Advanced search
1 file | 450.40 KB Add to list

Unitals admitting all translations

(2013) JOURNAL OF COMBINATORIAL DESIGNS. 21(10). p.419-431
Author
Organization
Keywords
automorphism, translation, unital, design, Hermitian unital, two-transitive group, Moufang set, DESIGNS, PAIRS, DOUBLY TRANSITIVE GROUPS, FINITE

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 450.40 KB

Citation

Please use this url to cite or link to this publication:

MLA
Grundhöfer, Theo, Markus Stroppel, and Hendrik Van Maldeghem. “Unitals Admitting All Translations.” JOURNAL OF COMBINATORIAL DESIGNS 21.10 (2013): 419–431. Print.
APA
Grundhöfer, T., Stroppel, M., & Van Maldeghem, H. (2013). Unitals admitting all translations. JOURNAL OF COMBINATORIAL DESIGNS, 21(10), 419–431.
Chicago author-date
Grundhöfer, Theo, Markus Stroppel, and Hendrik Van Maldeghem. 2013. “Unitals Admitting All Translations.” Journal of Combinatorial Designs 21 (10): 419–431.
Chicago author-date (all authors)
Grundhöfer, Theo, Markus Stroppel, and Hendrik Van Maldeghem. 2013. “Unitals Admitting All Translations.” Journal of Combinatorial Designs 21 (10): 419–431.
Vancouver
1.
Grundhöfer T, Stroppel M, Van Maldeghem H. Unitals admitting all translations. JOURNAL OF COMBINATORIAL DESIGNS. 2013;21(10):419–31.
IEEE
[1]
T. Grundhöfer, M. Stroppel, and H. Van Maldeghem, “Unitals admitting all translations,” JOURNAL OF COMBINATORIAL DESIGNS, vol. 21, no. 10, pp. 419–431, 2013.
@article{5986838,
  author       = {Grundhöfer, Theo and Stroppel, Markus and Van Maldeghem, Hendrik},
  issn         = {1063-8539},
  journal      = {JOURNAL OF COMBINATORIAL DESIGNS},
  keywords     = {automorphism,translation,unital,design,Hermitian unital,two-transitive group,Moufang set,DESIGNS,PAIRS,DOUBLY TRANSITIVE GROUPS,FINITE},
  language     = {eng},
  number       = {10},
  pages        = {419--431},
  title        = {Unitals admitting all translations},
  url          = {http://dx.doi.org/10.1002/jcd.21329},
  volume       = {21},
  year         = {2013},
}

Altmetric
View in Altmetric
Web of Science
Times cited: