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Abstract. In this paper, we study a hybrid scheduling mechanism in
discrete-time. This mechanism combines the well-known Generalized Pro-
cessor Sharing (GPS) scheduling with strict priority. We assume three
customer classes with one class having strict priority over the other
classes, whereby each customer requires a single slot of service. The latter
share the remaining bandwith according to GPS. This kind of scheduling
is used in practice for the scheduling of jobs on a processor and in Qual-
ity of Service modules of telecommunication network devices. First, we
derive a functional equation of the joint probability generating function
of the queue contents. To explicitly solve the functional equation, we
introduce a power series in the weight parameter of GPS. Subsequently,
an iterative procedure is presented to calculate consecutive coefficients of
the power series. Lastly, the approximation resulting from a truncation of
the power series is verified with simulation results. We also propose ratio-
nal approximations. We argue that the approximation performs well and
is extremely suited to study these systems and their sensitivity in their
parameters (scheduling weights, arrival rates, loads ...). This method
provides a fast way to observe the behaviour of such type of systems
avoiding time-consuming simulations.

Keywords: Generalized Processor Sharing (GPS), priority, queueing, schedul-
ing, power series

1 Introduction

Numerous queueing systems in practice, have a high-priority bypass possibility.
In this paper we study the influence of these high priority customers on a gener-
alized processor sharing (GPS) queue. For instance, the processor of a computer
system is shared by several jobs, whereby each class of jobs gets a time-share
according to the weight of its class. However, the processor can also be inter-
rupted, for hardware I/O for instance (i.e., the user pushes a key, requested data



from the harddisk becomes available ...), these are in fact short high-priority
jobs, bypassing the normal scheduling mechanism.

An example from telecommunications is DiffServ [9]. DiffServ is short for Dif-
ferentiated Services and is an architecture designed to deliver a different Quality
of Service (QoS) grade to various services in telecommunication networks. It
defines an Expedited Forwarding (EF) class of packets next to the Assured For-
warding (AF) class. EF packets have essentially high priority and are thus given
strict priority over all other packets. The AF class of packets is divided into sub-
classes, and the scheduling amongst the subclasses is a GPS-based scheduling.

Cisco implemented this kind of scheduling mechanism in some of its gigabit
switch routers. The brand names used are IP Realtime Transport Protocol (RTP)
Priority and Low Latency Queueing (LLQ); both are based on a mixture of
GPS-like scheduling with priority bypassing. They differ in the type of traffic
they support, i.e., UDP vs TCP.

As a result of its practical application, this model also attracted attention
from the research community, where it is frequently referred to as PQ-GPS.
Jin et al. [4, 5] studied PQ-GPS under long-range dependent traffic by using a
flow decomposition approach dividing the system into single-server single-queue
(SSSQ) systems. They obtain analytical upper and lower bounds. Parveen [12]
used the same SSSQ approach to study a system containing both long-range and
short-range dependent traffic. After the single queue decomposition he however
uses another technique resulting in a single approximation, as opposed to an
upper and lower bound. Lastly, we mention Wang et al. [20] who studied a finite
hybrid queueing model using PQ and Weighted Fair Queueing (WFQ). As WFQ
is known to be a good approximation for GPS, it is also of interest here. Drawing
up a Markov chain for the system and solving it for the steady-state probability,
they conclude with a sensitivity analysis for the parameters of the system.

Next to studying hybrid scheduling models, most of the attention has gone
to both individual models, i.e., either priority queueing or generalized processor
sharing models. Priority queueing was, for instance, studied in [3,6,13,15,18,19].
Whereas, GPS was analyzed in [7, 8, 10,11,17,21].

In this paper, we analyze a hybrid priority-GPS scheduling algorithm. We
construct a functional equation for the probability generating function (pgf)
of the queue contents in steady state. Subsequently, we develop an iterative
procedure to calculate the coefficients of the power series of this pgf, whereby the
power series is constructed in the GPS-weight. Due to practical restrictions, we
use the truncated power series to construct approximations. Lastly, we evaluate
the approximations using simulation results.

