∗
2(p) = {q ∈ P|d∆(p, q) ≤ 2} is a geometric

hyperplane of Γ.

It is immediate from (H5) that the point-collinearity graph of a hexagonic geometry has
diameter 3.

Lemma 6.8 Let Γ = (P ,L) be a hexagonic geometry. Let S be a symplecton of Γ and
suppose that p ∈ P − S is such that p⊥ ∩ S += ∅. Then S ⊆ ∆∗

2(p).
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Proof. Let q ∈ S. By the axiom (H1) p⊥ ∩ S contains a line L of S. Since S is a polar
space, q⊥ ∩ L += ∅. Therefore q⊥ ∩ p⊥ += ∅ and q ∈ ∆∗

2(p). !

Lemma 6.9 (Theorem 22 of [7]) Let Γ = (P ,L) be a hexagonic geometry. Let p ∈ P,
and let Σ = Γp be the point residue of Γ at p. Then Σ is a strong parapolar space and
every plane of Σ is contained in a symplecton of Σ. !

Lemma 6.10 (Theorem 25 of [7]) Let Γ = (P ,L) be a hexagonic geometry. Then any
two symplecta of Γ intersecting in a line intersect at least in a plane. !

The following property is the “global” analogue of the local property (H4) of Lemma 6.7.

Lemma 6.11 Let Γ = (P ,L) be a hexagonic geometry. Suppose that p, q ∈ P are such
that d∆(p, q) = 2 and {p, q} is a special pair. Let {r} = p⊥ ∩ q⊥. Then, for every point
s ∈ q⊥ such that {r, s} is a special pair, d∆(p, s) = 3.

Proof. By the axiom (H3) and Lemma 6.6 applied to the residue Γq, there does exist a
point s ∈ q⊥ such that d∆(r, s) = 2 and {r, s} is a special pair. It remains to show that
d∆(p, s) = 3. Since r += s, and {p, q} is a special pair, we have s +∈ p⊥. Suppose that
d∆(p, s) = 2.

Suppose first that {p, s} is a special pair. Let r′ ∈ p⊥ ∩ s⊥. By Lemma 3.4 of [6] applied
to the special pairs {p, q} and {p, s}, we have r′ ∈ r⊥. Therefore q, r′ ∈ r⊥ ∩ s⊥. Since
r′ ∈ p⊥ and q +∈ p⊥, we see that q += r′. Therefore {r, s} is a symplectic pair, contrary to
the choice of s.

Suppose now that {p, s} is a symplectic pair. Let S = S(p, s). By the axiom (H1) r⊥ ∩ S
contains a line L of S on p. Let r′ be the unique point of s⊥ ∩ L. As in the previous
case, we have r′ ∈ p⊥ and q +∈ p⊥, therefore r′ and q are two distinct points in r⊥ ∩ s⊥

contradicting the choice of s. !

6.3 Symplecta are intersections of Ω∗
1(p)

In this section we prove the following proposition.

Proposition 6.12 Suppose that the hypothesis of Theorem 6.4 holds. Then, for every
symplecton S of Γ, we have S = ∩{Ω∗

1(p)|p ∈ P and S ⊆ Ω∗
1(p)}.

Suppose Γ = (P ,L) is a hexagonic geometry and let the graph Ω = (P , E) be as in
Theorem 6.4. For a set S ⊆ P , we let ClΩ(S) = ∩{Ω∗

1(p)|p ∈ P and S ⊆ Ω∗
1(p)}. Then

Proposition 6.12 can be restated as: for every symplecton S ∈ S, S = ClΩ(S).

To prove Proposition 6.12 we consider cases (S1), (S2) and (S3) below; in parenthesis
we list lemmas dealing with each case. Let S ∈ S and let p ∈ P − S. There are three
possibilities.

(S1) S ∩ [∆spec(p) ∪∆3(p)] += ∅ (Lemma 6.13).
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(S2) S ⊆ p⊥ ∪∆symp(p) and p⊥ ∩ S += ∅ (Lemma 6.17).

(S3) S ⊆ ∆symp(p) (Lemma 6.18).

Lemma 6.13 Let Γ = (P ,L) be a hexagonic geometry. Suppose S∈ S and p ∈ P − S
satisfy (S1). Then p +∈ ClΩ(S).

Proof. Let q ∈ S ∩ [∆spec(p) ∪∆3(p)]. Then S ⊆ Ω∗
1(q) and p +∈ Ω∗

1(q). !

To prove Case (S2) we need Lemmas 6.14 up to 6.16.

Lemma 6.14 Let Γ = (P ,L) be a hexagonic geometry. Let S ∈ S, let p ∈ P − S, and
let Y = p⊥ ∩ S. Suppose that Y contains a plane of Γ. Then S ⊆ p⊥ ∪∆symp(p).

Proof. Let π ⊆ Y be a plane of S and let q ∈ S. Since S is a polar space, q⊥ ∩ π
contains a line L of π. Then L ⊆ p⊥ ∩ q⊥ and, therefore, {p, q} is a symplectic pair. !

