Green RFID Systems

Edited by

LUCA ROSELLI
University of Perugia, Italy
Green RFID Systems

Combining cutting-edge technologies and techniques with existing approaches, this book equips you with the tools and knowledge needed to develop new energy-efficient and environmentally friendly RFID (radio frequency identification) systems.

As well as covering RFID basics, a wide range of new technologies is discussed, including biodegradable and recyclable material use, energy scavenging, passive and chipless architectures, RFID passive sensors, networked RFID and RFID sensors, organic electronic devices, textile electronics, and distributed and wide area electronics. Providing a clear description of how RFID technology can enable the evolution of the Internet of Things, the book guides you down the path to facing new challenges as we move towards ubiquitous sensing for smart environments and a networked society. This is an ideal guide for researchers in academia and industry, technical managers, and graduate students in RF and wireless communications.

Luca Roselli is a Professor of Applied Electronics at the University of Perugia, Italy, where he has been working since 1991. His research interests focus on the design of high frequency electronic circuits and systems, including development of numerical methods for electronic circuit analyses and new material electronics. He has published more than 200 papers and founded two companies (WiS Srl and DiES Srl) in this field. He is strongly involved in MTT-S activity, participating in several MTT Technical Committees (RFID – past chair, RF nanotechnologies, Wireless Power Transfer), organizing the first Wireless Power Transfer Conference (WPTC 2013) and serving as a reviewer for several journals and peer reviewed conferences. He is also a member of the ERC panel.
EuMA High Frequency Technologies Series

Series Editor
Peter Russer, Technical University of Munich

Homayoun Nikookar, Wavelet Radio
Thomas Zwick, Werner Wiesbeck, Jens Timmermann, and Grzegorz Adamiuk (Eds.), Ultra-wideband RF System Engineering
Er-Ping Li and Hong-Son Chu, Plasmonic Nanoelectronics and Sensing
Luca Roselli (Ed.), Green RFID Systems

Forthcoming
Peter Russer, Johannes Russer, Uwe Siart, and Andreas Cangellaris, Interference and Noise in Electromagnetics
Maurizio Bozzi, Apostolos Georgiadis, and Ke Wu, Substrate Integrated Waveguides
George Deligeorgis, Graphene Device Engineering
Luca Pierantoni and Fabio Coccetti, Radiofrequency Nanoelectronics Engineering
Alexander Yarovoy, Introduction to UWB Wireless Technology and Applications
Natalia Nikolova, Introduction to Microwave Imaging
Vesna Crnojevic-Bengin, Advances in Multi-band Microstrip Filters
Philippe Ferrari, Rolf Jakoby, Onur Karabey, and Gustavo Rehder, Reconfigurable Circuits and Technologies for Smart Millimeter-Wave Systems
Contents

List of contributors .. xi

Introduction ... xiii

1 Context analysis .. 1
 1.1 Introduction ... 1
 1.2 Historical perspective of RFID 1
 1.3 RFID towards a networked society 4
 1.4 Standardization .. 6
 1.5 Circuit challenges for RFID systems 7
 1.6 Materials and technology 10
 1.7 Computer aided design (CAD) and optimization 11
 1.8 Conclusions ... 12

Acknowledgment .. 12

References ... 12

2 RFID background .. 17
 2.1 RFID system architecture 17
 RFID system general frame 17
 RFID regulation ... 19
 RFID technology .. 23
 2.2 Fundamentals and advances in RFID antenna design 27
 2.3 Smart RFID tagged objects: from conventional RFID to networked RFID systems and green solutions 30

References ... 35

3 Energy scavenging and storage for RFID systems 38
 3.1 Introduction ... 38
 3.2 Modeling vibrational energy harvesters 41
 Electromagnetic generators 43
 Piezoelectric generators 44
 State of the art and benchmarks in vibrational energy harvesters 46
 3.3 Thermoelectric generators 48
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Scavenging architectures for vibrational and thermoelectric energy harvesters</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Scavenging architecture for RFID rectenna and voltage multiplier</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>General purpose approach to the design of the rectenna</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Selection of rectenna components</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Antenna topology</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Rectifier topology</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Antenna(s)/rectifier(s) architecture</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Rectenna design results</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Design of power conversion circuits</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Technologies for RFID sensors and sensor tags</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>RFID sensor concept and constraints</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>RFID sensor architecture</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Active and passive RFID tags</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>RFID sensor technology for wireless sensor networks</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Power constraints</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Current technological challenges</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>SAW-based RFID sensors</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Basic principles of SAW RFID sensors</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Design of SAW RFID sensors</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Fields of application</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>CMOS-based RFID sensors</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>System architecture of a CMOS RFID system</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Multi-standard analog frontend</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Ultra-low-power rectifier</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Tag-to-reader communication</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Reader-to-tag communication</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Clock generation and clock recovery</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Sensor interface</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Wireless sensing</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>Timing constraint</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Time-domain comparator</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>Digital-to-analog converter</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Temperature sensor</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Distance measurement</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Local positioning</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Modulated back-scattering with passive transponders</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Measurement setup for distance measurement</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>User defined EPC custom command for distance measurement</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>CMOS RFID system tests</td>
<td>109</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of SAW and CMOS RFID sensors</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>111</td>
</tr>
</tbody>
</table>
5 Unconventional RFID systems

5.1 Introduction

Efficient and energy-aware approaches
RFID for location
RFID for household applications

5.2 Efficient and energy-aware approaches

Extending the coverage range of RFID systems
The radio link using multi-sine signals
Multi-sine power-link
Multi-sine data downlink
Multi-sine data uplink
Laboratory test beds and measurements
Measurement setup 1
Measurement setup 2
Measurement setup 3
Results discussion
Protocols for reduction of energy consumption
Proposed architecture and algorithm
Signal strength measurement
Preliminary measurements

5.3 UWB location based on passive sensors

5.4 RFID for household applications

A battery-less remote control system based on a multi-RFID scheme
Proposed system
The novel N-port microstrip network

References

6 Integrating tiny RFID- and NFC-based sensors with the Internet

6.1 Introduction

6.2 RFID-based networked prototypes

Semi-passive
Solar-powered UHF tag for localization
WISP-based
Concealable and flexible antennas for the WISP module
Multipacket reception for the RFID EPC Gen2 protocol
Chemical gas sensing
Passive
Paper-based ultra-high frequency sensor
Metallic structural strain sensor

6.3 NFC-based networked prototype

6.4 Using WSNs to interface with the internet

Crossbow WSN for location tracking
ZigBee
SWIM – smart wireless integrated module
Near-field certificate of authenticity reader
Contents

IPV6-enabling 6lowPAN 169
Extensions to mobile and pico-datacenter computing 172

6.5 Conclusion 172
References 173

7 Materials for substrates 176

7.1 Introduction 176

7.2 Substrate characterization 178
 Ring resonator method 178
 T resonator method 180
 Transmission line (TL) method for substrate loss 181

7.3 Fabrication method for various substrates 184
 Subtractive processes 184
 Milling 184
 Lithography 184
 Additive processes 185
 Inkjet printing 185
 Screen printing 188
 Mixed processes 189

Appendix 7A: The effective width and effective permittivity 191
References 193

8 Organic conductors and semiconductors: recent achievements and modeling 195

8.1 Introduction 195

8.2 Active devices for printed RFIDs 196
 Modeling tools for organic devices 196
 High frequency rectifiers based on organic Schottky diodes 197
 Basic devices and circuits based on organic TFT 200

8.3 Passive RFID components 203
 Graphene: the wonder material 203
 Basic properties of graphene 204
 Analogy of ballistic transport and electromagnetic waves: a rich concept 206
 Fabrication of graphene 207
 Modeling of the electromagnetics-quantum transport in graphene nanodevices 208
 Frequency domain: the combined Dirac–Poisson problem 209
 Time domain: the combined Dirac–Maxwell problem in the ballistic regime 213
 Graphene antennas for RFID and wireless applications 215
 Graphene in the microwave and mm-wave range 216
 Antenna design and modeling 219
Contents