2 Mathematical model

We consider a discrete-time (i.e., time is assumed to be slotted) queueing system
with three queues of infinite capacity and one transmission channel. Three classes
of customers, named 1, 2 and 3, arrive to the system. Customers of class 1
have strict priority over the other customers. Consequently, the server always



Fig. 1. Model

serves class 1 as long as this class is backlogged. If class 1 is not backlogged,
class 2 and 3 customers are served according to a discrete-time implementation
of GPS. As such, the server serves a class 2 customer with probability β and a
class 3 customer with probability (w.p.) 1−β, if both classes are backlogged. The
weight parameter of the GPS scheduling is thus β and can be used to divide the
bandwith among customers of class 2 and 3. Within each queue, the customers
are served in FIFO order. This model is depicted in Fig. 1.

The number of arrivals of class j (j = 1, 2, 3) in slot k is denoted by aj,k,
where we assume {aj,k, k > 0} forms a sequence of independent and identically
distributed random variables. The joint pgf of the arrivals of all classes is de-
noted as A(z1, z2, z3) , E[z

a1,k
1 z

a2,k
2 z

a3,k
3 ]. Furthermore, we define λj as the mean

number of arrivals in queue j and λT as the mean total number of arrivals to
the queueing system per time slot. Every customer requires a single slot of ser-
vice. This means that the load ρ (i.e., the mean number of slots of work arriving
to the system per slot) equals λT ; subsequently, the stability condition for this
queueing system is λT < 1.

In the next sections, we study the stationary distribution of the queue content
in each of the queues. Therefore, we define uj,k as the queue content in queue j

at the beginning of slot k and Uk(z1, z2, z3) , E[z
u1,k

1 z
u2,k

2 z
u3,k

3 ] as the joint pgf
of the queue content at the beginning of slot k. The stationary distribution is
then U(z1, z2, z3) = limk→∞ Uk(z1, z2, z3).

3 The functional equation

Let us first establish the system equations, relating (u1,k, u2,k, u3,k) and (u1,k+1,
u2,k+1, u3,k+1), i.e., the state of the system at the beginning of slot k and the
state of the system at slot k + 1. We split the equations into several (sub)cases:

– All queues empty, i.e., uj,k = 0, j = 1, 2, 3:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, a2,k, a3,k) (1)

– Queue 1 not empty, i.e., u1,k > 0:

(u1,k+1, u2,k+1, u3,k+1) = (u1,k − 1 + a1,k, u2,k + a2,k, u3,k + a3,k) (2)



– Queue 1 empty, i.e., u1,k = 0:
• queue 2 empty and queue 3 not empty i.e., u2,k = 0, u3,k > 0:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, a2,k, u3,k − 1 + a3,k) (3)

• queue 2 not empty and queue 3 empty, i.e., u2,k > 0, u3,k = 0:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, u2,k − 1 + a2,k, a3,k) (4)

• queue 2 and 3 both not empty, i.e., u2,k > 0, u3,k > 0:

(u1,k+1, u2,k+1, u3,k+1) =

{
(a1,k, u2,k − 1 + a2,k, u3,k + a3,k) w.p. β

(a1,k, u2,k + a2,k, u3,k − 1 + a3,k) w.p. 1− β
(5)

From these systems equations, we construct a relation between the pgfs
Uk(z1, z2, z3) and Uk+1(z1, z2, z3):

Uk+1(z1, z2, z3) = A(z1, z2, z3)

(
Uk(0, 0, 0)

+
1

z1

(
Uk(z1, z2, z3)− Uk(0, z2, z3)

)
+

1

z3

(
Uk(0, 0, z3)− Uk(0, 0, 0)

)
+

1

z2

(
Uk(0, z2, 0)− Uk(0, 0, 0)

)
+

(
β

z2
+

1− β
z3

)(
Uk(0, z2, z3)

− Uk(0, 0, z3)− Uk(0, z2, 0) + Uk(0, 0, 0)
))

. (6)

In steady state, both Uk and Uk+1 are equal. We denote U(z1, z2, z3) ,
limk→∞ Uk(z1, z2, z3) = limk→∞ Uk+1(z1, z2, z3) as the pgf of the queue content
in steady state. By letting k → ∞ in Equation (6) and solving the result for
U(z1, z2, z3), we retrieve the following functional equation for U(z1, z2, z3):

U(z1, z2, z3) =

A(z1, z2, z3)



(
z2(z1 − z3) + βz1(z3 − z2)

)
U(0, z2, z3)

+(1− β)z1(z3 − z2)U(0, z2, 0)

−βz1(z3 − z2)
)
U(0, 0, z3)

+
(
z1z3(z2 − 1) + βz1(z3 − z2)U(0, 0, 0)


z2z3(z1 −A(z1, z2, z3))

(7)

This functional equation still contains some unknowns that need to be deter-
mined to obtain full knowledge of the statistical distribution of the queue length.



Therefore, we need to calculate the unknown boundary functions U(0, z2, z3),
U(0, z2, 0), U(0, 0, z3) and U(0, 0, 0). This last unknown is easily found as U(0, 0, 0)
and equals the probability that the system is empty in steady state (u1 = u2 =
u3 = 0). In queueing theory, this is a well-known result and is equal to 1− λT .
For ease of notation, however, we will only do this substitution after eliminating
the other boundary functions.

4 The Power Series Approximation

To eliminate the boundary functions, we write U(z1, z2, z3) as a power series in
β, where we assume U(z1, z2, z3) is analytic in a neighborhood of β = 0. This
approach was also used in [17] to analyze a two-queue GPS system. We write:

U(z1, z2, z3) =

∞∑
m=0

Vm(z1, z2, z3)βm. (8)

In the remainder of this section, we use this power series and the functional
equation from the previous section to derive an iterative procedure to calculate
Vm from Vm−1.

4.1 Eliminating Vm(0, 0, z3)

The first step is to replace U(z1, z2, z3) by its power series in (7). Subsequently, we
can equate the coefficients of βm on the right and left hand side of Equation (7).
For the coefficient of βm,m ≥ 0, this yields

(z2z3(z1−A(z1, z2, z3))Vm(z1, z2, z3) (9)

=A(z1, z2, z3)
[
z1(z3 − z2)

(
Pm−1(z2, z3) + Vm(0, z2, 0) + Vm−1(0, 0, 0)

)
+ z2(z1 − z3)Vm(0, z2, z3) + z1z3(z2 − 1)Vm(0, 0, 0)

]
,

where we defined V−1(z1, z2, z3) , 0 and Pm(z2, z3) = Vm(0, z2, z3)−Vm(0, z2, 0)
−Vm(0, 0, z3) and thus P−1(z2, z3) = 0. Looking closely at Equation (9), we can
see that only two of the remaining unknown boundary functions Vm(0, z2, 0) and
Vm(0, z2, z3) are needed to calculate Vm(z1, z2, z3), assuming Vm−1(z1, z2, z3) is
known. By introducing the power series we effectively eliminated one of the
unknown boundary functions.

4.2 Eliminating Vm(0, z2, z3)

By using a generalization of Rouché’s theorem [1], we can prove that z1 −
A(z1, z2, z3) has one zero in the unit disk of z1 for an arbitrary z2 and z3 in
the unit disk. We denote this zero by Y2,3(z2, z3) and it is thus implicitly defined
as Y2,3(z2, z3) = A(Y2,3(z2, z3), z2, z3), with |Y2,3(z2, z3)| < 1. As the left hand



side of Equation (9) is zero for z1 = Y2,3(z2, z3) and Vm(z1, z2, z3) remains finite
in the unit circle, the right hand side should also equal zero. This leads to

z2(z3 − Y2,3(z2, z3))Vm(0, z2, z3)

=Y2,3(z2, z3)(z3 − z2)
(
Pm−1(z2, z3) + Vm(0, z2, 0) + Vm−1(0, 0, 0)

)
+ Y2,3(z2, z3)z3(z2 − 1)Vm(0, 0, 0). (10)

4.3 Eliminating Vm(0, z2, 0)

We can prove that Y2,3(z2, z3) is the pgf of a random variable of this system,
see [18] for a similar example. Then by again using Rouché’s theorem, we can
prove that z3−Y2,3(z2, z3) has one zero in the unit disk of z3 for an arbitrary z2
in the unit disk. We denote this zero by Y2(z2) and it is thus implicitly defined
as Y2(z2) = Y2,3(z2, Y2(z2)) = A(Y2(z2), z2, Y2(z2)), with |Y2(z2)| < 1. As the
left hand side of Equation (10) is zero for z3 = Y2(z2) and Vm(0, z2, z3) remains
finite in the unit circle, the right hand side should also equal zero. This yields

Vm(0, z2, 0) =− Pm−1(z2, Y2(z2))− Vm−1(0, 0, 0) +
Y2(z2)(z2 − 1)Vm(0, 0, 0)

z2 − Y2(z2)
.

(11)

Feeding this result back into Equation (10), we get that

z2(z3 − Y2,3(z2, z3))Vm(0, z2, z3)

= Y2,3(z2, z3)(z3 − z2)
(
Qm−1(z2, z3) +

Y2(z2)(z2 − 1)Vm(0, 0, 0)

z2 − Y2(z2)

)
, (12)

with

Qm(z2, z3) = Pm(z2, z3)− Pm(z2, Y2(z2)) (13)

= Vm(0, z2, z3)− Vm(0, z2, Y2(z2))− Vm(0, 0, z3) + Vm(0, 0, Y2(z2)).

Lastly, as U(0, 0, 0) = 1− λT (shown before), we know that V0(0, 0, 0) = 1− λT
and Vm(0, 0, 0) = 0 for m > 0.

So by introducing the power series notation and the two implicitly defined
functions Y2,3 and Y2, we found a solution for the boundary functions. Substi-
tuting, these solutions in Equation (9), we get (with m > 0) that

V0(z1, z2, z3) =
(1− λT )A(z1, z2, z3)(z2 − 1)(z3 − Y2(z2))(z1 − Y2,3(z2, z3))

(z2 − Y2(z2))(z3 − Y2,3(z2, z3))(z1 −A(z1, z2, z3))
,

(14)

Vm(z1, z2, z3) =
A(z1, z2, z3)(z3 − z2)Qm−1(z2, z3)(z1 − Y2,3(z2, z3))

z2(z3 − Y2,3(z2, z3))(z1 −A(z1, z2, z3))
. (15)

As a result, starting from V0, Vm can be calculated from Vm−1. This concludes
the iterative calculation procedure of U(z1, z2, z3).



As a test of our analysis, suppose we would want to study the joint probability
generating function of u1 and u2 + u3. We can do this by replacing both z2 and
z3 by z, as E[zu1

1 zu2+u3 ] = U(z1, z, z). We subsequently get:

V0(z1, z, z) =
(1− λT )A(z1, z, z)(z − 1)(z1 − Y2,3(z, z))

(z − Y2,3(z, z))(z1 −A(z1, z, z))
, (16)

Vm(z1, z, z) = 0. (17)

As Vm equals zero for m > 0, U(z1, z, z) = V0(z1, z, z) and the pgf is independent
of β, as expected. The result we get, is the pgf for a priority queueing system
with 2 queues as can be found in [19]. This confirms our result.

5 Approximations of performance measures

In the previous section, we derived an iterative algorithm to calculate the joint
pgf U(z1, z2, z3) of the queue content. More practical performance measures of
the system, however, would for instance be the mean length of each of the three
queues. These can be calculated from the power-series form of the pgf

E[uj ] =
∂U(z1, z2, z3)

∂zj

∣∣∣∣
z1=z2=z3=1

=

∞∑
m=0

βm
∂Vm(z1, z2, z3)

∂zj

∣∣∣∣
z1=z2=z3=1

. (18)

We showed earlier that Vm(z1, 1, 1) = 0 for m > 0, so E[u1] = V0(1, 1, 1) is
independent of β. This is of course expected, as the length of the high-priority
queue should not depend on the scheduling of the packets of the lower priority
queues.

A second conclusion follows from the fact that in the work conserving system
presented here, the total backlog is a constant. This constant E[uT ] is indepen-
dent of β. As a result, we get:

E[uT ] =E[u1] + E[u2] + E[u3], (19)

E[uT ]− E[u1] =E[u2] + E[u3] (20)

=

∞∑
m=0

βm
∂Vm(1, z2, 1)

∂z2

∣∣∣∣
z2=1

+

∞∑
m=0

βm
∂Vm(1, 1, z3)

∂z3

∣∣∣∣
z3=1

.

(21)

The terms in the left hand side are constants, while E[u2] and E[u3] on the right
hand side of the equation are a function of β, as can be seen from Equation (18).
Subsequently, this means that for m > 0:

∂Vm(1, z2, 1)

∂z2

∣∣∣∣
z2=1

=− ∂Vm(1, 1, z3)

∂z3

∣∣∣∣
z3=1

. (22)



This result can significantly help speed up calculations, as we only need to cal-
culate one of those derivatives.

