Advanced search
1 file | 461.75 KB Add to list

Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

(2009) JOURNAL OF PHYSIOLOGY-LONDON. 587(13). p.3393-3404
Author
Organization
Abstract
The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched for age and physical fitness performed 60 min exercise bouts at 50% of their maximal oxygen consumption on two occasions: (1) during i.v. infusion of octreotide, and (2) during placebo infusion. Lipolysis and local blood flow changes in SCAT were evaluated using in situ microdialysis. Infusion of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean men. Under placebo, no difference was found in the exercise-induced increase in glycerol between the probe perfused with Ringer solution alone and that with phentolamine (an alpha-adrenergic receptor antagonist) in lean subjects while a greater increase in glycerol was observed in the obese subjects. Under placebo, propranolol infusion in the probe containing phentolamine reduced by about 45% exercise-induced glycerol release; this effect was fully suppressed under octreotide infusion while noradrenaline was still elevated and exercise-induced lipid mobilization maintained in both lean and obese individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent contributing to exercise-induced lipolysis in SCAT. Moreover, it is the combined action of insulin suppression and NPs release which explains the lipolytic response which remains under octreotide after full local blockade of fat cell adrenergic receptors. For the moment, it is unknown if results apply specifically to SCAT and exercise only or if conclusions could be extended to all forms of lipolysis in humans.
Keywords
BLOOD-FLOW, ADRENERGIC-RECEPTORS, GROWTH-HORMONE, FAT-CELL FUNCTION, BETA-ADRENOCEPTOR BLOCKADE, ATRIAL-NATRIURETIC-PEPTIDE, CATECHOLAMINE-INDUCED LIPOLYSIS, SOMATOSTATIN ANALOG, INSULIN-SECRETION, PHYSICAL EXERCISE

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 461.75 KB

Citation

Please use this url to cite or link to this publication:

MLA
De Glisezinski, Isabelle et al. “Adrenaline but Not Noradrenaline Is a Determinant of Exercise-induced Lipid Mobilization in Human Subcutaneous Adipose Tissue.” JOURNAL OF PHYSIOLOGY-LONDON 587.13 (2009): 3393–3404. Print.
APA
De Glisezinski, I., Larrouy, D., Bajzova, M., Koppo, K., Polak, J., Berlan, M., Bölow, J., et al. (2009). Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. JOURNAL OF PHYSIOLOGY-LONDON, 587(13), 3393–3404.
Chicago author-date
De Glisezinski, Isabelle, Dominique Larrouy, Magda Bajzova, Katrien Koppo, Jan Polak, Michel Berlan, Jens Bölow, et al. 2009. “Adrenaline but Not Noradrenaline Is a Determinant of Exercise-induced Lipid Mobilization in Human Subcutaneous Adipose Tissue.” Journal of Physiology-london 587 (13): 3393–3404.
Chicago author-date (all authors)
De Glisezinski, Isabelle, Dominique Larrouy, Magda Bajzova, Katrien Koppo, Jan Polak, Michel Berlan, Jens Bölow, Dominique Langin, Marie Adeline Marques, François Crampes, Max Lafontan, and Vladimir Stich. 2009. “Adrenaline but Not Noradrenaline Is a Determinant of Exercise-induced Lipid Mobilization in Human Subcutaneous Adipose Tissue.” Journal of Physiology-london 587 (13): 3393–3404.
Vancouver
1.
De Glisezinski I, Larrouy D, Bajzova M, Koppo K, Polak J, Berlan M, et al. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. JOURNAL OF PHYSIOLOGY-LONDON. 2009;587(13):3393–404.
IEEE
[1]
I. De Glisezinski et al., “Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue,” JOURNAL OF PHYSIOLOGY-LONDON, vol. 587, no. 13, pp. 3393–3404, 2009.
@article{663118,
  abstract     = {{The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched for age and physical fitness performed 60 min exercise bouts at 50% of their maximal oxygen consumption on two occasions: (1) during i.v. infusion of octreotide, and (2) during placebo infusion. Lipolysis and local blood flow changes in SCAT were evaluated using in situ microdialysis. Infusion of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean men. Under placebo, no difference was found in the exercise-induced increase in glycerol between the probe perfused with Ringer solution alone and that with phentolamine (an alpha-adrenergic receptor antagonist) in lean subjects while a greater increase in glycerol was observed in the obese subjects. Under placebo, propranolol infusion in the probe containing phentolamine reduced by about 45% exercise-induced glycerol release; this effect was fully suppressed under octreotide infusion while noradrenaline was still elevated and exercise-induced lipid mobilization maintained in both lean and obese individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent contributing to exercise-induced lipolysis in SCAT. Moreover, it is the combined action of insulin suppression and NPs release which explains the lipolytic response which remains under octreotide after full local blockade of fat cell adrenergic receptors. For the moment, it is unknown if results apply specifically to SCAT and exercise only or if conclusions could be extended to all forms of lipolysis in humans.}},
  author       = {{De Glisezinski, Isabelle and Larrouy, Dominique and Bajzova, Magda and Koppo, Katrien and Polak, Jan and Berlan, Michel and Bölow, Jens and Langin, Dominique and Marques, Marie Adeline and Crampes, François and Lafontan, Max and Stich, Vladimir}},
  issn         = {{0022-3751}},
  journal      = {{JOURNAL OF PHYSIOLOGY-LONDON}},
  keywords     = {{BLOOD-FLOW,ADRENERGIC-RECEPTORS,GROWTH-HORMONE,FAT-CELL FUNCTION,BETA-ADRENOCEPTOR BLOCKADE,ATRIAL-NATRIURETIC-PEPTIDE,CATECHOLAMINE-INDUCED LIPOLYSIS,SOMATOSTATIN ANALOG,INSULIN-SECRETION,PHYSICAL EXERCISE}},
  language     = {{eng}},
  number       = {{13}},
  pages        = {{3393--3404}},
  title        = {{Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue}},
  url          = {{http://dx.doi.org/10.1113/jphysiol.2009.168906}},
  volume       = {{587}},
  year         = {{2009}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: