In situ UHVEM study of \{113\}-defect formation in Si nanowires

J. Vanhellemont1, S. Anada2, H. Yasuda2, H. Bender3, R. Rooyackers3 and A. Vandooren3

1Department of Solid State Sciences, Ghent University, Belgium
2Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Japan
3IMEC, Leuven, Belgium

High fluxes of electrons with energies above 200 keV can create self-interstitial clusters in thin Si and Ge foils. In TEM, these clusters are observed as so called \{113\}-defects with \{113\}-habit planes and elongated along \(<110>\)-directions. Previous studies on bulk material showed that dopants, capping layers and local stress fields influence the defect formation kinetics and stability.

Results are presented on in situ \{113\}-defect formation during UHVEM irradiation of Si nanowires with diameters between 40 and 500 nm. The Si nanowires are part of TFET structures and their top is p'-type (\(> 5 \times 10^{19} \text{ B cm}^{-3}\)) either by epitaxy or by ion implantation. The nanowires are embedded in SiO\textsubscript{2} covered with other capping layers and are etched into a stack consisting of an n'-type (\(10^{17} \text{ As cm}^{-3}\)) epitaxial layer grown on an n'-type substrate (\(2 \times 10^{19} \text{ As cm}^{-3}\)).

The UHVEM of Osaka university is equipped with an ion trap and is using an oil-free vacuum system so that both the e-beam and the vacuum in the specimen chamber (about \(7 \times 10^{-6} \text{ Pa}\)) are very pure and possible contamination related influences on intrinsic point defect cluster nucleation and growth are reduced to a minimum. This allows in situ study of the formation of self-interstitial clusters while varying the e-beam flux and irradiation temperature over a wide range.

In situ irradiations are performed on cross-section samples with thicknesses ranging from 50 to 400 nm prepared by FIB. Samples are irradiated with different fluxes of 2 MeV electrons at temperatures between room temperature and 375 °C. A strong dependence of \{113\}-defect formation on nanowire radius and dopant concentration and type is observed as well as on specimen thickness. The observations are compared with simulations based on quasi-chemical reaction rate theory and with results from scanning spreading resistance microscopy and from earlier work on bulk material.