Advanced search
1 file | 1.86 MB

Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing

Author
Organization
Abstract
Background: Influenza viruses exist as a large group of closely related viral genomes, also called quasispecies. The composition of this influenza viral quasispecies can be determined by an accurate and sensitive sequencing technique and data analysis pipeline. We compared the suitability of two benchtop next-generation sequencers for whole genome influenza A quasispecies analysis: the Illumina MiSeq sequencing-by-synthesis and the Ion Torrent PGM semiconductor sequencing technique. Results: We first compared the accuracy and sensitivity of both sequencers using plasmid DNA and different ratios of wild type and mutant plasmid. Illumina MiSeq sequencing reads were one and a half times more accurate than those of the Ion Torrent PGM. The majority of sequencing errors were substitutions on the Illumina MiSeq and insertions and deletions, mostly in homopolymer regions, on the Ion Torrent PGM. To evaluate the suitability of the two techniques for determining the genome diversity of influenza A virus, we generated plasmid-derived PR8 virus and grew this virus in vitro. We also optimized an RT-PCR protocol to obtain uniform coverage of all eight genomic RNA segments. The sequencing reads obtained with both sequencers could successfully be assembled de novo into the segmented influenza virus genome. After mapping of the reads to the reference genome, we found that the detection limit for reliable recognition of variants in the viral genome required a frequency of 0.5% or higher. This threshold exceeds the background error rate resulting from the RT-PCR reaction and the sequencing method. Most of the variants in the PR8 virus genome were present in hemagglutinin, and these mutations were detected by both sequencers. Conclusions: Our approach underlines the power and limitations of two commonly used next-generation sequencers for the analysis of influenza virus gene diversity. We conclude that the Illumina MiSeq platform is better suited for detecting variant sequences whereas the Ion Torrent PGM platform has a shorter turnaround time. The data analysis pipeline that we propose here will also help to standardize variant calling in small RNA genomes based on next-generation sequencing data.
Keywords
Illumina MiSeq, Next-generation sequencing, Quasispecies, Influenza virus, Ion Torrent PGM, RT-PCR, RECEPTOR-BINDING SPECIFICITY, DE-BRUIJN GRAPHS, MUTATION-RATES, EVOLUTIONARY DYNAMICS, NUCLEAR EXPORT, B VIRUSES, HEMAGGLUTININ, POLYMERASE, PROTEIN, NUCLEOPROTEIN

Downloads

  • 2431 15VandenHoecke.pdf
    • full text
    • |
    • open access
    • |
    • PDF
    • |
    • 1.86 MB

Citation

Please use this url to cite or link to this publication:

Chicago
Van den Hoecke, Silvie, Judith Verhelst, Marnik Vuylsteke, and Xavier Saelens. 2015. “Analysis of the Genetic Diversity of Influenza A Viruses Using Next-generation DNA Sequencing.” Bmc Genomics 16.
APA
Van den Hoecke, Silvie, Verhelst, J., Vuylsteke, M., & Saelens, X. (2015). Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing. BMC GENOMICS, 16.
Vancouver
1.
Van den Hoecke S, Verhelst J, Vuylsteke M, Saelens X. Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing. BMC GENOMICS. 2015;16.
MLA
Van den Hoecke, Silvie, Judith Verhelst, Marnik Vuylsteke, et al. “Analysis of the Genetic Diversity of Influenza A Viruses Using Next-generation DNA Sequencing.” BMC GENOMICS 16 (2015): n. pag. Print.
@article{5929932,
  abstract     = {Background: Influenza viruses exist as a large group of closely related viral genomes, also called quasispecies. The composition of this influenza viral quasispecies can be determined by an accurate and sensitive sequencing technique and data analysis pipeline. We compared the suitability of two benchtop next-generation sequencers for whole genome influenza A quasispecies analysis: the Illumina MiSeq sequencing-by-synthesis and the Ion Torrent PGM semiconductor sequencing technique.
Results: We first compared the accuracy and sensitivity of both sequencers using plasmid DNA and different ratios of wild type and mutant plasmid. Illumina MiSeq sequencing reads were one and a half times more accurate than those of the Ion Torrent PGM. The majority of sequencing errors were substitutions on the Illumina MiSeq and insertions and deletions, mostly in homopolymer regions, on the Ion Torrent PGM. To evaluate the suitability of the two techniques for determining the genome diversity of influenza A virus, we generated plasmid-derived PR8 virus and grew this virus in vitro. We also optimized an RT-PCR protocol to obtain uniform coverage of all eight genomic RNA segments. The sequencing reads obtained with both sequencers could successfully be assembled de novo into the segmented influenza virus genome. After mapping of the reads to the reference genome, we found that the detection limit for reliable recognition of variants in the viral genome required a frequency of 0.5\% or higher. This threshold exceeds the background error rate resulting from the RT-PCR reaction and the sequencing method. Most of the variants in the PR8 virus genome were present in hemagglutinin, and these mutations were detected by both sequencers.
Conclusions: Our approach underlines the power and limitations of two commonly used next-generation sequencers for the analysis of influenza virus gene diversity. We conclude that the Illumina MiSeq platform is better suited for detecting variant sequences whereas the Ion Torrent PGM platform has a shorter turnaround time. The data analysis pipeline that we propose here will also help to standardize variant calling in small RNA genomes based on next-generation sequencing data.},
  articleno    = {79},
  author       = {Van den Hoecke, Silvie and Verhelst, Judith and Vuylsteke, Marnik and Saelens, Xavier},
  issn         = {1471-2164},
  journal      = {BMC GENOMICS},
  keyword      = {Illumina MiSeq,Next-generation sequencing,Quasispecies,Influenza virus,Ion Torrent PGM,RT-PCR,RECEPTOR-BINDING SPECIFICITY,DE-BRUIJN GRAPHS,MUTATION-RATES,EVOLUTIONARY DYNAMICS,NUCLEAR EXPORT,B VIRUSES,HEMAGGLUTININ,POLYMERASE,PROTEIN,NUCLEOPROTEIN},
  language     = {eng},
  pages        = {23},
  title        = {Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing},
  url          = {http://dx.doi.org/10.1186/s12864-015-1284-z},
  volume       = {16},
  year         = {2015},
}

Altmetric
View in Altmetric
Web of Science
Times cited: