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Goal

Goal of this presentation

e Consider multilevel data with binary outcome measures
— e.g9. Generalised Linear Mixed Models (GLMMs)
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— Assess several available functions in R (r core Team, 2013)
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Goal

Goal of this presentation

e Consider multilevel data with binary outcome measures
— e.g9. Generalised Linear Mixed Models (GLMMs)

e Consider cluster size two
— e.g. crossover studies, dyadic data, ...

e Compare the performance of different appropriate methods
— Assess several available functions in R (r core Team, 2013)

Why?

Settings with binary outcomes in small clusters have proven difficult
for the available methodologies (xuetal, 2014)

Goal

6 of 22



Methods
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General difficulties

GLMMs are most widespread for handling binary multilevel
data, BUT:

o Statistical inference of GLMMs is hampered due to its random
effects (RE’s):
¢ Likelihood function involves integrating out these effects
from the joint density of responses and RE’s

o This is (except for a few cases) analytically intractable
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Methods
[ ]

General difficulties

GLMMs are most widespread for handling binary multilevel
data, BUT:

o To tackle this intractability, numerous estimation methods have
been proposed:
¢ Likelihood-based approximation methods
¢ Bayesian estimation procedures

e Least Squares (LS) procedures in the Structural Equation
Modelling (SEM) framework
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Solutions (113)

Likelihood-based approximation methods:

1. Laplace approximation

¢ Approximates the intractable integrand by a quadratic
Taylor expansion

— Closed-form expression of the maximizable likelihood
¢ in R: glmer (package 1me4)

Methods
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Solutions (113)

Likelihood-based approximation methods:

2. Penalised Quasi-Likelihood method (PQL)
(Breslow and Clayton, 1993; Schall, 1991; Stiratelli et al., 1984)
¢ Also an approximation of the integrand

¢ Considered an approximation of the GLMM by a LMM
— estimation simplifies

¢ in R: glmmPQL (package MASS)
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Solutions (113)

Likelihood-based approximation methods:

3. Adaptive Gaussian Quadrature (AGQ)pinheiro and Bates, 1995)
o Approximates the integral by replacing it with a finite sum:

o regular Gauss-Hermite (GH) quadrature (e.g. (Naylor and Smith,
1982)) uses fixed set of nodes

e AGQ uses a different set of nodes for each cluster.
— more efficient than GH quadrature

¢ in R: glmer (package Ime4, option 'nAGQ>1’)

Methods 11 of 22



Methods
o] o]

Solutions @13)

Bayesian estimation procedures:

4. Markov Chain Monte Carlo (MCMC) methods

¢ Simulate the likelihood, rather than computing it
— Calculate sample average of independently simulated
realisations of the integrand

¢ in R: MCMCglmm (package MCMCglmm)
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Solutions @13)

Bayesian estimation procedures:

5. Hybrid approach

¢ Uses an Integrated Nested Laplace Approximation (INLA)
of the posterior distributions

— No need to simulate the likelihood
— Steep decline in computational burden
e inR: inla (package R-inla)
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Solutions (3/3)
LS estimation in SEM:

o Different estimation techniques available:

e OLS, DWLS, GLS

¢ Diagonally Weighted Least Squares (DWLS)
— more robust and accurate than OLS, GLS only for n > 10000.
— only for probit link

e SEM theoretical background:
e Clustered binary outcome Y/ represents crude
approximation of underlying continuous variable Yj.

. \7,-/ is not directly observed (/atent), where:

?17250+B1Xij+bj+5ij (1)

, with € the residual variance ~ N(0, o2)and b; a random intercept ~ N(O, T).
e Yj=1 <= Y, > c, with ¢ a threshold value
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Solutions (3/3)
LS estimation in SEM:

e Two parameterisations:
6. In traditional literature, o2 is fixed at one (e; ~ N(0, 1))
= Theta approach (Muthen and Muthén, 2010).
7. In SEM literature 7 + o2 is fixed at one (b; + €; ~ N(0, 1))
= Delta approach muthén and Muthén, 2010).

e They provide different estimates, convertible by a scaling factor

A utetal, 20029 (here, A = 1/./(7 +1)).

e in R: sem (package 1avaan, with option
‘parameterization=theta/delta’)
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Simulations

Simulate binary outcome data of cluster size two, generated
with a probit link. We look at different settings for:

e Sample size: n = 25,50, 100,500
e Intracluster correlation: ICC =0.1,0.3,0.5

e Measure for the exposure X:

¢ Binary/Gaussian (scale)
o Between-/Within- cluster (bw)

e Eventrate: P(Y =1) = 0.5 (0.1 in progress)
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Simulations

= Compare all seven methods in terms of:

Bias - SE - MSE - Coverage - Convergence
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Results

Results for g4

Method Bias Stand. error MSE Coverage Convergence
Laplace bw*scale*n bw*scale*icc  bw*scale*icc icc + scale n
AGQ bw*scale*n bw*icc bw*icc n +icc n + bw
PQL bw*scale*n bw*scale*n bw*scale*n n +icc + bw bw*scale*n
MCMC bw*scale*n icc*n icc*™n n icc*n + bw*icc
bw*scale bw*scale bw*n + bw*scale
Hybrid bw*scale*n scale*n + bw*n icc*n icc*™n /
bw*scale
SEM-6 scale*n + bw*n n +icc n +icc scaleicc + bw*icc scale*icc*n
bw*scale scale + bw bw*scale
SEM-0 scale*n + bw*n scale*n + bw*n icc*n + scale*n bw*scale*n bw*scale*n
bw*scale bw*bin bw*n

*significant terms at the 0.14% significance level
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Results for g4

Bias in 3; for between—group X
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Results for g4

Bias in (3, for within—group X
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Conclusion

Conclusion

e Testing for factors (n, icc, bw & scale)
e Each factor is relevant!
e BUT some methods show more variance than others.
— Nonsensical to compare methods in terms of significant
factors
— Required: elegant way to compare all approaches...

e Graphical comparison
e For bias of 31: does seem to favour SEM-¢
e SEM-¢ also performs well for SE, MSE and convergence

o Additional method: Pairwise Maximum Likelihood
¢ One-step estimation — probably more efficient than LS
¢ Recently implemented in 1avaan

e Additional factor: outcome prevalence
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