Corollary 6.15 Let Γ = (P ,L) be a hexagonic geometry. Let S ∈ S, let p ∈ P − S, and
let Y = p⊥ ∩ S. Suppose Y += ∅ and suppose S ∩∆spec(p) += ∅. Then Y is a line of S.

Proof. Since S is a convex subspace of Γ, the set Y is a singular subspace of S. Since
S ∩∆spec(p) += ∅, by Lemma 6.14(i) the set Y cannot contain a plane. Therefore, by the
axiom (H1) the set Y is a line of Γ. !

Lemma 6.16 Let Γ = (P ,L) be a hexagonic geometry. Let S ∈ S, let p ∈ P − S, and
let Y = p⊥ ∩ S. Suppose that Y += ∅ and let s ∈ S ∩∆∗

2(p). Then s ∈ S ∩∆symp(p) if and
only if s⊥ ∩ Y contains a line.

Proof. Clearly, if s⊥ ∩ Y contains a line, then the pair {p, s} is symplectic.

Suppose that the pair {p, s} is symplectic. By the axiom (H1) p⊥ ∩S contains a line L of
Γ. Since S is a polar space we have s⊥ ∩ L += ∅. Let t ∈ p⊥ ∩ s⊥ ∩ S and let S ′ = S(p, s).
By convexity of S ′, we have t ∈ S ′. Since S ′ ∩ S contains the line 〈s, t〉, by Lemma 6.10
S ′ ∩ S contains a plane π on 〈s, t〉. Since S ′ is a polar space and p ∈ S ′, the intersection
p⊥ ∩ π is a line M . We have M ⊆ s⊥ ∩ p⊥ ∩ S. !

Lemma 6.17 Let Γ = (P ,L) be a hexagonic geometry. Suppose S ∈ S and p ∈ P − S
satisfy (S2). Then there exists a point q′ ∈ P − S such that S ⊆ (q′)⊥ ∪ ∆symp(q′) and
p ∈ ∆spec(q′). Therefore, p +∈ ClΩ(S).

Proof. Let Y = p⊥ ∩ S and let q ∈ Y . Since S is a nondegenerate polar space, there
exists r ∈ (q⊥∩S)−Y . Let L = 〈q, r〉. Since r +∈ Y and by hypothesis S ⊆ p⊥∪∆symp(p),
we have r ∈ ∆symp(p) and d∆q(L, 〈p, q〉) = 2. Therefore, by (H4) of Lemma 6.7 there
exists a line L′ of Γ on q such that L′ ⊆ L⊥ and d∆q(L

′, 〈p, q〉) = 3.

Let s ∈ L′ − {q}. Then s ∈ P − S and L ⊆ s⊥ ∩ S. Since r +∈ Y , we have L +⊆ Y . The
space S is a nondegenerate polar space of rank at least three, therefore there is a plane π
of S on L such that π ∩ Y = {q}.
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Let S ′ be a symplecton of Γ containing π and s; if s ∈ π⊥ then the symplecton S ′ exists by
Lemma 6.9. We are going to find the point q′ inside S ′. By the axiom (H1) the intersection
p⊥ ∩ S ′ contains a line M of S ′ on q. Since {p, s} is a special pair, by Corollary 6.15 we
have p⊥ ∩ S ′ = M .

We claim that M∩π = {q}. Indeed, suppose M ⊆ π. Then M ⊆ Y , therefore M ⊆ π∩Y .
A contradiction with π ∩ Y = {q}.

By hypothesis π ⊆ S ⊆ ∆symp(p). Therefore by Lemma 6.16 π ⊆ M⊥, that is 〈π, M〉 is a
singular subspace of S ′. Since S ′ is a nondegenerate polar space, and M ∩ π = {q}, there
is a point q′ ∈ [S ′ ∩ (π⊥ −M⊥)]. By Lemma 6.16 q′ ∈ ∆spec(p) (in particular q′ +∈ S). By
Lemma 6.14 S ⊆ (q′)⊥ ∪∆symp(q′). !

Lemma 6.18 Let Γ = (P ,L) be a hexagonic geometry. Suppose S ∈ S and p ∈ P − S
satisfy (S3). Then there exists a point q′ ∈ P − S such that S ⊆ (q′)⊥ ∪ ∆symp(q′) and
p ∈ ∆spec(q′). Therefore, p +∈ ClΩ(S).

Proof. As in the proof of Lemma 6.17, we construct a point q′ such that (q′)⊥ ∩ S
contains a plane of S and q′ ∈ ∆spec(p).

Let r ∈ S and let q ∈ p⊥ ∩ r⊥. By hypothesis {p, r} is a symplectic pair. Therefore, by
(H4) of Lemma 6.7 applied to the lines 〈q, p〉 and 〈q, r〉 inside Γq, there is a line L′ of Γ
on q such that L′ ⊆ 〈q, r〉⊥ and d∆q(L

′, 〈p, q〉) = 3.

Let s ∈ L′ − {q}. Then {p, s} is a special pair. Since r ∈ s⊥ ∩ S, by the axiom (H1)
s⊥ ∩ S contains a line L of S on r. Let S ′ be a symplecton of Γ containing L′ and L; if
L ⊆ (L′)⊥, then S ′ exists by Lemma 6.9. By the axiom (H1) p⊥ ∩S ′ contains a line M of
S ′ on q. Since {p, s} is a special pair, by Corollary 6.15 p⊥ ∩ S ′ = M .

