The European research landscape in optics and photonics

Brussels, 22. September 2008

Dr Marie-Joëlle Antoine, Opticsvalley
Achievements

• Creation of a database
• **Academic research laboratories** and institutions related to **optics and photonics**
• 27 EU member states plus Israel, Norway, Switzerland and Turkey
• Connection with Industry and common use of the information through Dynamo database (TNO)
Method

- Informations collected
 - Name of the laboratory
 - Contact info (address, and phone number)
 - Email
 - Website
 - Head of the institution
 - Description of the research areas
- Common database with Industry
- Accessible to all on www.opera2015.org
Data collection

Sources
- Governmental sources
- National optical societies directories or other type of equivalent information
- Optics and photonics conferences lists, such as SPIE, OSA, EOS
- Internal databases

Verification of the collected information
- Verification by each partner of the data concerning national labs
Examples of sources

– University Worldwide internet site http://univ.cc
– University and engineering schools associations websites: http://www.amue.fr/Universites; http://www.cge.asso.fr/
– Paris region – Opticsvalley’s internal database
Classification of Research areas
6 main thematics divided into 65 sub thematics

<table>
<thead>
<tr>
<th>General optics</th>
<th>Instrumentation</th>
<th>Optical materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Coherent optics</td>
<td>- Optical instrumentation</td>
<td>- III-V and II-VI materials</td>
</tr>
<tr>
<td>- Colorimetry</td>
<td>- Optical measurement systems and sensors</td>
<td>- Liquid crystals</td>
</tr>
<tr>
<td>- Diffractive optics</td>
<td>- Signal and image processing</td>
<td>- Other materials for optics and photonics</td>
</tr>
<tr>
<td>- Holography</td>
<td>- Spectroscopy</td>
<td>- Polymers and organic materials</td>
</tr>
<tr>
<td>- Lasers</td>
<td>- Terahertz spectroscopy</td>
<td>- Thin films and thin layers</td>
</tr>
<tr>
<td>- Lasers applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Light-matter interaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nonlinear optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical scientific computation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>modelling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical solitons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photodynamic processes and research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photo-induced processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photoionisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photoluminescence and fluorescence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photorefractive effects, devices and research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Plasma research and applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Plasmonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Quantum optics, devices and research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Short-pulses generation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>characterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Theoretical optics and photonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ultrafast optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Active optical devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Adaptive optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical components and devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical diagnostic and control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical diodes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical fibre devices and research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical imaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical interconnects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical microscopy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical parametric processes and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical sensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Passive optical components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photonic crystals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photonic hybrid architectures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photonic integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photonic lightwave circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Rare earth-based devices and research</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Semiconductors materials, processes, devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ultrafast optics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical sources in infrared, visible, UV, X-optical spectrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optoelectronics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Packaging of optical components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sol-gel optics and technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Sources of X-radiation by plasmas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Astronomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Biophotonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Industrial processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nanophotonics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical communications and networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Optical data storage and processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Photovoltaics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ranking of research areas

- Main research areas
 - Lasers and their applications
 - Spectroscopy and Measurement systems
 - Nanophotonics and Quantum optics
 - Biophotonics

![Bar chart showing the ranking of research areas with percentages for each category.]
Repartition of labs by country

About 700 research laboratories registered
Geographical repartition

- 1 to 9 laboratories: 39%
- 10 to 19 laboratories: 16%
- 20 to 50 laboratories: 35%
- More than 80 laboratories: 10%

- 10 laboratories and more: 12 countries
- More than 80 laboratories: 3 countries
- Less than 10 laboratories: 11 countries

Countries with 20 laboratories and more:
- France
- Germany
- United Kingdom
- Italy
- Spain
- Greece
- Portugal
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland
- United Kingdom
- Norway
- Sweden
- Finland
- Ireland

Specialization of countries

« Coefficient of specialization » in Optics-Photonics (CSOP)

- Group 1: more than 50 million inhabitants
- Group 2: between 10 and 50 million inhabitants
- Group 3: less than 10 million inhabitants

CSOP = Ratio number of labs/population
Specialisation of countries
Group 1 - 3 main countries

- **France**
 - 30% to 40% : Nanophotonics, Lasers, Non linear optics and Optical measurement and sensors
 - 25% : Optical components and devices and Spectroscopy
 - 20% : Biophotonics, Light-matter interaction, Optical instrumentation and Optical communications

- **Germany**
 - 30% to 40% : Lasers and Quantum optics
 - 25% : Spectroscopy, Non linear optics and Laser applications
 - 20% : Biophotonics, Optical measurement and sensors, Light matter interaction and Nanophotonics

- **United Kingdom**
 - 30% to 40% : Optical components and devices
 - 25% : Lasers, Biophotonics, Spectroscopy, Quantum optics, Optical measurement systems, Nanophotonics, Theoretical optics
Specialisation of countries
Group 2 - 3 main countries

- Analysis of the laboratories distribution in this group might not be relevant in case of small numbers

- **Belgium**
 - 30%: Active optical devices, Nonlinear optics, Optical sources, and Quantum optics

- **Netherlands**
 - 40%: Signal and image processing

- **Poland**
 - 30% to 40%: Theoretical optics, Spectroscopy, Light-matter interaction and Optical measurements
 - 20% to 25%: Lasers, Non-linear optics, Biophotonics, Quantum optics, Photo-induced process and Laser applications
Specialisation of countries
Group 3 - 3 main countries

- Ireland
 - 30% to 40%: Optical components and devices and Lasers
- Lithuania
 - 60% to 70%: Photonic crystals and in Linear optics
- Slovenia
 - Mainly applicative
 - 35%: Optical measurement and sensors

Analysis of the laboratories distribution in this group might not be relevant in case of small numbers
Comparison with industry (Data from WP3)

- Classification of countries in 2 groups
 - Group A: number of companies superior to 100
 - Group B: number of companies inferior to 100

- Group A
 - Number of laboratories and companies highly correlated ($R^2 = 0.9$ [1])

- Group B
 - Number of laboratories and companies markedly correlated ($R^2 = 0.7$ [1])
 - Belgium, Poland and Slovenia not included because of an important bias in the results (red dots)

[1] R^2 is the square of R, the correlation coefficient, calculated by linear regression.
Conclusions (1)

- The OPERA^2015 allowed us to build a comprehensive database of academic research laboratories in Optics-Photonics at European level
 - About 700 research units identified and registered

- The analysis of research topics shows the strengths of European research in O/P
 - Lasers and their applications
 - Spectroscopy and Measurement systems
 - Nanophotonics and Quantum optics
 - Biophotonics
Conclusions (2)

• These first results should be completed with more accurate data, ie. number of researchers in each lab, number of publications etc…

• At this first level of analysis, a correlation between the number of labs and companies in each country has been highlighted

• The collected data is accessible for all on the OPERA2015 Web site