With these results, we are able to calculate the exact mean queue lengths,
or at least to an arbitrary precision. This is however only theoretically possible.
In practice, the calculation of Vm is far from straightforward. The calculation
of Qm−1 in (15) involves Vm(0, z2, Y2(z2)) and Vm(0, 0, Y2(z2)), for which sev-
eral applications of l’Hopital’s rule are needed. The differentiation in l’Hopital’s
rule leads to very large expressions, quickly becoming infeasable for current
computers. Calculating the mean queue length involves another differentiation
and evaluation in 1 for all zj , j = 1..3, leading to several more applications of
l’Hopital’s rule.

We, however, have another trick up our sleeve. We can also calculate the
power series in β = 1 leading to:

U(z1, z2, z3) =

∞∑
m=0

(1− β)mṼm(z1, z2, z3) (23)

So, because of the symmetry in the system, Ṽm can be calculated from Vm,
whereby class 3 customers are sent to queue 2 and class 2 customers to queue 3.
In particular, Ṽm can be calculated from Equation (15) with A(z1, z2, z3) re-
placed by A(z1, z3, z2). Subsequently, the mean lengths of queues 2 and 3 can be
calculated as

E[uj ] =

∞∑
m=0

∂Ṽm(z1, z2, z3)

∂z5−j

∣∣∣∣∣
z1=z2=z3=1

, j = 2, 3. (24)

Basically, in practice we can calculate the first M terms of the power series
of E[u2] and E[u3], either in β = 0 or in β = 1, from the functions V0 up to
VM . With these values we can construct approximations. We opt to approximate
E[u2] and E[u3] by rational functions (Padé approximants) of the form

[L/N ]E[uj ](β) =

∑L
l=0 vj,lβ

l∑N
n=0 wj,nβ

n
, (25)

whereby the coefficients vj,l and wj,n should be chosen such that the deriva-
tives of [L/N ]E[uj ](β) in either 0 or 1 match the values obtained before. For
[L/N ]E[uj ](β) to be unique, we need a normalization. Therefore, we choose
wj,0 = 1. As we have 2(M + 1) datapoints and L + N + 1 coefficients in
[L/N ]E[uj ](β), we need to choose L and N such that L+N = 2M + 1.

The Padé approximants can introduce difficulties as the denominator can
introduce poles for β ∈ [0, 1]. Furthermore, the result could be non-monotone;
however, the mean queue length of class 2 (class 3) should decrease (increase)
in β. Lastly, the performance of each approximant is different and varies with
the parameters of the arrival process, so it is unclear which one performs best
beforehand (see also the numerical examples in the next section). These problems
are identical to the ones in [16], the solution presented therein can also be used



here to overcome these problems. This solution (in short) consists of disregarding
the unfeasible approximants and averaging the remaining ones. As to keep this
text self-contained and simple, we will restrict the discussion here to the Padé
approximants (and in the remainder do not use the solution from [16].

6 Numerical Examples

In this section, we will compare our power series approximation for the mean
queue length with simulation results. As the mean queue length for class 1 is not
influenced by the other queues and could also easily be calculated from results
for single-class FCFS queueing, we will not discuss it here. Furthermore, we only
analyze queue 2, as the system is work conserving, results for queue 3 follow
easily from (19).

We will use an arrival process with a joint pgf of the number of arrivals of
the three classes of the form

A(z1, z2, z3) =

(
1 +

λ1
16

(z1 − 1) +
λ2
16

(z2 − 1) +
λ3
16

(z3 − 1)

)16

, (26)

where λj is the arrival rate of class j customers (as defined earlier). Furthermore,
we define α1 = λ1

λT
and α2 = λ2

λT
as the fraction of class 1 and class 2 customers,

respectively.
For the simulation results in this section, we have used Monte-Carlo simula-

tions over 107 slots. This high number of slots is enough to eliminate bias from
the transient phase. Additionally, each simulation uses exactly the same sequence
of arrivals and decision variables, to minimize the variance between simulations
for different parameters of the system. This is the well-known technique of the
common random numbers [2, 14].