By Lemma 6.10 the intersection S ′ ∩ S contains a plane π on L. Since by hypothesis
π ⊆ S ⊆ ∆symp(p), by Lemma 6.16 π ⊆ M⊥. By hypothesis p⊥ ∩ S = ∅, therefore
π ∩M = ∅ and 〈π, M〉 is a singular subspace of S ′ of projective dimension 4.

The space S ′ is a nondegenerate polar space, therefore there is a point q′ ∈ π⊥ ∩ S ′ such
that q′ +∈ M⊥. By Lemma 6.14 S ⊆ (q′)⊥ ∪∆symp(q′) and by Lemma 6.16 q′ ∈ ∆spec(p).

!

Proposition 6.12 is immediate from Lemmas 6.13, 6.17, and 6.18.

6.4 F∆,2-round-up triples that are cocliques of ∆

In this section we prove the following.

Proposition 6.19 Let Γ = (P ,L) be a hexagonic geometry with point-collinearity graph
∆, and let F∆,2 be as in Theorem 6.1. Suppose that Γ satisfies Hypothesis (A). Then every
F∆,2-round-up triple of Γ, which is a coclique of ∆, is a round-up triple of a symplecton.

Our proof of Proposition 6.19 relies on the following lemma.
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Lemma 6.20 Suppose Γ = (P ,L) is a hexagonic geometry with point-collinearity graph
∆. Let {p, q, r} ⊆ P be such that d∆(p, q) = d∆(p, r) = d∆(q, r) = 3. Suppose (p, s1, s2, q)
is a geodesic of length 3 from p to q such that d∆(r, s1) = d∆(r, s2) = 2. Then the following
statements hold.

(i) There exists a point s ∈ P such that {p, q} ⊆ ∆symp(s) and r ∈ ∆spec(s) ∪∆3(s).

(ii) There exists a point s′ ∈ P such that {p, q} ⊆ ∆∗
2(s

′) and r ∈ ∆3(s′).

Proof. Statement (ii) follows from statement (i) and Lemmas 6.11 and 6.8. It remains
to prove (i).

Let dpq = d∆(p, q), dqr = d∆(q, r), and dpr = d∆(p, r). Since dpr = 3 and dqr = 3, we have
{s1, s2} ⊆ ∆spec(r). For i ∈ {1, 2}, let {ri} = r⊥ ∩ s⊥i . We are going to choose a plane π
of Γ on 〈s1, s2〉 with special properties with respect to r1. Then, we will find the point s
of (i) inside π.

Let L = 〈s1, r1〉 and let M = 〈s1, s2〉. To choose the plane π we consider two cases.
Suppose first that r1 = r2. Then let π be a plane of Γ on the line M such that π +⊆ r⊥1 .
Such a plane π can always be found inside any symplecton of Γ containing the plane
〈r1, s1, s2〉. We have L⊥ ∩ π = M .

Suppose now that r1 += r2. The distance between L and M in ∆s1 is at least 2 (in fact by
Lemma 3.4 of [6] the distance is 2, but we do not require this fact here). If the distance is
3 let π be any plane of Γ on L. Suppose that the distance is 2 and let w = (L, L′, M) be a
geodesic of length 2 in ∆s1 . By (H4) of Lemma 6.7 w extends to a geodesic (L, L′, M, N)
of length 3 in ∆s1 . Let π = 〈M, N〉. Then L⊥ ∩ π = {s1} ⊆ M .

Suppose we have chosen a plane π as above. By (H2) there are lines Lp and Lq in π,
on s1 and s2 respectively, such that Lp ⊆ p⊥ ∪ ∆symp(p) and Lq ⊆ q⊥ ∪ ∆symp(q). Let
s = Lp ∩ Lq. Then s ∈ ∆symp(p) ∩∆symp(q) (we have s +∈ p⊥ ∪ q⊥, since dpq = 3).

We claim that s ∈ ∆spec(r)∪∆3(r). Indeed, since d∆(r, p) = 3 and s ∈ ∆symp(p), by (H1)
we have s +∈ r⊥. Suppose s ∈ ∆symp(r). Let S = S(r, s). Since the pair {r, s1} is special,
we have s1 +∈ S. By the axiom (H1) s⊥1 ∩S contains a line L1 of S on s. Since S is a polar
space, r⊥ ∩L1 += ∅. Therefore, r1 ∈ L1. This implies that r1 ∈ s⊥ and, therefore, s ∈ L⊥.

By the choice of the plane π, we have L⊥ ∩ π ⊆ M . Therefore s ∈ M . But this is
impossible, since s2 ∈ ∆spec(p) and therefore Lp += M . This contradiction proves the
claim. We have shown that s ∈ [∆symp(p) ∩∆symp(q)] ∩ [∆spec(r) ∪∆3(r)] !