Acknowledgment 223
References 223

9 RFID enabling new solutions 228
9.1 Introduction 228
9.2 Time-domain reflectometry (TDR)-based chipless tags 230
9.3 Spectral signature-based chipless tags 231
9.4 Amplitude/phase backscatter modulation-based chipless tags 232
9.5 Other solutions? 232
9.6 Novel RFID sensor 233
9.7 Basic theory 235
Tag information encoding 236
Received reader voltages 237
Conversion products 239
Information recovery 239
9.8 Applications 240
9.9 Conclusions 243
References 244

10 Energy-efficient off-body communication using textile antennas 248
10.1 Introduction 248
10.2 Basics of textile antenna design 248
Textile materials/characterization 248
Literature overview of textile antennas 249
Design examples 249
Dual-polarized textile patch antenna 249
Textile antenna array 251
10.3 Off-body links relying on space–time coding and textile antennas 251
Introduction 251
Measurement setup 252
Measurement results 253
CDF and outage probability 254
Bit error characteristics 255
Real-time error performance 256
10.4 Off-body beam forming versus space–time coding 257
Experimental setup 257
Analysis of the received signals 260
Beam forming power gain 260
Time-dependent signal behavior 260
10.5 Energy-efficient channel tracking of off-body communication links 262
10.6 Application domains 264
10.7 Conclusions 265
Contents

10.8 Future perspectives 265

Dynamic beam forming 265
Dominant eigenmode transmission 266

References 266

Index 268
Contributors

Federico Alimenti
Università degli studi di Perugia

Alírio Boaventura
Universidade de Aveiro

Nuno Borges Carvalho
Universidade de Aveiro

Ana Collado
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)

Benjamin S. Cook
Georgia Institute of Technology

Alessandra Costanzo
University of Bologna

Ricardo Fernandes
Universidade de Aveiro

Apostolos Georgiadis
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)

Amelie Hagelauer
University of Erlangen-Nuremberg

Sangkil Kim
Georgia Institute of Technology

Vasileios Lakafosis
Georgia Institute of Technology

Taoran Le
Georgia Institute of Technology

Paolo Lugli
Technische Universität München
List of contributors

Chiara Mariotti
Università degli studi di Perugia

Diego Masotti
University of Bologna

João Nuno Matos
Universidade de Aveiro

Giulia Orecchini
Università Degli Studi di Perugia

Luca Pierantoni
Università Politecnica delle Marche

Hendrik Rogier
Ghent University

Aldo Romani
University of Bologna

Marco Tartagni
University of Bologna

Manos M. Tentzeris
Georgia Institute of Technology

Anya Traille
Georgia Institute of Technology

Thomas Ussmueller
University of Erlangen-Nuremberg

Luigi Vallozzi
Ghent University

Patrick Van Torre
Ghent University

Rushi Vyas
Georgia Institute of Technology

Robert Weigel
University of Erlangen-Nuremberg
Since a beginning in the late forties, the development of solid state electronics has been characterized by relentless progress toward miniaturization and concentration of functionalities, mainly computational operations, in an ever smaller volume. This behavior was first expressed theoretically by Gordon Moore in 1964 when he formulated his greatly renowned “Moore’s Law.”

In the last decade we have experienced a fairly new scenario: on the one hand, technology development has introduced new concepts and materials. Beyond conventional semiconductors (group IV and III-V elements), carbon-based materials such as carbon nanotubes (CNT) and graphene, along with organic semiconductors, have been investigated. Focusing on substrates and supports, conventional materials (ceramics, Teflon-based, glass fiber, and so on) come alongside others that are new, low cost, easily producible in large areas, and eco-friendly. Material science, to this extent, is in its infancy, nevertheless some materials can be cited already: paper, bioplastics, PET, and likely many others in the near future. On the other hand, traditional electronics, still developing according to Moore’s Law in the miniaturization direction, often referred to as “More Moore axis,” is experiencing this inherent saturation. Incidentally, Moore himself, in a famous interview in 2004, on the occasion of the celebration of the forty years since the Moore’s Law formulation, said, referring to it: “It can’t continue forever. The nature of exponentials is that you push them out and eventually disaster happens.” He was the only one having the credibility to say that, at that time. I wish to expand a bit on this: it is a matter of fact that the ICT policy of the industrialized world, in supporting societal development and steering investments, is addressing new challenges. From the technological side, this trend can be summarized by the well known expression “More than Moore.” This emphatic expression actually means that beside investments to foster miniaturization (More Moore), technology developments have to be directed towards adding more functionalities to electronic systems. It is worth noting that this new direction is not an alternative to the previous one, instead it stimulates new investigations and new ways to exploit all the technologies developed and being developed, ultimately enabling new solutions for societal challenges and needs.