In Fig. 2, we show the mean length of queue 2 as a function of the weight
β, with λT = 0.9, α1 = 0.1, and α2 = 0.1. The figure shows curves of the
simulation result and the Padé approximants without poles. We can see that for
these parameters the [2/3] Padé approximant is very accurate.

Secondly, we observe that the approximations perform best close to β = 0
and β = 1. This is expected as the available information is exactly the value up
to the M -th order derivative in these points (in this case M = 2). Subsequently,
the approximants are constructed to match this information, thus performing
well near β = 0 and β = 1.

In our second numerical example, we study the influence of the amount of
high-priority (i.e., class 1) customers. We keep the total load λT = 0.9 fixed
and λ2 = λ3, while increasing α1 from 0.1 to 0.6. The mean queue-2 length
is depicted in Fig. 3 on the left, showing both the simulation results and the
best performing Padé approximant. We can see that the performance of the
approximation is still accurate though slightly deteriorates as α1 decreases, this
results from the choice of the approximant. For this graph, we chose the [3/2]
approximant, which on average performs best for these curves, but for smaller α1

the [2/3] approximant is actually better. Furthermore for β = 1, i.e., when the
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Fig. 2. Mean queue-2 length: comparison between simulation and Padé approximants.

queueing system is effectively a strict priority system with class 1 having highest
priority, class 2 medium priority and class 3 low priority, higher α1 barely makes
a difference. This is mainly because there are few class 2 customers in the system
as α2 decreases from 0.1 to 0.056. On the other end for β = 0, we have a strict
priority queueing system with class 1 high priority, class 3 medium priority and
class 2 low priority. As class 2 is the lowest on the priority ladder, the influence
of the bypassing (higher priority) class 3 and class 1 customers is greater. With
α2 small, however, queueing rarely happens and the influence is rather small.

Using Little’s theorem, we also calculated the mean class-2 delay, it is de-
picted in Fig. 3 on the right. We saw before that as α1 increases the mean
queue-2 length decreases, mainly because α2 decreases (we keep the total load
and ratio between class-2 and 3 packets fixed). As we can see from the graph of
the delay, for an increasing amount of high priority packets the class-2 packets
have a larger delay. There are thus less class-2 packets in the system but they
stay there longer.

In Fig. 4, we show E[u2] as a function of β for different values of the total
load λT , with α1 = α2 = 0.1 fixed. As the load in the system increases, we
observe the queue-2 length increases as well. This is a classical queueing result:
a higher load always leads to higher congestion. As in the previous example (and
for the same reason), we can see the effect at β = 1 is barely visible as opposed
to at β = 0. Furthermore, we see that approximation is close to the simulated
result. For λT = 0.99, we only depicted the approximation. Simulations over 107

slots do not converge for this high load, as the event of the system being empty
becomes very rare.
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Fig. 3. Mean queue-2 length (left) and mean queue-2 delay (right): effect of increasing
fraction of class 1 customers

Lastly, we look at the influence of the amount of class-2 customers while
keeping the total load and the amount of high-priority packets constant. The
results are depicted in Fig. 5 for λT = 0.9, α1 = 0.1 and α2 ranging from 0.1 to
0.5. As the amount of class-2 packets increases the queue length increases, which
was to be expected. Another observation is that the performance of the approx-
imation deteriorates. In Fig. 5, we chose to show the [2/3] approximant. This
is, however, not the best approximation for every parameter combination. For
instance, for α2 = 0.5 Padé approximant [3/2] is the best one. However, even if
we compare every simulation with the best fitting approximant, the performance
still deteriorates.

7 Conclusions

In this paper, we derived an analytical method to calculate the joint probability
generating function of a three-class queueing system with a hybrid GPS-priority
scheduling. The iterative algorithm leads to solutions with arbitrary precision in
theory. Unfortunately, in practice, we are limited by the capabilities of current
computers in the derivation of performance measures. Using Padé approximants,
we have presented a method to use partial information to construct approxima-
tions. These approximations were compared with results from simulation and
prove to work well. As a result, this power series approximation leads to a very
efficient method to study these kind of systems for the whole parameter space,
avoiding very time and resource consuming simulations.



 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1

β

λΤ=0.99

λΤ=0.9

λΤ=0.8

λΤ=0.7
λΤ=0.5

simulation
[2/3]

Fig. 4. Mean queue-2 length: effect of increasing total load
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