Proof of Proposition 6.19. Let T = {p, q, r} be a coclique of ∆ of size three and suppose
that T is a round-up triple of Γ. Let dpq = d∆(p, q), dqr = d∆(q, r), and dpr = d∆(p, r).
By Corollary 3.14 we only need to consider Cases 1 up to 3 below. In Cases 1 and 2 we
construct a point x ∈ P , such that |T ∩∆∗

2(x)| = 2.

Case 1. All distances are equal to 3.

Let (p, s1, s2, q) be a geodesic of length 3 from p to q in ∆. Suppose first that d∆(r, s1) = 3.
Then p, q ∈ ∆∗

2(s1) and r +∈ ∆∗
2(s1), and we can put x = s. A similar consideration applies

when d∆(r, s2) = 3. Therefore we can assume that d∆(r, s1) = 2 and d∆(r, s2) = 2. This
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case is precisely Lemma 6.20(ii) and we can put x = s′, where s′ is as in that lemma.

Case 2. All distances are equal to 2 and all pairs are special.

Let {s} = p⊥ ∩ q⊥. We consider four subcases.

Case 2.1. The hypothesis of Case 2 holds and d∆(r, s) = 3. Then p, q ∈ ∆∗
2(s) and

r +∈ ∆∗
2(s), and we are done.

Case 2.2. The hypothesis of Case 2 holds and s ∈ ∆spec(r). By Lemma 6.11 there is a
point x ∈ s⊥ such that d∆(r, x) = 3. Then x is the required point.

Case 2.3. The hypothesis of Case 2 holds and s ∈ ∆symp(r).

Let S be a symplecton of Γ containing s and r and let {r′} = p⊥ ∩ r⊥. Since the pair
{p, r} is special, by Corollary 6.15 p⊥ ∩ S = L for some line L of S on s. Since r ∈ S, we
have r⊥ ∩ L += ∅, therefore r′ ∈ L.

Let S ′ be any symplecton of Γ containing the plane 〈p, L〉. Since r⊥ ∩ S ′ += ∅ and {p, r}
is a special pair, by Corollary 6.15 r⊥ ∩ S ′ = M for some line M of S ′ on r′. By the
hypothesis of Case 2.3 s ∈ ∆symp(r), therefore by Lemma 6.16 s ∈ M⊥.

Let π = 〈s, M〉. Since S ′ is a nondegenerate polar space of rank at least three, considering
the plane π and the line 〈s, p〉 in the residue Γs we see that there is a plane π′ of S ′ on
〈s, p〉 such that (π′)⊥ ∩ π = {s}. Then M⊥ ∩ π′ = {s}, therefore by Lemma 6.16 applied
to S ′ and r we obtain that π′ − {s} ⊆ ∆spec(r).

By the axiom (H2) applied to 〈q, s〉 and π′ in Γs, there is a point s′ ∈ π′ − {s} such that
the pair {q, s′} is symplectic. Then s′ ∈ p⊥ ∩∆symp(q) ∩∆spec(r). By Lemma 6.11 there
is a point x ∈ (s′)⊥ such that d∆(r, x) = 3. We have d∆(x, p) ≤ 2 and by Lemma 6.8
d∆(x, q) ≤ 2.

Case 2.4. The hypothesis of Case 2 holds and s ∈ r⊥. Let S be any symplecton of Γ on
the line 〈p, s〉. By Corollary 6.15 q⊥ ∩ S = Lq and r⊥ ∩ S = Lr for some lines Lq and Lr

of S on s.

Since {q, r} is a special pair, we have Lq += Lr. The space S is a nondegenerate polar
space, therefore there exists a point s′ ∈ S such that s′ ∈ L⊥

q −L⊥
r . Then by Lemma 6.16

s′ ∈ [p⊥ ∪∆symp(p)] ∩ [q⊥ ∪∆symp(q)] ∩∆spec(r). The required point x exists by Lemmas
6.11 and 6.8, as in Case 2.3.

Case 3. All distances are equal to 2 and all pairs are symplectic.

Let S = S(p, q). By Corollary 3.10 r ∈ S. By Proposition 3.11, since T is a round-up
triple of Γ, it is a round-up triple of the symplecton S. !

6.5 FΩ-round-up triples that are cocliques of ∆

Proposition 6.21 Let Γ = (P ,L) be a hexagonic geometry with point-collinearity graph
∆. Then every FΩ-round-up triple of Γ, which is a coclique of ∆, is a round-up triple of
a symplecton.
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Proof. Suppose that T = {p, q, r} is a coclique of ∆ and let dpq = d∆(p, q), dqr = d∆(q, r),
and dpr = d∆(p, r). We consider five cases. In Cases 1-4 and in Case 5(2) we show that
there exists x ∈ P such that |T ∩ Ω∗

1(x)| = 2.

Case 1. All distances are equal to 3.

Let s1, s2 ∈ P be such that (p, s1, s2, q) is a walk of length 3. Suppose first that d∆(r, s1) =
3 or d∆(r, s2) = 3. Let π be a plane of Γ on the line 〈s1, s2〉. By the axiom (H2) there
are lines Lp and Lq in π, such that p and Lp lie in a symplecton of Γ, and q and Lq lie
in a symplecton of Γ. Let x = Lp ∩ Lq. Then p, q ∈ Ω∗

1(x). Since π contains a point at
distance 3 from r, by Lemma 6.8 we have x +∈ Ω∗

1(r).

Suppose now that d∆(r, s1) = 2 and d∆(r, s2) = 2. Then by Lemma 6.20(i) there exists a
point x ∈ P such that x ∈ [∆symp(p) ∩∆symp(q)] ∩ [∆spec(r) ∪∆3(r)]

Case 2. At least one distance is 2 and at least one distance is 3.

Suppose that dpq = 2 and dpr = 3. Let s ∈ p⊥ ∩ q⊥. Then by Lemma 6.8 either
d∆(r, s) = 3, or s ∈ ∆spec(r). Therefore we can put x = s.

Case 3. All distances are equal to 2, there is at least one symplectic pair, and there is a
at least one special pair.

Without loss of generality we can assume that {p, q} is a symplectic pair and {p, r} is a
special pair. Then p, q ∈ Ω∗

1(p) and r +∈ Ω∗
1(p). Therefore we can put x = p.

Case 4. All distances are equal to 2 and all pairs are special.

Let s ∈ p⊥ ∩ q⊥. There are two subcases.

Case 4.1. The hypothesis of Case 4 holds and s ∈ ∆spec(r) ∪∆3(r).

In this case p, q ∈ s⊥ ⊆ Ω∗
1(s) and r +∈ Ω∗

1(s). Therefore we can let x = s.

Case 4.2. The hypothesis of Case 4 holds and s ∈ r⊥ ∪∆symp(r).

Let S be any symplecton of Γ containing the pair {r, s}. Since the pairs {p, r} and {q, r}
are special, by Corollary 6.15 p⊥ ∩ S = Lp and q⊥ ∩ S = Lq for some lines Lp and Lq of
S on s.

The pair {p, q} is special, therefore Lp += Lq. Since S is a nondegenerate polar space,
there is a point x ∈ L⊥

p − L⊥
q . By Lemma 6.16 x ∈ p⊥ ∪∆symp(p) and x +∈ q⊥ ∪∆symp(q).

Since x ∈ r⊥ ∪∆symp(r), we obtain that p, r ∈ Ω∗
1(x) and q +∈ Ω∗

1(x).

Case 5. All distances are equal to 2 and all pairs are symplectic.

Let S = S(p, q). By Proposition 6.12 we can assume that r ∈ S. Now there are two
possibilties: (1) {p, q, r, } is a round-up triple of S, (2) there is a point s ∈ S∩({p, q}⊥−r⊥).
We show that (2) cannot occur.

Let S ′ = {p, q}⊥ ∩ S. Since S is a polar space of rank at least 3, its subspace Γ|S ′ is a
polar space of rank at least 2. Since s ∈ S ∩ ({p, q}⊥ − r⊥), the set r⊥ ∩ S ′ is a proper
hyperplane of S ′. Therefore there is a line L ⊆ {p, q}⊥ on s such that L +⊆ r⊥. Let
∆′ = ∆s. Let M be a line of S on s such that d∆′(M, L) = 2. By axiom (H3) applied
to Γs, there is a point x ∈ L⊥ − S such that d∆′(M, 〈s, x〉) = 3. By Corollary 6.15 and
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Lemma 6.16 {p, q} ⊆ Ω∗
1(x) and r +∈ Ω∗

1(x). !

Lemma 6.22 Let Γ = (P ,L) be a hexagonic geometry with point-collinearity graph ∆,
and let the graph Ω be as in Theorem 6.4. Then, for every p ∈ P, the set Ω∗

1(p) is a
subspace of Γ.

Proof. Let p ∈ P, let q, r ∈ Ω∗
1(p), and suppose that q ∈ r⊥ − {r}. Let L = 〈q, r〉.

We need to show that L ⊆ Ω∗
1(p). Since Ω∗

1(p) = p⊥ ∪ ∆symp(p), there are the following
possibilities.

Case 1. q, r ∈ p⊥.

Since Γ is a parapolar space, Γ is a gamma space. Therefore L ⊆ p⊥ ⊆ Ω∗
1(p).

Case 2. q ∈ p⊥ and r +∈ p⊥.

Since r ∈ Ω∗
1(p)− p⊥, we have r ∈ ∆symp(p). Let S = S(p, r). By convexity of S we have

q ∈ S. Since S is a subspace of Γ, and q, r ∈ L ∩ S, we obtain that L ⊆ S ⊆ Ω∗
1(p).

The case r ∈ p⊥ and q +∈ p⊥ is similar to Case 2.

Case 3. q, r ∈ Ω∗
1(p)− p⊥. In this case q, r ∈ ∆symp(p) and there are two subcases.

Case 3.1. The hypothesis of Case 3 holds and S(p, q) = S(p, r).

In this case L ⊆ S(p, q) ⊆ Ω∗
1(p).

Case 3.2. The hypothesis of Case 3 holds and S(p, q) += S(p, r).

Let S = S(p, r). Since q⊥∩S += ∅, by the axiom (H1) the intersection q⊥∩S(p, r) contains
a line L of S on r. Since S is a polar space we have p⊥ ∩L += ∅. Let {s} = p⊥ ∩L and let
π = 〈q, r, s〉 (the span of {q, r, s} is not a line since that would imply S(p, q) = S(p, r)).
By hypothesis of Case 3 q, r ∈ ∆symp(p) and q += r, therefore by the axiom (H2) applied
to π and 〈p, s〉 in the residue Γs all lines of π on s are contained in p⊥ ∪∆symp(p). This
implies L ⊆ π ⊆ ∆symp(p) ⊆ Ω∗

1(p). !

6.6 Proofs of Theorems 6.1 and 6.4, and Corollaries 6.2 and 6.5

Proof of Theorem 6.1. First, we show that the hypothesis of Theorem 3.1 holds.

By hypothesis Γ has thick lines. By (H5) of Lemma 6.7 ∆∗
2(p) is a hyperplane of Γ.

Therefore conditions (F1) and (F2) are satisfied by the definition of F∆,2.

By Part (i) of the hypothesis Γ arises from spherical building and one can show that the
hyperplanes ∆∗

2(p) are precisely the elements of HB,I′ . Then Corollary 3.9 implies that
L ⊆ F∆,2, that is (F3) holds.

Let X ∈ F∆,2 be minimal and suppose |X| ≥ 3. Then by Theorem 3.1 X ∈ L or ∆|X is
a coclique, and every triple of distinct points of X is an F∆,2-round-up triple. Suppose
∆|X is a coclique and let T ⊆ X be a triple of distinct points. Then by Proposition 6.19
T is a round-up triple of a symplecton S ∈ S. Since |X ∩ S| ≥ 3 ≥ 2, and by Corollary
3.9 S ∈ F∆,2, we obtain X ⊆ S by the minimality of X. !
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Proof of Corollary 6.2. Suppose {p, q} are two distinct collinear points of Γ and let
{q, r} be distinct collinear points of Γ or a symplectic pair in Γ. Then by Lemma 6.8
d∆(p, r) ≤ 2.

Suppose now that {p, q} is a symplectic pair in Γ and let r ∈ p⊥∩ q⊥. By (H4) of Lemma
6.7 applied to Γr there exists a point s ∈ r⊥ ∩ q⊥ such that {p, s} is a special pair. Using
(H4) in Γs, we see that there exists a point t ∈ s⊥ such that {q, t} is a symplectic pair
and {r, t} is a special pair. Now by Lemma 6.11 applied to the walk (p, r, s, t) we obtain
that d∆(p, t) = 3.

By Theorem 6.1 we either know all collinear pairs in Γ, or we know all collinear and
symplectic pairs in Γ. In the latter case the argument above gives a way of distinguishing
collinear pairs from symplectic pairs. !

To prove Theorem 6.4 we need the following lemma.

Lemma 6.23 Let Γ = (P ,L) be a hexagonic geometry with point-collinearity graph ∆.
Let FS be the set of all subsets of P that contain at least two points and are of the form
∩{S|S ∈ S ′}, S ′ ⊆ S. Then L ⊆ FS .

Proof. Let L ∈ L and let SL be the set of all symplecta of Γ containing L. Since Γ is a
parapolar space, by (PPS3) SL += ∅. Let X = ∩{S|S ∈ SL}. Clearly, L ⊆ X. It remains
to show that X ⊆ L.

Let S ∈ SL. Let Π′ be the set of all planes of S on L and let Y = ∩{ρ⊥|ρ ∈ Π′}. Since S
is a nondegenerate polar space, we have Y = L. Let p ∈ L. By (H0) S has rank at least
3, therefore there exists a geodesic w = (L0, L1, L) of length 2 in ∆p, where L0 and L1

are lines of S. By (H4) of Lemma 6.7 w extends to a geodesic (L0, L1, L, L3) of length 3.
Let π = 〈L, L3〉. Then π is a plane of Γ on L such that π +⊆ S.

Let ρ ∈ Π′. Using Lemma 6.9 if ρ ⊆ π⊥, there is a symplecton Sρ containing π and ρ.
Let Yρ = S ∩ Sρ. Since π +⊆ S, we have S += Sρ. Therefore the space Yρ is a singular
subspace of S containing the plane ρ. This implies Yρ ⊆ ρ⊥. Let Y ′ = ∩{Yρ|ρ ∈ Π′}. By
the definition of X we have X ⊆ Y ′. By the preceeding paragraph Y ′ ⊆ Y . Therefore
X ⊆ Y ′ ⊆ Y = L. !

Remark 6.24 Suppose Γ = (P ,L) is a hexagonic geometry, not necessarily arising from
a spherical building. One can show directly from the point-line axioms (using results of
Section 6.3 and Lemmas 6.11, 6.14, and 6.8) that

(*) FS ⊆ F∆,2.

Therefore, by Lemma 6.23 L ⊆ F∆,2. One can also show, considering cases omitted
by Corollary 3.14, and using (*) to modify the proof of Case 3, that the conclusion of
Proposition 6.19 holds for all hexagonic geometries. Therefore Theorem 6.1 and Corollary
6.2 generalize to all hexagonic geometries with thick lines.

