The nonlinear vibration absorber is not effective in reducing transient vibrations.

Damped mass-spring system \((m_i, k_i, c_i)\) at a certain location \(\nu_i\) = local attachment of an extra element to the main system.

- **Reduce vibrations of main system**

The beating phenomenon is the basic idea behind the nonlinear absorber.

Linear case

Intensive energy exchange

- **How to avoid the return of energy?**
- **Damping is not the solution**
- **Instead use strong nonlinearity**

Nonlinear case

For a certain energy level, there is an energy exchange (beating).

- **For a nonlinear system: frequency depends on energy**
- **Damping decreases energy**
- **Frequency changes**
- **Energy sink**

The nonlinear absorber reduces transient vibrations much faster than the linear absorber.

Main system

\[\begin{align*}
\ddot{x}_1 + c_1(x_1 - \dot{x}_2) + \frac{4}{3}(x_1 - x_2)^3 &= 0 \\
\ddot{x}_2 - c_2(x_2 - \dot{x}_1) + \frac{4}{3}(x_2 - x_1)^3 &= 0
\end{align*} \]

Nonlinear absorber

\[\begin{align*}
\dot{\ddot{x}}_1 + c_1\dot{x}_1 &+ \frac{4}{3}(x_1 - x_1)^3 = 0 \\
\dot{\ddot{x}}_2 - c_2\dot{x}_2 &+ \frac{4}{3}(x_2 - x_2)^3 = 0
\end{align*} \]

BUT...

- Highly discontinuous !!!

The frequency energy plot helps to understand the important phenomena.

Nonlinear normal modes

Wavelet transform

Averaging theory can be used to analyze the nonlinear absorber in an approximate way.

Example of averaging

\[\begin{align*}
\dot{x} &= -\alpha x^2 t \\
x(t) &= \exp\left(-\frac{\alpha}{2} t^2 \right) \sin(2t)
\end{align*} \]

\[\langle x(t) \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) \, dt \]

\[\langle x(t) \rangle = -\frac{\alpha}{2} \int_{-\infty}^{\infty} t \sin^2 \pi t \, dt \]

\[\approx -\frac{\alpha^2}{4} \]

Nonlinear 2DOF system

- **Energy (big scale)**
- **Energy (small scale)**

Two solutions

- **Averaged solution**

How to describe all this?

E-mail: Frits.Petit@ugent.be

Frits Petit, Mia Locuufier & Dirk Aeyels

Systems Research Group, Ghent University,
Department of Electrical Energy, Systems and Automation
Technologiepark 914, 9052 Zwijnaarde