At this point I wish to take this concept to the extreme: we are assisting, combining More Moore and More than Moore approaches, in a large development of multi-functional, heterogeneous, highly miniaturized electronic systems: why not extend these systems to distributed architectures? Once we have multi-functional miniaturized systems, why don’t we incorporate them in everyday objects? We are clearly entering the
Introduction

world of Internet of Things (IoT); a world where objects in general (things, animals, humans) can host electronic devices, collect information, and process and react to this information doing something by themselves or just send information to the internet for further decision taking.

Is this a precise vision of the future? We cannot say “precise,” but certainly evolution is also in this direction.

Now the question is: how can scientists and technicians foster this evolving scenario? If we refer to what can be seen as a stabilized “networked society,” where information is automatically collected by “objects” that can react by themselves (smart objects) or transfer information to humans via the internet, we have to face mainly two big challenges: first, it is impossible to connect all the objects to the grid or put batteries that last for life in them; second, we have to avoid producing long lasting apparatuses that outlive their host objects, thus causing pollution. Internet of Things is a very multidisciplinary evolution area, but whatever the developments towards the Internet of Things, it will need technological platforms that must be eco-friendly and energetically autonomous – in one word “green.”

Keeping on thinking about the future networked society and understanding that the adopted technologies must be “green,” the next question is: given that the technological platform must be green, what are the architectures and protocols suitable to support new distributed functionalities?

Without lack of generality, a fascinating possibility enabled by the availability of distributed smart objects consists of collecting information in a distributed instead of a concentrated way. Mapping of a parameter over a mesh, the granularity of which depends on the spatial distribution of smart objects, is straightforward. The problem is that these objects have to collect information and transfer it to the network autonomously. One of the most suitable means to satisfy these requirements is the RFID concept. RFID, in fact, is a way to get information from a tag by means of an interrogation protocol between a tag and a reader.

It is not the intention to extend the RFID description in this introduction, but it is just worth underlining that, in principle, this communication approach allows information to be gathered and transferred to a network, without either physical contact to the tagged object or power supplying it via a connection to the grid: thus objects become smart, but remain autonomous.

The main objective of this book is just to give an overview of a basic technology, foreseeable as of now, to face the development of distributed apparatuses for applications in the Internet of Things in line with the vision of a networked society.

To meet this objective the book is structured as follows:

First a historical overview of the development of RFID systems as well as a recap of RFID working principles is given in Chapters 1 and 2.

Second, a description of the main challenges posed by tagging objects in the context of distributed, RFID-based solutions, is given in Chapters 3 and 4, namely: energy harvesting, required to provide objects’ autonomy, and RFID sensor development to provide the functionality of getting information from the environment.
Third, the book enters the area of unconventional RFID systems devoted to new distributed scenarios. Chapters 5 and 6 refer to unconventional RFID applications and how to connect RFID systems to a network, respectively.

Fourth, materials and related technologies for the realization of green RFID systems to be used within these new massively distributed applications are described in Chapters 7 and 8.

Fifth, in Chapter 9, chipless architecture has been introduced to provide a means to push to the extreme the possibility of realizing ultra-low cost, low power tags for sensing objects.

Sixth, eventually in Chapter 10, examples of new materials, specifically textile ones, are given to provide new solutions in all those applications directly involving humans.