Proof of Theorem 6.4. First, we show that the hypothesis of Theorem 3.1 holds.

By hypothesis Γ has thick lines. By Lemma 6.22, for every p ∈ P , the set Ω∗
1(p) is a
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subspace of Γ. Therefore by the definition of FΩ conditions (F1) and (F2) hold. By
Lemma 6.23 L ⊆ FS , and by Proposition 6.12 FS ⊆ FΩ. Therefore (F3) holds.

Let X ∈ F∆,2 be a minimal element and suppose |X| ≥ 3. By Theorem 3.1 X ∈ L or ∆|X
is a coclique, and every triple of distinct points in X is an FΩ-round-up triple. Suppose
∆|X is a coclique and let T ⊆ X be a triple of distinct points. Then by Proposition 6.21
T is a round-up triple of a symplecton S ∈ S. Since |X ∩ S| ≥ 3 ≥ 2, and by Proposition
6.12 S ∈ FΩ, we obtain X ⊆ S by the minimality of X. !

Proof of Corollary 6.5. By Theorem 6.4 we either know (1) the round-up triples
consisting of pairwise collinear points of Γ or, else, we know (2) the round-up triples
consisting of pairwise collinear points, together with the round-up triples consisting of
points forming symplectic pairs with each other in Γ. In case (2) we need a way of
distinguishing the two kinds of round-up triples. Note that we can distinguish case (1)
from case (2) by looking at the diameter of the graph on the point set where adjacency is
“being contained in a round-up triple” (in case (1), this diameter is 3; in case (2) it is 2).

Suppose case (2) occurs. Then, from the list of hexagonic geometries satsifying Hypothesis
(A), we see that Γ must be a geometry F4,1 such that its symplecta are unitary, symplectic
or non-embeddable polar spaces, or the characteristic of the underlying field is 2 and the
building of type F4 is of mixed type. We refer to this as Hypothesis (F).

Suppose Γ satisfies Hypothesis (F). Let S be a symplecton of Γ. For every round-up
triple T of S, let LT be the set consisting of all p ∈ S for which there are a, b ∈ S
such that {a, b, p} is a round-up triple of S. If T consists of collinear points, then LT

is the unique line of Γ containing T . If T consists of noncollinear points, then LT is a
“hyperbolic” line of Γ|S. Under the assumption of Hypothesis (F), a hyperbolic line is
the set of points collinear with all points of two opposite lines of Γ|S. This follows from
the fact that every symplecton either admits a polarized embedding in projective 5-space,
or is non-embeddable.

We now show the following proposition.

Proposition 6.25 Suppose Γ satisfies Hypothesis (F). Let p and p′ be two points at
distance 3. Put P{p,p′} = ∆symp(p) ∩ ∆symp(p′). Let L{p,p′} be the set of hyperbolic lines
entirely contained in P{p,p′}. Then (P{p,p′},L{p,p′}) is isomorphic to a symplecton in the
F4,4 geometry dual to Γ with respect to the underlying building.

Proof. A symplecton in the F4,4 geometry dual to Γ with respect to the underlying
building is isomorphic to the dual geometry of a point residue in Γ. More precisely, it is
isomorphic to rank 3 polar space with point set the set Pp of symplecta containing p, line
set the set Lp of planes through p and plane set the set of lines through p, with natural
incidence. Since a polar space is determined by its points and lines, it suffices to establish
a bijection β : Pp → P{p,p′} inducing a bijection Lp → L{p,p′}.

In the sequel, we use the following well-known property of metasymplectic spaces. Given
a point x and a symplecton S not containing x, then either (1) there is a unique point
x′ ∈ S∩∆symp(x), all points in S collinear with x′ belong to ∆spec(x), and all other points
of S are at distance 3 from x (and we say that x, S are in relative position 1), or (2)
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there is a unique line L in S such that all points of L are collinear with x, all points in S
collinear with all points of L belong to ∆symp(x) (and the symplecta through x and such
a point contain L), and all other points of S belong to ∆spec(x) (relative position 2). It
follows that, if two symplecta meet in a unique point x, then each point opposite x in
one symplecton is at distance 3 in Γ from any point opposite x in the other symplecton.
We will also use the fact that, if two distinct symplecta meet in at least two points, then
they meet in a plane.

Let S be a symplecton through p. Since S contains a point at distance 3 from p′, we
see that S, p′ are in relative position 1. Hence there is a unique point Sβ ∈ S such that
{p′, Sβ} is a symplectic pair. This defines β. It is easy to see that β is a bijection,
since there is a unique symplecton through a symplectic pair. Now let π be any plane
through p, and choose two arbitrary symplecta S1, S2 containing π. Let S ′

1, S
′
2 be the

symplecta containing p′ and x1 =: Sβ
1 , x2 =: Sβ

2 , respectively. If S ′
1 and S ′

2 met in a
unique point (namely, p′), then x1 and x2 would be at distance 3. But there is a path
of length 2 connecting them via a point of π. Hence S ′

1 ∩ S ′
2 is a plane π′. Now we see

that there are at least two paths of length 2 connecting x1 with x2; one via π and one via
π′. Hence {x1, x2} is a symplectic pair. It follows from mutual position 2 that x1 and x2

are collinear to all points of a common line L of π, and likewise of a common line L′ of
π′. Now consider the symplecton S containing x1 and x2. The hyperbolic line H through
x1, x2 in S is precisely the set of points collinear with all points of L ∪L′. Let x3 ∈ H be
arbitrary. Then there is plane π3 containing x3 and L, and a plane π′3 containing x3 and
L′. The symplecta S3 and S ′

3 defined by the planes π, π3 and π′, π′3, respectively, meet in
x3 and hence x3 ∈ P{p,p′}. Conversely, let S4 be any symplecton through π, and let S ′

4 be

the symplecton defined by p′ and x4 =: Sβ
4 . The three symplecta S ′

1, S
′
2, S

′
4 meet pairwise

in planes, hence they share a common line R (this line corresponds to a plane of the rank
3 polar space, defined by the residue in p′, containing the three lines of the polar space
defined by the three planes of Γ through p′). It follows that R contains a point y′ collinear
with x1, x2, x4. Also, since L belongs to S4, there is a point y on L collinear with x4 (in
fact, by the foregoing—namely, interchanging the roles of x2 and x4—all points of L are
collinear with x4). Hence x1, x2 and x4 are contained in a symplecton defined by y, y′,
which thus coincides with the symplecton S through x1, x2. Hence, by the foregoing, x4

belongs to H. It now also follows that S ′
4 contains π′.

The proposition is proved. !

Proposition 6.25 shows that, if we consider two points at distance 3, and we consider the
set of all points collinear or forming a symplectic pair with both p, p′, and we endow this
set with all (hyperbolic) lines—but it is easy to see that there are no ordinary lines; just
hyperbolic ones— then the maximal cliques are projective planes.

Now let {p, p′} be a special pair, and let x be the point collinear with both p and p′.
Let S be any symplecton through p and x. Then there is a line M in S each point of
which is collinear with p′. Let π be a plane through M in S. Each point of π forms a
symplectic pair with p′, and either forms a symplectic pair with p or is collinear with p.
Moreover, there is some point z collinear with all points of M , z ∈ S \ π. Then {p′, z}
is a symplectic pair and either {p, z} is symplectic, or p is collinear with z. Also, each
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point of π either form a symplectic pair with z or is collinear with it. Hence if we endow
the set of all points collinear or forming a symplectic pair with both p, p′, then there is a
maximal clique properly containing a projective plane.

This way we can distinguish pairs at distance 3 from special pairs, and symplectic pairs
from collinear pairs. This concludes the proof of Corollary 6.5. !

Remark 6.26 The notion of round-up triple in a spherical building seems to be inti-
mately connected with projective embeddings of the corresponding Grassmann geometry.
Indeed, whenever a polarized embedding of the latter exists for which a line of the am-
bient projective space carries three points of the Grassmann geometry, then the three
corresponding residues form round-up triple in the building. So it might be of interest to
determine all the round-up triples of spherical buildings which are not contained in a line
of the corresponding Grassmann geometry. Let’s call such round-up triples exceptional.
Then from the proofs in the present paper, one can deduce that every (non-thin) building
whose diagram has a double bond admits exceptional round-up triples (and in fact, these
triples are related to central collineations with center of self-opposite type). In buildings
with simply laced diagram we have found no exceptional round-up triples so far, and it is
tempting to conjecture that there are no at all. Also, we mention without proof that all
spherical Moufang buildings of rank 2 other than the projective planes admit exceptional
round-up triples.

Concerning geometric lines, the possibilities are more limited. Indeed, it follows from
Lemmas 4.8 and 4.9 and from [13] that in the following cases, we have geometric lines
that are not lines in the Grassmann geometry:

(B) The building arises from a parabolic polar space and the geometric line consists of
the set S of maximal singular subspaces sharing a common codimension 2 subspace
X such that in the generalized quadrangle defined by the singular subspaces properly
containing X, the set S forms one system of lines of a maximal grid;

(C) The building arises from a symplectic polar space and the geometric line consists
of a set S of non-maximal singular subspaces of the same dimension i containing
a common subspace X of dimension i − 1 such that in the symplectic polar space
defined by the singular subspaces properly containing X, the set S is a hyperbolic
line;

(F) The building arises from a metasymplectic space with the symplecta isomorphic to
symplectic polar spaces and the geometric line is a geometric line of points in a
symplecton.

(G) The building arises from the split Cayley hexagon and the geometric line is either an
ideal line, or the underlying field is perfect with characteristic 2 and the geometric
line is an imaginary line, i.e., a non-isotropic line with respect to the symplectic
polarity in projective 5-space in which the hexagon is naturally embedded.

Note that the above cases precisely correspond to the case of “split” spherical Moufang
buildings with a diagram containing a bond of even weight (i.e., in terms of algebraic
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groups, buildings with absolute and relative diagram Bn, n ≥ 2, Cn, n ≥ 3, F4 and G2).
It is tempting to conjecture that no other cases occur, except possibly for ‘exceptional’
geometric lines consisting of vertices of type 2 in buildings of relative and absolute type
F4.
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